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Abstract— The system resulting from the coupled Finite Element 

Method and Boundary Element Method formulations inherits all 

characteristics of both finite element and boundary element 

equation system, i. e., the system is partially sparse and symmetric 

and partially full and nonsymmetric. Consequently, to solve the 

resulting coupled equation system is not a trivial task. This paper 

proposes a new efficient lifting-based two level preconditioner for 

the coupled global system. The proposed approach is applied to 

solve the coupled systems resulting from the electromagnetic 

scattering problem and its performance is evaluated based on the 

number of iterations and the computational time. Traditional 

methods based on incomplete and complete LU decompositions are 

used for comparison.  
 

Index Terms— FEM-BEM Equations, Lifting Technique, Preconditioner. 

 

I- INTRODUCTION 

THE FINITE ELEMENT and the Boundary Element Methods can be considered complementary to 

each other in many cases. It is particularly true to problems where the domain considered is formed by 

two (or more) regions where one of them is characterized by non-homogeneous material while the 

other is free space. This kind of problem is difficult to be solved by any individual method described 

above. Therefore, a combination of the two previous techniques comes up as a powerful way to solve 

it [1]. 

The system resulting from the coupled Finite Element Method and Boundary Element Method 

(FEM–BEM) formulations inherits all characteristics of both finite element and boundary element 

equation system, i. e., the system is partially sparse and symmetric and partially full and 

nonsymmetric [1], [2]. Consequently, the efficient solution of the FEM-BEM system has been object 

of many researches [3], [4]. In fact, most of the proposed approaches are based on some adaptations. 

In the algebraic multigrid context, for example, one should consider a fast matrix-by-vector 

multiplication for dense matrices and to use some matrix approximation technique for the BEM dense 

matrix. In particular, common smoother types do not work properly in the case of the single layer 

potential [5]. In face of that, this work proposes a new efficient two level preconditioner for the global 
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FEM-BEM system based on the lifting technique [13]. This proposed approach is applied to some 

real-life FEM-BEM coupled systems and its performance is evaluated based on the number of 

iterations and the computational time. Traditional methods based on incomplete and complete LU 

decompositions are used for comparison. 

II. PROBLEM FORMULATION 

The scattering problem was chosen to show the performance of the proposed approach. This kind of 

problem occurs when an object is struck by an electromagnetic wave. To solve this problem by hybrid 

technique an artificial surface must be chosen, which allows dividing scattering problems in two 

regions. The first, ∞Ω , is the free space with permeability 0µ  and permittivity 0ε . The second region 

Ω  may consist in general of non-homogeneous material with permeability ),( yxµ  and permittivity 

),( yxε . Once the two regions are known, the electromagnetic fields in each one can be formulated. 

These formulations for both interior and exterior fields can be then coupled at the boundary surface 

through continuity conditions [1],[2],[6]. In this work, the formulation for both TMz and TEz 

polarization are provided, the 
jwt

e  time convention is assumed and, the incident field ( , )
i

Z
u x y  is 

given by  

)sincos(0
ii ysxjki

z eu
ϕϕ +=

,     (1) 

 

 

Fig. 1.  Dielectric cylinder illuminated by a 
zTM  plane wave [2] 

 

A. Finite element formulation 

The Helmholtz differential equation describes the field behavior in region Ω . In general form, the 

Helmholtz equation could be written as [1] 

( ) 02
2
01 =+∇⋅∇ uku αα ,      (2) 

where, 000 εµwk =  represents the wave number. Also, for electric field polarization rµα /11 = , 

rεα =2  and zEu =  while for magnetic field polarization rεα /11 = , rµα =2  and zHu = .  
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The strong problem formulation for this case can be expressed as it follows: given α1, α2 and k0, 

find u such that [1]: 

( ) 02
2
01 =+∇⋅∇ uku αα ,  Ω∈∀ x      (3) 

 ψα −=
∂

∂

n

u
1   ex Γ∈∀     (4) 

 φ=u , gx Γ∈∀       (5) 

In above equations ),( yxx = , eΓ  and gΓ  are exterior and Dirichlet boundary, respectively. Also, ψ  

is the normal derivative and φ  is the Dirichlet potential. 

The weak formulation given by (6) is well known and its development will be omitted here [2]. 

( ) ∫∫∫ ΓΩΩ
=Γ

∂

∂
−Ω⋅−Ω∇⋅∇ 012

2
01 d

n

u
wduwkduw ααα       (6) 

in which u  is an approximation for the field and w  is the weight function. The finite element 

formulation given by (6) is computed in the target domain and it is well suited to deal with 

complex geometries and anisotropic or isotropic materials [2]. 

Applying Galerkin’s procedure with (6) and dividing the domain in a grid of triangular elements, it 

is possible to determine the general set of equations that can be written in matrix form as [2], 

[ ]{ } [ ]{ } 0=+ kCdK      (7) 

where [ ]K  is a nn ×  square matrix and [ ]C  is a mn×  rectangular matrix, with m  and n  representing 

the total number of the nodes on the boundary and in the interior domain, respectively. Also, { }d  is a 

column vector for approximated field arguments u  and { }k  is a column vector for the normal 

derivative field arguments. 

B. Boundary element formulation  

In free space, ∞Ω , the fields also are formulated by Helmholtz equation. The general formulation 

for both electric and magnetic fields is: 

)()()( 2
0

2 rfrukru =+∇ , ∞Ω∈∀r      (8) 

in which, for electric polarization zEu = , iz MJZjkrf ×∇−= 00)(  and for magnetic polarization 

zHu = , zi JMZkjrf ×∇−= )()( 00 . Where, 0Z  is the intrinsic impedance of the free space, zJ  

represents all currents that flow along z-axis and iM  is the impressed magnetic source.  

To formulate the fields in ∞Ω , one introduces the free space Green’s function 0G , which satisfies 

the differential equation  

)',()',()',( 0
2
00

2
rrrrGkrrG δ−=+∇ , ∞Ω∈∀ 'r      (9) 
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and the Sommerfeld radiation condition [2]. In Eq. (9), ( )'rr −δ  represents the Dirac delta function. 

The solution for this equation is [2] 

 

( ) 




 −= '

0
2
0

'
0

4

1
, rrkH

j
rrG .     (10) 

The boundary fields are derived from the product of Eq. (8) by 0G , the application of second scalar 

Green’s theorem and Dirac properties [1],[2]. 
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In Eq. (11), the primed sign indicates operation under integration point, the factor 0.5 is the solid 

angle saw by the observer on the boundary and )( ru
i  is the incident field given by (1). 

Then, writing Eq. (11) for all m nodes on the boundary, it produces [1],[2] 

{ } { } [ ]{ } [ ]{ }kQdHbu ++= ,      (12) 

in which, [ ]H  and [ ]Q  are mm ×  matrices obtained from the discretization and { }b  is a 1×m  incident 

field column vector. 

C. Fem-Bem formulations 

A typical finite element – boundary element system consists of two sets of equations, where 

one of them is obtained from FEM (7) and other obtained on the boundary from BEM (12). As 

the unknowns in both equations are the same, the two sets of equations could be coupled and 

expressed in the in following form: 









=
















−−
=

bk

d

QH

CK
Ax

0
     (13) 

This equation system inherits all characteristics of both finite element and boundary element 

methods. For this reason, the equation system given by (13) is partially sparse and symmetric and 

partially full and nonsymmetric [1]. There are many different ways to write FEM–BEM equation, 

however the form present here is the easiest one [2]. The system is composed by NN ×  algebraic 

equations, N = (m + n), and solves both finite element and boundary element equation systems 

simultaneously. Although (13) is considered the best form to understand the coupled FEM–BEM 

method it is not the better way to solve it because the symmetry of the FEM subsystem is not 

exploited [2]. To write this system more efficiently see [2], [7]. Especial attention is required to 

evaluate [ ]H  and [ ]Q  because there are singularities when both source and observation points 

coincide [1], [2]. 
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III-LIFTING BASED TWO-LEVEL PRECONDITIONER 

The approach proposed here is based on a projection method. In this process an approximation for 

the solution of the linear system (13) is extracted from a subspace K of 
N
ℝ which is the search 

subspace. If p is the dimension of K, then the residual vector b Ax−  is constrained to be orthogonal to 

the same subspace K. Mathematically, denoting by V a N p×  matrix whose column-vectors form a 

basis of K, with an initial guess 0x ∈K, the approximate solution is written as 

0x x Vy= + ,      (14) 

in which y is obtained solving the following system of equations from the orthogonality condition [8] 

0

T T
V AVy V r=       (15) 

in which the initial residual vector is 0 0r b Ax= − . 

Then, if the p p×  matrix 
T

V AV  is nonsingular, the expression for the approximate solution xɶ  

becomes, 

1

0 0( )
T T

x x V V AV V r
−

= +ɶ      (16) 

In the lifting based approach, the matrix 
T

V AV  is obtained by the decomposition of the matrix A 

induced by the discrete lifting wavelet transform, with the wavelet of Haar [9]. 

The multiresolution analysis in discrete lifting wavelet transform decomposes the original grid 

(space) ∞Ω ∪ Ω  in two subspaces V and W such that 

1
{ (2 )}

k
V span x kφ

−

∈= −
ℤ

                       (17) 

1
{ (2 )}

k
W span x kψ

−

∈= −
ℤ

                     (18) 

and 

V W∞Ω ∪ Ω = ⊕       (19) 

where φ  and ψ are the scaling and wavelets function, respectively, V is the low frequency and W the 

high frequency subspaces. The direct sum V W⊕  in (19) means the sum of subspaces in which V and 

W have only the zero vector in common [10]. 

Therefore, this approach can be viewed as a two-level multigrid algorithm in which V
T
 is the 

restriction operator that represents a wavelet transform in equation form (lifting), as proposed in [11]. 

There are basically three forms for representing a wavelet transform: equation form (lifting), 

filter form (filter bank) and matrix form. However, only the first two are appropriate in the 

multigrid implementation. In filter form, the restriction operator V
T 

can be defined as (20), for 

an original system with N unknowns, 
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in which 







=

2

1
,

2

1
],[ 10 hh

 

are the low-pass filters coefficients associated to the haar wavelet.  

In this work, however, the application of the lifting restriction operator V
T
 is algebraically 

defined using the equation form of the wavelet transform as stated in (21), in which s  

represents an approximation in the coarse grid of the original vector S, i. e., s = V
T
S.  

1

2

For 1,...,  /2  do

   [ ] [2 ] [2 1]

   [ ] [2 ] [ ]

   [ ] 2 [ ]

End do

n N

d n S n S n

s n S n d n

s n s n

=

= − −

= +

=

                (21) 

The main advantages of this technique over the classical wavelet transform are: 

a) Smaller memory requirement – the calculations can be performed in-place; 

b) Efficiency: reduced number of floating point operations; 

c) Parallelism –inherently parallel feature; 

d) Easier to understand - not introduced using the Fourier transform; 

e) Easier to implement; 

f) The inverse transform is easier to perform – it has exactly the same complexity as the 

forward transform; 

g) Transforms signals with a finite length (without extension of the signal). 

More details about these advantages as well as other important structural advantages of the 

lifting can be found in [12], [13]. 

The computation of the coarse matrix 
T

V AV  is done applying the procedure (21) in the rows 

and columns of the original matrix A. If the number of rows and columns in matrix A is not 

even, a zero padding operation is accomplished adding one sample with value zero at the end of 

the rows and columns in order to achieve the desired length [12]. So, the resulting 
T

V AV  matrix 

will be formed by the detail coefficients obtained from the discrete lifting wavelet transform and 

will represent an approximation in the coarse grid of the matrix A which is defined as (13). 

The procedure defined in (21) represents the Haar transform in the lifting scheme. Haar is the 

simplest possible wavelet and it is associated to shorter filters [12]. There are many other wavelet 

functions that can present better approximation properties in many cases, but the choice for short 

filters is fundamental to control the fill-in in matrix V
T
AV and keep its sparsity, as already discussed in 

[11]. 
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This two-level preconditioner is illustrated in Fig. 2 and it can be represented by the following 

algorithm: 

:  -   

:       ,      

                

:   

1.     

2. 

T

Algorithm two level lifting preconditioner

Input the right hand side vector b the original matrix A

and the coarse grid matrix V AV

Output approximation x

Choose an initial guess x

C

ɶ

1

    

3.   ( )

4. 

5.  

T T

ompute the residual vector r b Ax

e V AV V r

x x Ve

Return x

−

= −

=

= +ɶ

ɶ

 

 

As the matrix A is partially sparse and the procedure defined in (21) is the Haar transform, the 

resulting matrix will also be partially sparse and it can be created explicitly even for very large 

problems. However, if an iterative method was used to solve the coarse grid system in line 3 of the 

algorithm the matrix 
T

V AV  has not to be explicitly created. 

 

Fig. 2. Two-level lifting preconditioner  

IV-NUMERICAL RESULTS 

The Lifting based two-level method (LTL) was applied as a preconditioner for the Stabilized Bi-

Conjugate Gradient Method (BiCGStab) in the solution of three global coupled FEM-BEM systems. 

These systems were obtained for a circular cylinder with λ.30  diameter, 3=rε  and wave length .1=λ  

The cylinder is struck by a zTM  plane wave with incident angle of .180oi =θ  

The results related to the number of iterations and setup and solver times are presented in tables I, II 

and III. The number of iterations corresponds to the number of BiCGStab steps necessary to reduce 

the Euclidean norm of the residual vector to the order of 10
-4

, which was considered enough to 

reach the desired accuracy.  
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In Tables I to III, N and NZ stand for the number of rows and the number of nonzero entries in the 

matrix, respectively.  

In the tests, the system with the 
T

V AV  matrix in LTL was solved by incomplete LU solver (LTL-1) 

and with a direct method based on the complete LU decomposition (LTL-2). So, the setup time 

presented includes the computation of a explicit representation of the coarse matrix 
T

V AV . Such 

representation of the coarse matrix has a sparsity pattern similar to the original matrix (Fig. 3) and it 

can be created in a relative small computational time, as can be viewed in the setup time column from 

tables I, II and III. The Incomplete LU (ILU) preconditioner and the complete LU solver were used 

for comparison. 

 

TABLE I: RESULTS FOR A SMALL GLOBAL FEM-BEM MATRIX (N=2119, NZ=87133) 

Method 
Setup time 

(seconds) 

Number of 

iterations 

Solver time 

(seconds) 

Total time 

(seconds) 

LTL-2 and BiCGStab 37.83 93 37.47 75.30 

LTL-1 and BiCGStab 7.11 118 49.03 56.14 

ILU BiCGStab 42.81 101 46.42 89.23 

Complete LU  306.02 -- 0.43 306.45 

 

TABLE II: RESULTS FOR A MEDIUM GLOBAL FEM-BEM MATRIX (N=3869, NZ=1073183) 

Method 
Setup time 

(seconds) 

Number of 

iterations 

Solver time 

(seconds) 

Total time 

(seconds) 

LTL-2 and BiCGStab 280.59 127 414.24 694.83 

LTL-1 and BiCGStab 260.70 183 570.80 831.50 

ILU BiCGStab 1358.05 151 1171.22 2529.27 

Complete LU  2057.25 -- 6.11 2063.36 

 

TABLE III: RESULTS FOR A LARGE GLOBAL FEM-BEM MATRIX (N=10389, NZ=1148163) 

Method 
Setup time 

(seconds) 

Number of 

iterations 

Solver time 

(seconds) 

Total time 

(seconds) 

LTL-2 and BiCGStab 3114.78 195 1259.8 4374.58 

LTL-1 and BiCGStab 636.45 362 1679.03 2315.48 

ILU BiCGStab 1587.41 327 1845.56 3432.97 

Complete LU  >10000.00 -- -- -- 

 

The convergence histories for the tests are illustrated in Fig. 4. The convergence history shows the 

residual norm after the first preconditioner step what explains the difference in the start point 

of the convergence curves. As the initial guess was the zero vector, the initial residual norm is 

equal to the norm of the right hand side vector in (13). 
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Fig. 3. Sparsity pattern for original (upper) and coarse approximation (bottom) matrices 

 

 

 

(a) 
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(b) 

 

(c) 

Fig. 4.  Convergence history for the small (a), medium (b) and large (c) problems. 

CONCLUSIONS AND COMMENTS 

The approach proposed in this work revealed to be very efficient and promising to solve the global 

systems of coupled FEM-BEM equations, mainly for the medium and large problems. The usual 

complete LU decomposition method is a good choice for small problems, but is very expensive for 

larger problems, as can be viewed in Table II.  

For large problems, where an efficient preconditioner is required, the lifting two-level method gives 

the best results. In this case, the LU decomposition can be used to solve efficiently the coarse system 

which has the half of unknowns (see Table III). Concerning the computational time the proposed 

approach was about 80% faster than the classical ILU preconditioner. Also, regarding the 

convergence rate, the numerical results suggest that the number of iterations necessary to reach a 

given accuracy grows only logarithmically with the number of unknowns. Further tests have to be 

done in order to prove this conjecture. 
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About the coarse system solution (step 3 in the algorithm), the coarse matrix V
T
AV should be 

explicitly assembled if an incomplete or complete LU solver is used in this step. However, this is not 

a problem since the resulting matrix is partially sparse as can be seen in Fig. 3, and it can be created 

explicitly even for very large problems. Also, regarding the memory requested it can be seen that the 

operator complexity of this preconditioner, which is defined as the sum of number of nonzero entries 

in the coarse matrix and its ILU factors divided by the number of nonzero entries in the matrix A, is 

something about 80% of operator complexity in the ILU preconditioner. It indicates the total storage 

space required by the preconditioner matrices and it is generally considered a good indication of the 

preconditioning operation cost in multigrid approaches. 

One alternative is using an iterative solver such as BiCGStab, where it is enough to know the action 

of the system matrix on a given vector, but the preconditioning of the coarse system is difficult to be 

achieved in this case. 

Finally, it is important to say that the proposed method can be applied in different kind of linear 

system, complex or real, symmetric or non-symmetric, sparse or dense matrices, and it can be a good 

alternative in those cases in which the conventional block-diagonal preconditioning for Schur 

complement based or hierarchical basis solvers do not produce good results. 
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