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Resumo

Este artigo explora diferentes métodos de busca associados à metaheurística Iterated Local Search (ILS) para resolver o

Problema de Programação de Tripulações de um Sistema de Transporte Público. Os resultados obtidos com o ILS foram

comparados com um trabalho prévio, dos mesmos autores, que utilizou a metaheurísica Variable Neighborhood Search (VNS).

Inicialmente ambas as metaheurísticas foram implementadas utilizando como procedimento de busca o método clássico First

Improvement, realizando realocação e troca “guiada” das tarefas das tripulações. Esta realocação/troca guiada substitui a

componente randômica dos métodos clássicos por uma busca da melhor posição para a inserção das tarefas. Posteriormente, foi

utilizada a técnica denominada Very Large-scale Neighborhood Search (VLNS) como procedimento de busca nas respectivas

metaheurísticas. Esta técnica produz um número muito maior de vizinhos do que vizinhanças 2-opt, pois ela permite a

realocação de tarefas entre uma série de diferentes tripulações. Ambas as versões das metaheurísticas foram aplicadas a um

conjunto de dados reais de uma empresa que opera em Belo Horizonte, produzindo programações mais econômicas do que

aquelas adotadas pela empresa. Os resultados são apresentados e discutidos neste trabalho. 

Silva, G. P. and Reis, A. F. S. (2014) A study of different metaheuristics to solve the urban transit crew scheduling problem.

Journal of Transport Literature, vol. 8, n. 4, pp. 227-251.

Gustavo Peixoto Silva*, Allexandre Fortes da Silva Reis

Abstract

This paper explores different local search methods associated with the metaheuristic Iterated Local Search (ILS) to solve the

Crew Scheduling Problem (CSP) of a Public Transportation System. The results from ILS were compared to those obtained in a

previous work from the same authors that used the Variable Neighborhood Search (VNS). Initially, both metaheuristics were

implemented using, as local search, the classical First Improvement Method, performing “guided” reallocation and exchange of

crew tasks. The guided reallocation/exchange replaces random components from the classical method by searching the best

position to insert the task. Further, the Very Large-scale Neighborhood Search (VLNS) technique was used as a local search

procedure in the metaheuristics. This technique has substantially more neighbors than the 2-opt neighborhoods, since it

performs a chain exchange of tasks from different crews. Both versions of metaheuristics were applied to a set of real data from

a company operating in the city of Belo Horizonte, producing more economical schedules than those adopted by the company.

The results are presented and discussed in this work.
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Introduction 

Currently, companies in all sectors of our economy are interested in technological innovations 

as a possibility to improve their performances. However, companies in the Brazilian public 

transportation system make little use of optimization software to schedule their equipment and 

workers, that is, vehicles and crews. This normally happens because the use of optimization 

models requires gathering of precise data, compliance with specified rules and flexibility of 

the system operation, among other practices still not very disseminated in the sector. On the 

other hand, in more demanding systems such as air transportation, the use of optimization 

models to schedule their crews is almost mandatory. Besides enabling the generation of 

possible schedules, the models can decrease the costs with crews, which in the case of air 

transportation, are very high. Thus, the study and implementation of effective methods to 

solve the problem of scheduling the crews in the public transport system, as well as the 

dissemination of the use of the software, are important tasks not only to reduce the operational 

costs but also to increase the use of computational support systems by the management of 

companies which work in this sector.  

The task of developing a programming of an event is an activity that gradually becomes more 

and more difficult as the quantity of items to be programmed and the restrictions of the 

problem both increase. Likewise, the scheduling of the urban transport crews becomes a 

problem gradually harder to be solved due to the labor and operational constraints involved. 

Thus, an efficient scheduling must have as minimum cost as possible, increasing productivity 

and the satisfaction of employees and users of the system.  

In this paper the crew scheduling problem of an urban bus company is modeled and solved 

through the ILS metaheuristic, exploring two different local search procedures. The most 

significant cost component of a transportation company is due to crew remuneration. 

Therefore, defining a crew scheduling with minimal cost leads to a great economy for the 

company. The crew schedule is built from a previously defined vehicle scheduling. So, once 

vehicle schedule is previously defined, operational rules and labor laws are input data to the 

problem. Computational tests were performed with real data from a week of operation and the 

results are presented in this work.  
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This work is divided as follows: in the following section the CSP tackled in this paper is 

presented. In Section 2 the most important works about the problem are presented. In Section 

3, the local search procedures are presented, in detail. In Section 4 it is described how 

metaheuristic ILS was implemented to solve the problem. Section 5 shows the results and, in 

Section 6, these results are discussed. The last section contains the conclusions of this work. 

1. The Crew Scheduling Problem  

The Crew Scheduling Problem (CSP) consists in determining the minimum number of crews 

to cover entirely a vehicle schedule previously made. The solution of this problem involves 

sequencing drivers’ activities in order to generate a set of work duties, that is, the crew 

scheduling. The duties must meet several requirements due to labor laws, union agreements 

and also the operational rules of a company. This way, the problem becomes NP-hard, for 

which there has been no polynomial algorithm to obtain its optimal solutions so far (Fischetti 

et al., 1987). 

A single crew scheduling is made up of a set of tasks and it is called a duty, or crew daily 

duty. A task is a set of trips, of the same vehicle, which must be performed by the same crew. 

Each task has deterministic starting and ending times, and also starting and ending point. The 

set of all tasks, provided by vehicle scheduling, must be assigned to a set of duties with 

minimum cost. The set of all duties composes a complete crew scheduling, or for short, a 

crew scheduling. Duties can be classified into two groups: single duty or split duty. In the 

single duty the tasks are done straight and the time intervals between the tasks are less than a 

given value. In this case, the idle time between tasks is counted for remuneration. If a single 

interval longer than the given value occurs, the duty is classified as split duty. This kind of 

duty is associated to busses operating only during the peaks hours existing on workdays 

timetable and the interval between two pieces of duty is not counted for remuneration. On the 

other hand, split duties must appear in reduced amount in the solution, limited to 20% of the 

total of duties. 

In order to assign the tasks and build the duties, several operational constraints and labor rules 

must be taken into account. In this case, the following restrictions were considered: i) each 

task must be assigned to one duty; ii) each duty is a sequence of tasks that can be performed 
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by a single crew, without overlapping; iii) the normal work time of a duty is of 6 hours and 40 

minutes; iv) the single duties must have a break of at least 20 minutes for rest and meal; v) the 

duties cannot do more than two hours overtime; vi) the time interval between the end of a duty 

and its start on the next day must have at least 11 hours; vii) the change of crews, during 

operation, can happen only at predetermined places and times; viii) a duty can do a maximum 

number of vehicle changes during the day.  

The main goal of a solution to the problem is to reduce the total number of duties, and the 

total of overtime payment. At the same time, the number of split duties must be kept to a 

lower level, being limited to 20% of the number of duties. This problem can be placed as a 

multiobjective optimization, since it brings two conflicting objectives: to minimize the 

number of duties and the amount of overtime payment. In this work the cost function for the 

CSP was defined as a linear combination of the fixed cost, representing crew wage, and 

variable costs, given by overtime payment and the number of split duties. Therefore, the CSP 

is treated as a mono objective minimization, while satisfying all the constraints mentioned 

above. 

2. Literature Review 

The most widely used approach to deal with this problem models it as a set covering or a set 

partitioning problem. The strategy of column generation is largely used to solve the problem, 

as can be seen in the works of Smith and Wren (1988), Desrochers and Soumis (1989), Fores 

et al. (1999) and Barnhart et al. (1998). However, exact models are limited in practical 

applications, since they are unable to solve very large problems. So, it is necessary to use 

heuristic methods to solve problems that appear in real life, which are large. 

One of the pioneer groups in this area, named Scheduling and Constraint Management Group 

of Leeds University, carried out a set of heuristic implementations using Genetic Algorithms 

(Kwan et al., 1999; Li and Kwan, 2003), Tabu Search (Shen and Kwan, 2001), Ant System 

(Forsyth and Wren, 1997) among others. The models developed by this group are widely used 

in the United Kingdom to build crew scheduling as well as the scheduling of the operational 

fleet (Wren, 2004). 
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Although the Crew Scheduling Problem has been widely studied and applied in more 

developed countries, its solving techniques are not disseminated and rarely applied to the 

Brazilian reality. Partially, this happens because the companies do not have the necessary 

input data and organization, and also because there is a lack of models and commercial 

systems that represent the Brazilian operational reality. 

Among the studies concerning the CSP solved in the Brazilian reality, we can highlight 

metaheuristic models that use Simulated Annealing, Tabu Search, GRASP and VNS (Silva et 

al., 2002; Soares et al., 2006; Souza et al., 2004; Reis and Silva 2012). These models have 

been tested with data of companies operating in Brazilian public transport system and the 

results show that there are great possibilities to reduce costs in relation to the solutions 

adopted by the companies. On the other hand, new rules for the problem and modern search 

techniques have appeared in the past few years, which can be employed to solve this problem. 

Thus, this work explores the use of a recent local search technique based on a graph 

representation of the problem and the use of network flow algorithms to carry out more 

complex local search than those inherent to the classic local search procedures. 

The local search technique named Very Large-scale Neighborhood Search (VLNS) (Ahuja, 

2000) was first employed to solve CSP by Silva and Cunha (2010). In this work, VLNS was 

used as local search procedure of GRASP metaheuristic. It was observed by the authors that 

the performance of VLNS search is strongly dependent on the initial solution. Therefore, 

further works propose to adopt single-solution-based metaheuristics that make periodical 

perturbations in the current solution through different movements. In this class of 

metaheuristics, the Variable Neighborhood Search (VNS) (Mladenović and Hansen, 1997) 

and Iterated Local Search (ILS) (Lourenço et al., 2010) can be pointed out. The VNS 

metaheuristic consists in exploring the space of solutions through systematic changes of 

neighborhood structures, while the main idea of ILS is iteratively to perturb the obtained local 

optimal and to apply a local search to this perturbed solution. The metaheuristic VNS was 

already implemented making use of VLNS to solve the CSP. The details and results can be 

found in the work from Reis and Silva (2012).  

In this context, this work aims to solve the Crew Scheduling Problem using the metaheuristic 

ILS combined with the VLNS search technique. In order to verify the efficiency of the 

proposed combinations, the ILS was also implemented in their classical version, using First 
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Improvement Method as local search. Both ILS versions were tested with real data from a 

company that operates in a public transportation system, and the results were compared with 

the results obtained by VNS using the code developed by Reis and Silva (2012). 

3. Local Search Procedures 

The ILS metaheuristic was implemented in the classical version, which uses the First 

Improvement Method as local search. The ILS-VLNS, version uses the Very Large-scale 

Neighborhood Search as local search procedure. Both versions from ILS were tested by 

solving large scale problems of Brazilian reality. 

3.1 Evaluation Function 

The cost Cs associated with a solution s of the CSP is computed by means of a linear 

combination of the fixed cost and the variable costs. The fixed cost represents the wage of a 

crew, and the variable cost is the total of overtime payment. Finally, the split duty crew is 

weighted so that the user may have a control on the number of duties of this type into the 

solution. The final expression for the cost of a solution is: 

𝐶𝑠 = ∑ (𝐹𝑖𝑥_𝐶𝑜𝑠𝑡 + 𝑤1 × 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒𝑖 + 𝑤2 × 𝑠𝑝𝑙𝑖𝑡_𝑑𝑢𝑡𝑦𝑖)
𝑡𝑜𝑡_𝑐𝑟𝑒𝑤𝑠

𝑖=1
                         (1) 

In Expression (1), Fix_Cost represent the fixed remuneration of a crew, w1 is the weight per 

minutes of overtime and overtimei is the total of overtime into duty i, expressed in minutes. 

And w2 is the weight for split duty and split_dutyi is equals 1 if crew i is a split duty and 0 

otherwise. The weight w2 is calibrated to control the number of split duties in the solution, 

since this kind of duty is not desirable in large amount. 

3.2 Initial Solution 

The initial solution was built according to the manual procedure, which can be seen as a 

greedy method of tasks allocation. In the procedure, the first duty is initialized with the first 

task of a bus. The procedure goes on allocating the next task from the same bus which does 

not superpose the previous one and that generates the shortest idle time. The duty is 
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completed as soon as it presents overtime and does not exceed maximum working time 

allowed. This procedure is repeated while there is a task not assigned. Algorithm 1 presents 

the logic employed to build an initial solution for the CSP. 

Algorithm 1 - Procedure Initial Solution 

Procedure Initial Solution (solution s, set of busses with its tasks) 

begin 

1. for each vehicle do     //called current bus  

2.  while there are tasks from current bus not assigned do 

3.  initialize a new duty in s;  //called current duty 

4.  while the current duty is not full and there are tasks not assigned in the current 

bus do 

5.  assign the first task not assigned to the current duty, such that do not 

superpose the tasks already allocated to him; 

6.  end while 

7. end while 

8. end for 

9. return s;  

end; 

3.3 Classical Methods of Local Search 

Methods of local search are algorithms based on the concept of neighborhood. So, consider S 

the space of all solutions of a optimization problem and f(.) the function to be minimized. Let 

us define a kind of move m as being a modification that changes one solution s in other 

solution s’, called neighbor of s by move m, and there are so many different neighbors as 

feasible moves of type m applied to solution s. The function N that depends on the 

neighborhood structure of the problem, associates to each solution s in S, its neighborhood 

N(s) contained in S. Each solution s’ in N(s) is called of neighbor of s according to a kind of 

neighborhood structure that is defined by its move m. For instance, let us define the move task 

exchange for the CSP. Then, the neighborhood N(s), from a given solution s, consists of all 

solutions produced from s by exchanging two tasks from different duties, generating feasible 

new duties. Broadly, local search heuristics start from an initial feasible solution, and it walks 
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from neighbor to neighbor according to the adopted neighborhood structure, keeping the best 

solution visited during the procedure. 

3.3.1 Relocation-Exchange neighborhood structure 

Once the maximum number of tasks involved in a move is defined, it is necessary to establish 

different kinds of moves which characterize a neighbor of a solution. Two kinds of moves 

were adopted: task relocation and task exchange, both between two duties and without 

superposing. These moves are performed to find the best neighbor of a current solution. As an 

example, for a given k ≤ 3, consider two duties i and j, randomly obtained. Then, k 

consecutive tasks are randomly picked out of duty i to be introduced into duty j. Thus, one of 

the following situations may occur: 1) the k tasks of i can be introduced in j, without the 

necessity of removing any task of j. In this case the movement is accepted and the new 

solution will be evaluated. 2) The introduction of k tasks in j demands the removal of one or 

more tasks from this duty. In this case, if the tasks removed from j can be inserted in duty i, 

without any superposing with the remaining tasks in i, the movement is accepted, otherwise it 

is rejected. In both cases, the changes are considered if and only if the resulting duties are 

feasible, i.e. if the duties do not violate any constraints of the problem. 

In this paper, the classical descend method called Random Descent Method (Mladenović and 

Hansen, 1997) was adopted, which besides avoiding exhaustive exploitation of the 

neighborhood, analyzes the duties in a random order, renewed at each iteration. It prevents the 

first duties of the schedule from present higher quality in detriment to the quality of the last 

duties. 

3.4 Very Large-scale Neighborhood Search to solve the CSP 

A critical aspect in neighborhood search algorithms is the choice of the neighborhood 

structure, that is, the way it is defined. This choice largely defines whether the search strategy 

will lead to solutions of good quality or not. In general, the larger the neighborhood the better 

the quality of the local optimal solution shall be. However, large-scale neighborhoods require 

a long research time. For this reason, a larger neighborhood does not imply in a better 

heuristic, unless the neighborhood is explored efficiently. 
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Such algorithms are called Very Large-scale Neighborhood Search Methods, applicable to Set 

Partitioning Problems - SPP (Ahuja et al., 2000). These algorithms enable to explore very 

large neighborhoods, while keeping the processing time at very low levels. One way to 

achieve such efficiency is using network flow algorithms to enumerate implicitly a 

neighborhood, in order to find better solutions. 

A cyclic exchange may be defined as a sequence of elements t1-t2-t3-…-tr-t1 belonging to 

different subsets of a partitioning from SPP. Consider a solution S = S1, …, Sp , i.e., a partition 

for the set of all tasks tk  T, where each partition Si represents a duty. Without loss of 

generality, let S[ti] be the subset to which the element ti belongs, then the cyclic exchange t1-

t2-t3-…-tr-t1 represents the exchange where the element t1 is moved from S[t1] to S[t2], the 

element t2 from S[t2] to S[t3], and so on. Finally, the element tr is moved from S[tr] to S[t1]. - 

Figure 1 shows a cyclic exchange t1-t2-t3-t1 before and after the task exchange. A path 

exchange is defined by a sequence of nodes t1-t2-t3-…-tr and differs from the cyclic exchange 

by the fact that the last element tr is moved from S[tr-1] to S[tr] and no element is moved from 

S[tr] to S[t1]. In Figure 2 there is an example of path exchange. Observe that with the tasks 

exchange subset S1 has one task less and subset S3 has one task more than before the 

exchange. In order to implement path exchange it is necessary to introduce additional nodes 

and arcs.    

 

Figure 1 - Cyclic exchange (t1-t2-t3-t1) before (a) and after the exchange (b) 
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Figure 2 - Path exchange (t6-t8) before (a) and after the exchange (b) 

The classical neighborhood search methods are based on relocation and two-exchange moves 

of elements between the two subsets to which they belong. Observe that the neighborhood of 

cyclic exchange and path exchange contemplates the two-exchange and still explore an 

infinity of other solutions unreachable by the classical relocation and two-exchange moves. 

Therefore, it is expected that the local optimal solutions obtained by multiple exchanges are, 

on average, superior to those obtained by two-exchange moves. However, once the size of the 

neighborhood in multiple exchanges increases exponentially with the size of the problem, it is 

necessary to have an efficient method to find a solution of lower cost in the neighborhood. 

This problem can be overcome using the concept of improvement graph and network flow 

algorithms to explore efficiently a given neighborhood. 

An improvement graph for a neighborhood with multiple exchanges is defined for a feasible 

solution S for the problem, being represented by G(S). Let S[tj] be the duty that contains task 

ti. The graph G(S) is a directed graph with n node, where node i corresponds to a task ti  T. 

A directed arc (i, j) in G(S) means that task ti leaves its current duty and it is moved to the 

duty containing task tj, that is, duty S[tj]. Simultaneously, task tj leaves S[tj]. To construct 

G(S) all tasks pairs ti and tj in T are considered. The arc (i, j) is added to G(S) if the tasks ti 

and tj belong to different duties, and the new duty composed by {ti}S[tj]\{tj} is feasible. The 

cost cij in arc (i, j) is defined as c({ti}S[tj]\{tj}) - c(S[tj]) (Silva and Cunha, 2010). 

A cycle W is called a directed cycle in the improvement graph G(S) if the tasks in T, 

corresponding to the nodes from W, belong to different duties. W is defined as a valid cycle if 

it is a directed cycle of negative cost in G(S). Thus, a valid cycle in G(S) corresponds to a 

cyclic exchange which leads to an improvement in the value of the objective function of the 
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problem. This is an efficient way to search solutions that improve the objective function 

through multiple exchange movements. Therefore it is necessary to find valid cycles in the 

improvement graph G(S). A well known modified label-correcting algorithm that finds the 

minimum path from a given node source to all others nodes of the network was implemented 

to identify a valid cycle in this work. More details about this algorithm can be found in Ahuja 

et al. (1993). 

The idea of VLNS-type algorithms consists in constructing a graph G(S) for a given solution 

S, and finding a valid cycle W in G(S) which provides a better neighbor solution of S. After 

making the cyclic exchange, inherent to the valid cycle, the graph is updated and a new valid 

cycle is sought. The search ends when the improvement graph does not present any valid 

cycle. The pseudo-code presented in Algorithm 2 summarizes the method. 

Algorithm 2 - Pseudo-code of VLNS Procedure 

Procedure VLNS (solution s) 

begin  

1.   construct the improvement graph G(s) for s; 

2.   while G(s) has valid cycles do: 

3.      identify a valid cycle in G(s); 

4.      improve the solution s due to the valid cycle changes;  

5.     update the improvement graph G(s); 

6.   end while; 

7.   return s; 

end 

4. Metaheuristic ILS to solve the CSP 

The ILS is based on the idea that a local search procedure can be improved generating new 

initial solution, perturbing the current solution. In order to use an ILS algorithm, four 

components are needed: a) Generate_Initial_Solution - procedure that generates an initial 

solution s0 to the problem; b) Local_Search - procedure that reaches a local optimal solution, 

called s’’, which is compared to the best current solution s; c) Perturbation - procedure that 

modifies the current solution s reaching to an intermediary solution s’ and d) 
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Acceptance_Criterion - procedure that decides from which solution the next perturbation will 

be applied. The Algorithm 3 shows the Basic ILS’s pseudo-code.  

Algorithm 3 - Iterated Local Search Heuristic 

Procedure Basic_ILS(); 

begin 

1. s0 = Generate_Initial_Solution(); 

2.  s = Local_Search(s0); 

3.  while (termination condition is not met) do 

4.   s’ = Perturbation(history, s); 

5.   s” = Local_Search(s’); 

6.   s = Acceptance_Criterion (s, s”, history); 

7.  end 

8.     return (best solution found s);  

end ILS; 

4.1 Perturbation and Acceptance Criterion 

The perturbation procedure applied to the current solution in ILS metaheuristic was 

implemented following the Relocation-Exchange neighborhood previously presented, which 

depends on the value of k. The same function, Relocation-Exchange, was adopted to perform 

both the local search and the perturbation procedure. In order to avoid the ILS entering a loop 

visiting the same neighbors, the perturbation is executed with the number of tasks to be 

relocated larger than the number of tasks considered into the local search procedure.  

Into the perturbation procedure, in line 4 from Algorithm 3, the value of k is at least one unit 

larger than that one used into the Local_Search() on the next line. The parameter k is 

incremented as soon as the local search fails looking for a better solution. When it reaches a 

maximum value kmax, previously defined, k receives the value 2 and the procedure continues 

until the termination condition is reached. The value for k used by the local search is always 

equal to 1.  
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In this implementation, a solution is accepted if and only if its cost is less than the cost of the 

best solution previously found. Moreover, no infeasible solution is accepted during the 

process.  

Algorithm 4 - Iterated Local Search applied to the CSP 

Procedure ILS (set of neighborhood structures Ni, i =1,…,kmax); 

begin 

1. s0 = Generate_Initial_Solution(); 

2.  s = Local_Search(s0); 

          k = 2; 

3.  while (termination condition is not met) do 

4.   s’ = Perturbation(k , s); 

5.   s” = Local_Search(s’); 

6.   if f(s”) < f(s) 

7.   then s = s” and k =2;  

8.   else k = k+1; 

9.  end if 

10.    if (k > kmax)  

11.                 then k = 2; 

12.            end if 

13.  end while 

14.     return (best solution found s);  

end ILS; 

 

Algorithm 5 gives a high level pseudo-code for the perturbation procedure implemented into 

the ILS metaheuristic, where max_changes is manually tuned to produce a modification 

ranging from 20% to 40% of all duties. The Relocate_Exchange function was previously 

described in Section 3.3.1. 
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Algorithm 5 - Perturbation procedure 

Procedure Perturbation(k, s); 

begin 

1. s’ = s; 

2. for (i = 1 to max_changes) do  

3.   randomly select a pair of different duties d1 and d2 not changed yet; 

4.                    s’ = Relocate_Exchange(s’, k, d1, d2); 

5.  end for 

6.     return(neighbor s’);  

end Perturbation; 

5. Computational Results 

The algorithms were tested by solving a set of seven problems concerning one week of work 

of a Brazilian company that operates in the public transportations system in the city of Belo 

Horizonte. The metaheuristics were implemented in C/C++ language and the tests were 

carried out in a PC with an Intel Core i7 processor and 8 GB RAM. The metaheuristics were 

performed for one hour and 10 runs were done for each problem. Despite the VNS being 

tested in a previous work, Reis and Silva (2012), this metaheuristic was once again executed, 

aiming to guarantee a best comparison with the ILS. 

Table 1 contains the characteristics of the solutions adopted by the company and that are used 

as reference for the solutions obtained. In the following Tables, the line “OT” refers to the 

total of overtime (hours and minutes), “Crews” refers to the total of duties (units), “SD” refers 

to the total of split duties contained in the solution (units), “St. Dev.” refers to the standard 

deviation and “EF” refers to the total cost of a solution, given by Expression (1). The value of 

EF can be seen as the monetary cost of a solution implemented in practice, since the weights 

represent the cost per unit of each component of the Expression (1). 

The set of tests were performed taking into account the following weights: 10,000 for 

Fix_Cost, 4 for w1, with the overtime expressed in minutes. The weight w2, which refers to the 

split duties, received the value 600. These weights were empirically obtained aiming to 
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produce solutions with few drivers, a low amount of overtime hours and the number of split 

duties within the limit set by the company. 

The weights used in the metaheuristics were applied to compute the cost from solutions 

adopted by the company. The main goal of the company is to reduce the total number of 

duties, and the total of overtime. At the same time, the number of split duties must be kept to 

a lower level, being limited to 20% of the number of duties and the crews could not do more 

than one vehicle change during the operation. Thus, it was possible to compare the solutions 

produced by the metaheuristics with those adopted by the company. 

Table 1 - Data from solutions operated by the company 

  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

OT 86:41 85:55 106:05 120:14 108:11 54:35 26:57 

Crews 134 130 149 162 155 124 68 

SD 6 3 5 4 1 0 0 

EF 1,364,404 1,322,420 1,518,460 1,651,256 1,576,564 1,253,100 686,468 

 

Furthermore, the averages of all solutions obtained are presented, the AVG EF, as well as the 

average deviation given by (AVG EF - Best EF)/AVG EF. As much lower this percentage is, 

the more robust the method is (Talbi, 2009). That is, the difference among several solutions 

found, which count on a random factor, is not significant and the heuristic tends to produce 

very similar solutions. The improvements were calculated using Expression (2). Thus, 

negative values mean that the result obtained by the company is better than the one achieved 

by the metaheuristic. 

(𝑣𝑎𝑙𝑢𝑒𝑐𝑜𝑚𝑝𝑎𝑛𝑦 − 𝑣𝑎𝑙𝑢𝑒𝑚𝑒𝑡𝑎ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)
𝑣𝑎𝑙𝑢𝑒𝑚𝑒𝑡𝑎ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

⁄     (2) 

5.1 Solutions obtained by VNS 

Although the VNS heuristic had been previously tested in Reis and Silva (2012), in this paper 

its results had a little modification in relation to the first test, due to the better configuration of 

the PC used. Table 2 gives details of the best solutions for the Classical VNS method, and 

Table 3 gives the characteristics of the best solution provided by VNS-VLNS. 
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Table 2 - Characteristics of the Classical VNS solutions 

  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

OT 54:46 60:24 63:57 61:09 74:55 60:22 33:24 

Crews 120 116 137 150 140 106 55 

SD 23 15 22 34 30 17 10 

Best EF 1,218,316 1,167,748 1,396,164 1,515,728 1,426,732 1,063,544 563,512 

AVG EF 1,223,408 1,181,297 1,401,548 1,534,773 1,439,857 1,077,809 570,119 

ST. DEV. 4,482.55 8,041.48 4,454.96 10,020.27 9,623.80 7,574.89 5,755.06 

Table 3 - Characteristics of the VNS-VLNS solutions 

  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

OT 67:36 63:47 64:44 73:01 69:05 51:47 36:08 

Crews 119 116 138 149 142 108 55 

SD 18 13 23 25 17 15 8 

Best EF 1,217,024 1,183,108 1,409,336 1,522,524 1,446,964 1,101,428 563,472 

AVG EF 1,233,271 1,203,982 1,422,288 1,539,752 1,455,184 1,120,420 572,689 

ST. DEV. 9,297.32 12,713.04 7,828.61 11,706.13 8,213.34 13,484.30 6,074.10 

Table 4 contains a summary of the improvements reached by VNS solutions in relation to the 

solution adopted by the company (Table 1), calculated using Expression (2). The 

improvements are presented for each component from EF, and for its final value. Analyzing 

the final value, it is possible to conclude that the Classical VNS has more economical 

solutions than the VNS-VLNS. That occurs because normally the Classical VNS uses a larger 

number of split duties than VNS-VLNS does, then the Classical VNS gets a lower amount of 

overtime and crews. 

Table 4 - Improvements reached by VNS in relation to the company’s solution (in %) 

 Heuristic Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Crews 
Classical VNS 10.45 10.77 8.05 7.41 9.68 14.52 19.12 

VNS-VLNS 11.19 10.77 7.38 8.02 8.39 12.90 19.12 

OT 
Classical VNS 36.82 29.70 39.72 49.14 30.75 -10.60 -23.93 

VNS-VLNS 22.01 25.76 38.98 39.27 36.14 5.13 -34.08 

SD 
Classical VNS 19.17 12.93 16.06 22.67 21.43 16.04 18.18 

VNS-VLNS 15.13 11.21 16.67 16.78 11.97 13.89 14.55 

EF 
Classical VNS 10.71 11.70 8.05 8.21 9.50 15.13 17.91 

VNS-VLNS 10.80 10.53 7.19 7.80 8.22 12.10 17.92 
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5.2 Solutions obtained by ILS 

The ILS metaheuristic generated results similar to those produced by VNS, as shown in 

Tables 5 and 6. However, comparing the Classical ILS and ILS-VLNS, the best solutions 

were obtained by the second method, according to the data presented in Table 7. 

Table 5 - Characteristics from solutions obtained by Classical ILS 

  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

OT 52:33 62:35 61:58 59:20 67:58 62:35 23:57 

Crews 121 116 138 151 142 106 57 

SD 20 20 23 24 18 16 8 

Best EF 1,234,612 1,187,020 1,408,672 1,538,640 1,447,112 1,084,620 580,548 

AVG EF 1,244,630 1,204,278 1,422,502 1,554,936 1,468,522 1,102,346 589,029 

ST. DEV. 8,948.39 9,031.14 10,268.90 12,587.26 10,276.23 8,226.99 6,632.47 

Table 6 - Characteristics from solutions obtained by ILS-VLNS 

  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

OT 64:24 65:12 62:03 60:48 73:45 58:30 23:02 

Crews 119 115 138 151 141 108 57 

SD 18 19 20 17 16 9 7 

Best EF 1,216,256 1,177,048 1,406,892 1,534,792 1,437,300 1,099,440 579,728 

AVG EF 1,233,277 1,202,322 1,425,890 1,538,452 1,463,668 1,110,343 580,146 

ST. DEV. 8,492.37 13,161.90 9,651.10 3,802.08 13,725.17 9,806.07 307.02 

 

Table 7 - Improvements reached by ILS in relation to the company’s solution (in %) 

  Heuristic Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Crews  
Classical ILS 9.70 10.77 7.38 6.79 8.39 14.52 16.18 

ILS-VLNS 11.19 11.54 7.38 6.79 9.03 12.90 16.18 

OT 
Classical ILS 39.38 27.16 41.59 50.65 37.17 -14.66 11.13 

ILS-VLNS 25.71 24.11 41.51 49.43 31.83 -7.18 14.53 

SD 
Classical ILS 16.53 17.24 16.67 15.89 12.68 15.09 14.04 

ILS-VLNS 15.13 16.52 14.49 11.26 11.35 8.33 12.28 

EF 
Classical ILS 9.51 10.24 7.23 6.82 8.21 13.45 15.43 

ILS-VLNS 10.86 10.99 7.35 7.05 8.83 12.26 15.55 
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In this case, ILS-VLNS produced solutions that usually have a lower number of crews and 

split duties, keeping the total of overtime at the same level as Classical ILS. Therefore, the 

value of EF was better for all solutions, losing only on Saturday. 

6. Analysis of Results 

The results obtained in these tests have a fewer number of split duties than those presented by 

Reis and Silva (2012), mainly in the case of the Classical versions. As in the previous work, 

the use of VLNS as local search produced solutions with fewer split duties. This behavior is 

observed both in VNS and in ILS metaheuristic. The algorithms produced solutions with 

similar characteristics and costs, despite the random features. On the order hand, 

metaheuristics were able to produce solutions with lower cost than the solutions adopted by 

the company. 

Comparing the two versions from ILS, the ILS-VLNS produced better solutions, according to 

EF, and yet maintained the number of split duties lower than the Classical ILS. This kind of 

solutions is the most desirable in practice.  

The comparison between the two metaheuristics, in their best version, shows that the 

difference in the EF value is insignificant. In this case, ILS-VLNS produces solutions with the 

smallest number of split duties, therefore it is the most indicated to be adopted by the 

company, as can be seen below. 

6.1 Comparing VNS versus ILS performance 

Although the Classical VNS produced better improvements than ILS-VLNS, the difference 

between them is very small, being insignificant in terms of percentages. The values in Table 8 

were obtained by Expression (3) with data from respective rows. Negative values show the 

superiority of the Classical VNS over ILS-VLNS. 

(𝑉𝑁𝑆𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 −  𝐼𝐿𝑆𝑉𝐿𝑁𝑆)
𝑉𝑁𝑆𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙

⁄       (3) 
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Table 8 - Percentage difference between Classical VNS and ILS-VLNS (in %) 

  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

OT -17.59 -7.95 2.97 0.57 1.56 3.09 31.04 

Crews 0.83 0.86 -0.73 -0.67 -0.71 -1.89 -3.64 

SD 21.74 -26.67 9.09 50.00 46.67 47.06 30.00 

EF 0.17 -0.80 -0.77 -1.26 -0.74 -3.38 -2.88 

By analyzing these results, it is possible to see that the difference between the Best EF for the 

two methods is at most 1.26% for workdays and 3.38% for the weekend. Hence, it is clear that 

both methods are competitive and generate close solutions for this problem. The difference 

between them concerns the total overtime for the workdays, which is lower for the Classical 

VNS. However, an important operational characteristic for the problem is the total number of 

split duties. Looking at this item, ILS-VLNS is superior in six out of seven days (except on 

Tuesday). The average deviation of split duties on workdays is 1.58 for ILS-VLNS against 7.4 

for Classical VNS. An elevated number of split duties makes it hard to elaborate the monthly 

crew scheduling, thus this kind of duty is avoided by the company. 

6.2 Statistical Inferences 

Based on the results of each instance, the average, the standard deviation, the upper and lower 

bounds for different confidence intervals were computed. The confidence interval gives the 

range of values where a new result will be inside within a percentage of confidence. They 

were obtained using the Expression (4). 

𝐼𝐶(1−𝛼)(𝜇) = [𝑋̅ − 𝑡𝑛−1,
𝛼

2
∙

𝑆

√𝑛
 ;  𝑋̅ + 𝑡𝑛−1,

𝛼

2
∙  

𝑆

√𝑛
]                                  (4) 

In the expression (4), we have: (1-α) = 100(1-α)% of confidence; 𝑋̅ is the average of each 

problem (each day); t(n-1,α/2) is the value obtained on the t-Student distribution table, according 

to the  n-1 degree of freedom and the value α/2 is the desired confidence degree; S is the 

Standard Deviation of the solutions and n is the sample length. The t-Student distribution was 

used because the variance and the mean of the results are unknown. 

Based on the results of each heuristic for each problem, the lower and upper bounds (LB and 

UB respectively), for a 90%, 95% and 99% confidence interval, were extracted and they are 

shown on Tables 9, 10, 11 and 12. 
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Table 9 - Bounds for Classical VNS 

 
Table 10 - Bounds for VNS-VLNS 

 
Table 11 - Bounds for Classical ILS 

 
90% 95% 99% 

 
LB UB LB UB LB UB 

Monday 1.239.442,70 1.249.816,50 1.238.228,75 1.251.030,45 1.235.432,97 1.253.826,23 

Tuesday 1.199.042,74 1.209.512,46 1.197.817,56 1.210.737,64 1.194.995,93 1.213.559,27 

Wednesday 1.416.550,08 1.428.454,72 1.415.156,98 1.429.847,82 1.411.948,64 1.433.056,16 

Thursday 1.547.639,45 1.562.231,75 1.545.931,84 1.563.939,36 1.541.999,17 1.567.872,03 

Friday 1.462.565,83 1.474.478,97 1.461.171,74 1.475.873,06 1.457.961,10 1.479.083,70 

Saturday 1.097.576,86 1.107.114,34 1.096.460,77 1.108.230,43 1.093.890,39 1.110.800,81 

Sunday 585.184,72 592.873,68 584.284,94 593.773,46 582.212,74 595.845,66 

Table 12 - Bounds for ILS-VLNS 

 
90% 95% 99% 

 
LB UB LB UB LB UB 

Monday 1.228.354,23 1.238.199,37 1.227.202,14 1.239.351,46 1.224.548,85 1.242.004,75 

Tuesday 1.194.692,76 1.209.951,24 1.192.907,20 1.211.736,80 1.188.794,98 1.215.849,02 

Wednesday 1.420.296,18 1.431.484,62 1.418.986,90 1.432.793,90 1.415.971,57 1.435.809,23 

Thursday 1.536.247,74 1.540.655,46 1.535.731,94 1.541.171,26 1.534.544,05 1.542.359,15 

Friday 1.455.711,87 1.471.623,33 1.453.849,89 1.473.485,31 1.449.561,69 1.477.773,51 

Saturday 1.104.659,15 1.116.027,25 1.103.328,84 1.117.357,56 1.100.265,10 1.120.421,30 

Sunday 579.967,64 580.323,56 579.925,99 580.365,21 579.830,06 580.461,14 

 

 
90% 95% 99% 

 
LB UB LB UB LB UB 

Monday 1.220.809,71 1.226.006,29 1.220.201,60 1.226.614,40 1.218.801,10 1.228.014,90 

Tuesday 1.176.635,99 1.185.958,41 1.175.545,07 1.187.049,33 1.173.032,64 1.189.561,76 

Wednesday 1.398.965,30 1.404.129,90 1.398.360,93 1.404.734,27 1.396.969,06 1.406.126,14 

Thursday 1.528.964,99 1.540.581,41 1.527.605,62 1.541.940,78 1.524.474,96 1.545.071,44 

Friday 1.434.278,80 1.445.435,60 1.432.973,22 1.446.741,18 1.429.966,43 1.449.747,97 

Saturday 1.073.418,44 1.082.199,96 1.072.390,82 1.083.227,58 1.070.024,17 1.085.594,23 

Sunday 566.782,91 573.454,69 566.002,16 574.235,44 564.204,09 576.033,51 

 

 
90% 95% 99% 

 
LB UB LB UB LB UB 

Monday 1.227.881,65 1.238.659,95 1.226.620,36 1.239.921,24 1.223.715,57 1.242.826,03 

Tuesday 1.196.612,54 1.211.350,66 1.194.887,87 1.213.075,33 1.190.915,90 1.217.047,30 

Wednesday 1.417.750,18 1.426.825,82 1.416.688,14 1.427.887,86 1.414.242,22 1.430.333,78 

Thursday 1.532.966,59 1.546.537,41 1.531.378,52 1.548.125,48 1.527.721,14 1.551.782,86 

Friday 1.450.422,77 1.459.944,43 1.449.308,54 1.461.058,66 1.446.742,42 1.463.624,78 

Saturday 1.112.603,89 1.128.236,11 1.110.774,58 1.130.065,42 1.106.561,64 1.134.278,36 

Sunday 569.167,97 576.209,63 568.343,95 577.033,65 566.446,19 578.931,41 
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Based on the Lower Bounds values for the three different confidence intervals (CI), it is 

possible to infer that the VNS produces best lower bounds in its Classical version and the best 

lower bounds of ILS are associated with its VLNS version, despite the CI, and moreover, 

comparing Classical VNS with ILS-VLNS, the Classical VNS still has the best lower bounds 

to the problem. Figures 3 and 4 present a graphic comparison of lower and upper bounds, for 

95% confidence interval, among the heuristics of four problems: Monday, Tuesday, Thursday 

and Friday. Analyzing the graphic, it is possible to reinforce the statements above.  

 
 

 
 

Figure 3 - Lower bounds considering 95% confidence interval of 

Monday and Tuesday problems 
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Figure 4 - Upper bounds considering 95% confidence interval of 

Thursday and Friday problems 
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Conclusion 

This paper presents an implementation of ILS metaheuristic to solve the Crew Scheduling 

Problem of a Public Transportation System. Initially, the ILS was implemented using, as local 

search, the classical First Improvement method. Next, the Very Large-scale Neighborhood 

Search (VLNS) technique was used as local search procedure in the metaheuristics. The two 

versions were tested with real data from a Brazilian company that operates in the city of Belo 

Horizonte, Brazil, and the results were compared with those obtained by metaheuristic VNS 

in the classical version, and also using the VLNS local search technique.  

Based on the analysis of results, it is possible to state that the use of the VLNS technique was 

able to outperform the classical First Improvement implementation in the ILS. It is important 

to point out that the VLNS version produced a smaller number of split duties than the 

classical local search method, showing that this search method does not cause drastic changes 

in the initial solution, built with the same philosophy as the company’s. The combination ILS-

VLNS is the one which best fits this criterion. On the other hand, the VNS with First 

Improvement was the best one, when comparing the value of objective function.  

Further studies can be carried out including new practical restrictions in the optimization 

model such as limiting the number of split duties in the solution and exploring other 

metaheuristics with the local search technique presented in this work. 
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