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Abstract 
Background: The relationship between slow loris (Nycticebus spp.) venom (BGE protein) 
and the major cat allergen (Fel d 1) from domestic cat (Felis catus) is known for about 
two decades. Along this time, evidence was accumulated regarding convergences 
between them, including their almost identical mode of action. 
Methods: Large-scale database mining for Fel d 1 and BGE proteins in Felidae and 
Nycticebus spp., alignment, phylogeny proposition and molecular modelling, associated 
with directed literature review were assessed. 
Results: Fel d 1 sequences for 28 non-domestic felids were identified, along with 
two additional loris BGE protein sequences. Dimer interfaces are less conserved 
among sequences, and the chain 1 shows more sequence similarity than chain 2. Post-
translational modification similarities are highly probable. 
Conclusions: Fel d 1 functions beyond allergy are discussed, considering the great 
conservation of felid orthologs of this protein. Reasons for toxicity being found only 
in domestic cats are proposed in the context of domestication. The combination of the 
literature review, genome-derived sequence data, and comparisons with the venomous 
primate slow loris may point to domestic cats as potentially poisonous mammals.
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Background
Toxicity caused by mammals is a relatively obscure subject. 
Mammals are known to be venomous at least since the 1800s 
[1]. This fact, however, remained majorly underappreciated until 
very recently [2–5]. Still more intriguing is the fact that almost no 
poisonous mammal has been described. Records of mammalian 
poisons are restricted to intoxication by consumption of sea 
mammal liver [6], and sequestration of exogenous toxins in 
modified hair in hedgehogs and in the African crested rat [7–9]. 
As defined by Brodie [10] in regards to animal toxins, poisons are 
passively encountered and do not have any special mechanism 
of delivery into the body of another organism, while venoms are 
molecular blends housed and produced in specialized structures 
that are associated with a delivery device.

In this paper, I present the hypothesis that domestic cats (Felis 
catus) can be considered poisonous mammals. This proposition 
involves Fel d 1, the major cat allergen, which has functions 
underappreciated outside the allergy context. The proposition 
of a mammalian poison produced by cats has its genesis in the 
slow loris (Nycticebus spp.), a venomous mammal with a very 
elaborate envenomation apparatus [4]. Different species of slow 
loris synthesize the BGE protein in the brachial gland (hence, 
brachial gland exudate or BGE protein), which is licked, and 
mixed with saliva, filling up specialized incisor teeth that work 
as needles [4, 11]. When bitten by the animal in such “loaded” 
state, humans (and other animals, including loris conspecifics) 
have varied physiological responses, from nothing to tissue decay, 
anaphylactic shock, and death [3,4]. The BGE protein has been 
recently shown to closely resemble Fel d 1, the major cat allergen 
[12,13]. This connection between venom and allergen led to an 
inspection of Fel d 1 in a broader, physiological context, since 
no pinpointed function has been ascribed to this protein [14].

Discovered in 1973 [15], Fel d 1 is an oligomeric protein 
composed by two heterodimers, being described as a dimer 
of dimers. The all-helical monomers from chain 1 and chain 2 
(NCBI gene ID 677879 and 677877, respectively) associate in 
heterodimers that assume the U-fold of the secretoglobin family, 
which is highly similar to the traditional globin fold [16,17]. The 
name of this family derives from the fact that the proteins are 
present at high levels in mammalian secretions from pulmonary, 
uterine, prostatic, lacrimal, and salivary origin (and probably 
others) [18]. The secretoglobin fold forms a hydrophobic binding 
cavity, shown in other proteins in the family to bind steroid 
hormones, retinoids, eicosanoids, and polychlorinated biphenyl 
metabolites [19]. Chain 2 has an Asn-glycosylation site, and 
multiple Fel d 1 glycoforms have been shown to exist [20,21].

Fel d 1 is part of a set of allergens from domestic cats (named 
Fel d 1 to Fel d 8), being the main responsible for allergic 
responses in humans. Recent sensitivity comparisons estimated 
Fel d 1 as causing up to 95% of the observed effects of all cat 
allergens. Cats, present in up to half of all households in the 
world, are the second major cause of indoor allergies, being 
surpassed only by mites [22,23]. It is estimated that 10–15% of all 
adults are sensitized to Fel d 1, presenting symptoms that range 

from mild rhinoconjunctivitis to life-threatening respiratory 
complications [24].

The protein is found in different cat anatomical sites, including 
skin, fur, mammary, salivary, sebaceous and anal glands [25–28]. 
The highest levels are found in anal glands, followed by fur and 
saliva [26,28]. Fel d 1 from different sources may be mixed with 
the one found in saliva, and deposited on skin and fur, since 
cats use their highly specialized tongue, equipped with hollow 
papillae, to wick up saliva [29].

The allergy-causing role has been the main research focus in 
Fel d 1 studies. This protein, however, has other functions that 
aid in the comprehension of its physiological role and highlight 
its similarities to the toxic loris BGE protein.

Considering the similarities between primate BGE and cat Fel 
d 1, here I present a working hypothesis that cats may employ 
Fel d 1, the major cat allergen, as a defense mechanism, and as 
an intra- and interspecific communication tool. The rationale 
for this proposition, along with supporting evidence and their 
possible shortcomings, are discussed.

Methods
To inspect for presence and variability of Fel d 1 in non-domestic 
felids, here I present the first full-scale database mining focused 
on this protein. Using the reference sequences for the domestic 
cat Fel d 1 chain 1 (UniProtKB - P30438) and chain 2 (UniProtKB 
- P30440), BLAST searches [30,31] were performed against 
protein, nucleotide, genome, and short reading databases at NCBI 
[32], and filtered for data pertaining to Felidae (NCBI:txid9681). 
Sequence alignments were performed with MUSCLE [33], 
sequence manipulations were performed with AliView [34], 
phylogenetic analyses were performed with PhyML, under 
maximum likelihood, following the JTT+G substitution model 
and branch support estimation by aLRT [35–38]. Tridimensional 
structure visualization and manipulation were carried out with 
UCSF Chimera [39]. These Fel d 1 sequence and structure data 
were combined with directed literature review to elaborate the 
hypothesis presented in this work.

Results
Fel d 1 sequences for 28 species were found, covering all Felidae 
groups [40,41]. Sequence IDs, species and common names 
are presented in Additional file 1 (species for which there are 
insufficient or unavailable data are shown in Additional file 2). 
Here, besides the full sequence of N. javanicus BGE protein 
recently obtained by Scheib et al. [13], two additional sequences, 
for N. coucang and N. pygmaeus, were found by database mining. 
The sequence alignments (Figure 1) reveal the high conservation 
of felid Fel d 1 and their more distant similarity to sequences for 
slow loris (Nycticebus spp., NCBI: txid9469). The glycosylation 
site is conserved for all species, with a proposed shift from N- 
to O-glycosylation in N. javanicus [13] being also found for N. 
coucang. One of the disulfide bonds (Cys pair 3) is not conserved 
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Figure 1. Sequence alignment for felid Fel d 1 and loris BGE protein. (A) Chain 1, (B) chain 2. Characters are colored highlighting differences from majority 
rule consensus. Structurally relevant positions are highlighted according to the legend box and include Cys-Cys pairs, interface hydrophobic residues, Ca2+ binding 
residues and a glycosylation site.

in these alignments, due to shorter chain 1 sequences for most of 
the inspected species. Despite its recurrence, the shortening of 
sequences at their C-terminus due to genetic sequencing issues 
cannot be discarded. Calcium ion binding sites [17,21] are more 
conserved than the interface hydrophobic cluster [13,17]. The 
Fel d 1 dimer-of-dimers interface is less conserved than the core 
cavity-bearing dimers, as shown in Figure 2.

The lower similarity observed for chain 2, where most of 
the interface residues are found, in comparison with chain 1 

is also supported by phylogenetic analyses on both chains of 
Fel d 1 (Figure 3). While a closer relationship between slow 
loris (Nycticebus spp.) and domestic cat (F. catus) sequences 
is indicated for chain 1, the same is not observed for chain 2. 
Such difference can indicate that chain 1 holds most of the toxic 
activity, that could be retained between lorises and cats, while 
chain 2, including its interface binding residues, would be less 
relevant for this specific activity.
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Figure 2. Sequence conservation mapped onto Fel d 1 structure. The information from sequence alignments (Figure 1) was used to locate tridimensionally the 
positions of greater amino acid conservation. Structure based on PDB ID: 2EJN [17]. A scheme indicating the orientation of each dimer in the tetramer (dimer-
of-dimers) is also shown.

Figure 3. Phylogenetic analyses of felid Fel d 1 and loris BGE protein. (A) Chain 1, (B) chain 2. Felid species are colored according to their current grouping 
[41]. Branch support is shown as aLRT gradient.
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Discussion
The allergenic potential of Fel d 1 is well recognized and has 
been the theme of multiple reviews [23,24]. In the present study, 
I highlight the specific connections between allergy and toxins, 
and their relevance in the context of potential cat toxicity.

Allergies are generally considered as an exaggerated 
response due to hypersensitivity of the immune system to 
(usually) innocuous substances in the environment [42]. They 
are mediated by Immunoglobulin E (IgE), which is allergen-
specific and signals to mast cells to release multiple pro-
inflammatory molecules once the individual re-encounters 
an allergen [43,44]. The association of IgE and defense against 
toxins is acknowledged in recent literature [45,46], but as a 
minor function, with allergy being its separate, major role. 
Thus, allergies are generally considered an overblown response 
that is not expected in most of the population, and their effects 
would be an evolutionary burden. This view has been challenged 
by Profet [47], whose proposition is that allergy-propensity 
is an advantageous trait that protects the individual from 
environmental toxins. Current developments of this suggestion 
list multiple mechanisms of allergy-based individual defenses, 
including barrier enhancement (via keratinocyte and goblet 
cell hyperplasia with mucus secretion), removal/expulsion of 
insulting substance (via sneezing, coughing, vomiting, diarrhea, 
and itch), restriction (via granuloma formation, for instance), 
and conditioned avoidance against venomous and poisonous 
species [48]. It is in this theoretical framework that Fel d 1 
toxicity is proposed.

Besides resistance to several endo- and ectoparasites [49], there 
is experimental evidence that allergies/Ig-E mediated responses 
are involved in enhancement of innate response to arthropod and 
reptilian venoms. Such resistance (almost like a “vaccination”) 
was shown in murine models of injection with venoms from 
either honeybee (Apis mellifera), Gila monster (Heloderma 
suspectum), Israeli mole viper (Atractaspis engaddensis), or 
Russell’s viper (Daboia russelii) [50, 51]. With escalating doses 
of injected venom, rats and mice were shown to eventually resist 
to otherwise lethal quantities of toxin.

Allergies and anaphylactic shock are well-established for 
snake bites [52–54] and arthropod stings [55]. These examples, 
involving venoms which are actively injected by the inflicting 
animal, are not directly correlated with Fel d 1-mediated cat 
allergy. Nevertheless, both snake and arthropods can elicit 
allergy when externally contacting the human body. Multiple 
insects and arachnids have been shown to cause allergies that are 
unrelated to stinging or any form of “active” toxicity (i.e. venom) 
[56]. Likewise, cutaneous, ocular, and respiratory exposure to 
venoms from spitting cobra (Hemachatus hemachatus) and 
South American Crotalinae vipers (Bothrops asper, B. atrox, B. 
jararaca, B. xanthograma, Crotalus durissus terrificus, Lachesis 
muta) originate allergenic responses [57–61].

It has been argued that allergens constitute a definite set of 
antigens, specifically those that are homologous to parasite 
proteins (e.g. from intestinal helminths) [62]. Fel d 1, however, 

is a secretoglobin, a family of proteins restricted to mammals 
[63]. In addition, it is disulfide-rich [16], a characteristic found in 
some respiratory allergens [64], and common in toxins found in 
animal venoms [65,66]. The disulfide bonding may explain Fel d 
1 heat stability [67] and why it is so environmentally persistent. 
It has been found in dwellings, classrooms, cinemas, hotels, 
cars, buses, and clothing [68–73]. It has even been detected 
in the isolated Tristan da Cunha Island twenty years after all 
cats were removed from its territory [74], and in the Greenland 
inland ice shelf, were cats are unlikely to have lived [13]. Fel 
d 1 is found in particle sizes as small as 4.7 µm, making it 
suitable for airborne transportation [75,76]. Vacuum and steam 
cleaning were shown to be inefficient in removing the protein 
from domestic environments [70,77], while the use of high 
efficiency particulate air (HEPA) filters was able to reduce its 
levels [78]. Washing cats was shown to temporarily reduce free 
protein levels [79]. These characteristics make Fel d 1 virtually 
unavoidable for the affected individuals [67].

Besides its allergy-inducing abilities, Fel d 1 has been shown 
to have lipid binding properties that may be involved in intra- 
and interspecific communication [21,27, 80,81]. Fel d 1 has been 
shown in silico and in vitro to bind multiple hydrophobic ligands, 
including androstenone, pregnenolone, progesterone, lauric, 
oleic, linoleic, and myristic fatty acids [21, 81], in agreement with 
binding tendencies observed for other secretoglobins [81,82]. 
Their function, however, is still elusive, with ‘secreto’ having 
the double meaning of ‘secretory’ and ‘mysterious/secret’ [19]. 
Previously shown to be likely homologues [83], comparisons 
of Fel d 1 and mouse salivary ABP (androgen-binding protein) 
demonstrated extensive similarities between them, pointing 
to a comparable evolutionary origin and possible functional 
constraints [14].

The facial and anal sites of Fel d 1 deposition are consistent 
with pheromone-releasing sites involved in cat intraspecific 
communication [84], and this co-localization led to the proposal 
of Fel d 1 as capable of binding pheromones and being involved 
in intraspecific communication [27]. The similarity between Fel d 
1, ABP, and some other pheromone-binding proteins [14], along 
with the specificity of Fel d 1 to various semiochemicals [81], 
support its role in intraspecific communication. An additional 
evidence for this action is that Fel d 1 levels vary if cats are either 
male or female, neutered or non-neutered, handling-avoidant 
or sociable. The general trend is to find higher protein levels 
in non-neutered, handling-avoidant males [28,80]. Deviations 
of this pattern, in which sociable females had higher levels of 
Fel d 1 than handling-avoidant females are thought to reflect 
female cat interactions with humans, which are considered more 
elaborate than male’s [80].

Besides intraspecific communication, there is growing 
evidence that Fel d 1 acts on interspecific communication. Rats 
are able to identify individual cats based on their collars [85], 
and different experimental conditions were used to show that 
cat body rubbings elicit defensive behavior in rats [86]. Since Fel 
d 1 is the major component of cat dander [23], it is reasonable 
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to consider that rodents may be sensitive to this protein. In 
this context, Fel d 1 would act as a kairomone [86], a chemical 
sign (originally a pheromone) in the predator species that can 
be intercepted by the prey species [87,88]. This interception is 
also called ‘eavesdropping’ [86].

Despite lacking evidence at present that Fel d 1 and mice ABP 
establish physical contact in nature, molecular simulations raise 
this possibility [14]. It would be interesting to further investigate 
if any interaction does happen between these proteins, in a way 
that could even be involved in kairomone detection. Kairomones 
are thought to have occurred originally as means of intraspecific 
communication and self-recognition in predators, outweighing 
any prey-alerting costs [89,90]. Rodent detection of cat kairomones 
would have evolved by natural selection of prey that was sensitive 
and avoidant to predator odor, being more likely to survive and 
leave offspring with similar cat-detecting traits [86].

The widespread reaction to domestic cat Fel d 1 led to research 
on putative orthologs in other felids. Antibody reactivity 
confirmed the presence of Fel d 1-like protein in lion (Panthera 
leo), leopard (P. pardus), jaguar (P. onca), tiger (P. tigris), snow 
leopard (P. uncia), cougar (Puma concolor), caracal (Caracal 
caracal), serval (Leptailurus serval), and ocelot (Leopardus 
pardalis) [91,92]. Nonetheless, allergy to non-domestic cats (any 
other member of the Felidae family than F. catus) seem to be 
extremely rare. There are only two reports on possible reactions to 
lion Fel d 1 [93,94], which are questionable given the environment 
of the cases (a zoo and a circus) and the known occurrence of 
cross-reactivity among furry animal allergens [95]. Considering 
how conspicuous are the reactions to domestic cat Fel d 1, 
the absence of similar reports for other felids is noteworthy, 
especially when one ponders that large felines are abundant in 
captivity, especially as “exotic pets”, outnumbering their wild 
counterparts [96]. In addition to that, the cases of intoxication 
by slow loris BGE protein are very well documented, despite 
being very shy nocturnal animals [4]. Besides Fel d 1, multiple 
felid species also share their highly specialized tongues [29].

The similarities between cat Fel d 1 and loris venom BGE 
protein [12,13] take part in the possible evidence for the former 

being considered a toxin. The BGE protein is synthesized in the 
brachial glands. This gland secretion is licked, becoming mixed 
with saliva, and filling up needle-like incisor teeth [4,11]. Humans 
are known to develop allergies and enter anaphylactic shock when 
bitten by lorises [4, 97,98]. The BGE protein is proposed to act as 
a communication tool among slow lorises, being able to carry 
different chemomessages, acting as a snare or box [98]. In this 
model, different molecules (from diet, saliva, and/or brachial 
gland) are entrapped in the BGE protein, and deposited in loris 
skin and fur, where they can carry messages via grooming [4]. 
Multiple aromatic compounds were found in the brachial gland 
exudate and since its earlier analysis, the presence of hydrophobic 
molecules was highlighted [99–102].

At the same time, lorises have protective behaviors that involve 
showing off the gland region in their arms when threatened, as 
well as biting conspecifics, causing severe tissue damage [4,11]. 
It has also been shown that olfaction-oriented predators avoid 
slow lorises, even when infants are ‘parked’ in the vegetation at 
the jungle floor [4]. An ectoparasite protective role has also been 
suggested [103]. A general comparison between BGE protein 
and Fel d 1 is presented in Table 1.

The absence of noteworthy observations of allergy against 
any other felid than the domestic cat, despite Fel d 1 being 
largely conserved, raises two main questions. One: how is Fel 
d 1 able to modulate human response despite being so similar 
to orthologs in other felids? Two: why is cat allergy still so 
prevalent, considering the close relationship between humans 
and domestic cats?

The modulation of function seems to be a staple of Fel d 1 in 
domestic cats. The communication role would be the primary 
function of this protein in all felids (independent of body 
size) and would be a way of intraspecific exchange along with 
environmental perception (by binding molecules that are present 
around the individual). This function is remarkably similar to 
the one found in the slow loris BGE protein. However, the ability 
to cause IgE-mediated responses (in humans, particularly) 
must come from additional features, considering the almost 
unchanged profile of Fel d 1 among felids. It has been shown 

Table 1. Comparison between slow loris BGE protein and domestic cat Fel d 1.

BGE protein Fel d 1

Secretoglobin fold Yes Yes

Hydrophobic ligand binding Yes Yes

Glycosylation site Probably Yes

Allergy inducing/IgE response Yes Yes

Toxicity Active/Venom Proposed here as Passive/Poison

Interaction with saliva Yes Yes

Defensive role Yes Proposed here

Intraspecific communication Yes Yes

Interspecific communication Yes Yes

Ectoparasite resistance Yes Unknown
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that glycosylation is somewhat capable of modulating Fel d 1 
conformation, and that deglycosylation alters the protein native 
state [21,92]. However, deglysoylated Fel d 1 was shown to induce 
IgE response, suggesting a lesser role for this post-translational 
modification in the context of cat toxicity [16,20,104]. 

The ability to bind multiple hydrophobic ligands, in the other 
hand, is something that not only makes Fel d 1 a perfect container 
to shuttle molecules between cats themselves and between cats 
and environment (much like what is observed for slow lorises), 
but also would modulate Fel d 1 toxicity. By binding different 
molecules, the protein is able to originate multiple conformers, 
thus, putatively raising multiple functions, as proposed in the 
protein form-function paradigm [105]. In this way, domestic cats 
would modulate how toxic is their Fel d 1 at any given moment 
by dosing different ligands (most likely endogenous and stress 
related). In this scenario, non-neutered male cats would require 
high levels of Fel d 1 to mark their territory and to monitor such 
territory in terms of semiochemicals, and a handling-avoidant 
cat would not only produce more Fel d 1, but would combine 
it more frequently with toxicity-causing ligands, inducing a 
aversive response in humans. 

The anatomical variation in Fel d 1 levels could also hint to 
parasite protection as a role for this protein (as proposed for 
lorises) [27,103]. However, no report on this function is available 
thus far. Since rodents eavesdrop on cat signals [86], another 
function of modulating Fel d 1 plasticity would be to gain some 
advantage in the kairomone arena.

Domestic cats still having allergy-causing phenotypes would 
be unexpected considering their long history of intimacy 
with humans. However, this is not the case. Unlike dogs, that 
underwent major changes due to domestication (including 
shifting to a starchy diet and reaching size extremes) [106,107], 
the so-called domestic cat (F. catus) is still very much unchanged 
regarding its ancestors [108,109]. In this sense, it is not uncommon 
to consider that cat domesticated themselves and that humans 
and cats coexist, but that no de facto domestication took place 
[110,111]. Such coexistence started in the Neolithic period in 
the Near East, in response to rodents targeting the surplus of 
grain being stored as agriculture took momentum. Wild cats 
are thought to have taken this opportunity to access easy prey 
provision in exchange of living near human groups [111]. It is 
plausible to think that Fel d 1 would act as a ‘human deterrent’, 
keeping humans at distance if necessary, considering that their 
presence would be secondary to feline feeding interests. Since 
docility seems to be the major force that shaped domestic cat 
genomes [109], Fel d 1 would be a countermeasure (almost as 
a response to being domesticated). It is also noteworthy that 
domestic cats underwent an expansion of their pheromone-
detecting chemosensory system at the expense of odorant 
detection [109]. Fel d 1 most likely took on additional functions 
on an otherwise already in-demand communication role.

The function acquisition by Fel d 1 (and likely by BGE protein) 
can be considered an example of exaptation, in which features 
that enhance fitness were not naturally selected for their current 

role [112]. Considering that proteins found in animal venoms rise 
from a reduced set of folds, indicating functional restriction to 
which structures can acquire toxicity [113], it is not surprising 
that Fel d 1 would take on that role. It is especially interesting that 
its multifunctionality seem to arise from ligand variation, instead 
of any other protein modification. Fel d 1 and BGE protein are 
not only good examples of moonlighting proteins [114], but also 
additions to the growing list of moonlighting toxins, a group of 
still misidentified multifunctional proteins [115]. Such ligand-
based plasticity of protein function as presented by Fel d 1 can 
be considered a specialized way to avoid toxin resistance, an 
expected outcome of interspecific toxicity coevolution [116].

The aim to reduce or eradicate cat allergy led to multiple 
research efforts. Allegedly hypoallergenic cats were advertised 
and commercialized for some time during the early 2000s [117] 
but are no longer available. Some cat breeds are considered 
hypoallergenic, but this status is not widely accepted [117,118]. 
Reduced levels of Fel d 1 in the fur of hypoallergenic cats 
have been reported [119], and at least two potentially relevant 
mutations were detected in Fel d 1 genes of Siberian cats, the 
breed most frequently listed as hypoallergenic [120]. Since such 
reduced levels of Fel d 1 are considered difficult to propagate [121], 
alternatives are currently being developed, with most of them 
involving some immunological intervention. Administration 
of monoclonal antibodies that compete with IgE for Fel d 1 
were shown to reduce allergy in human patients [122]. Cat 
immunization against its own allergen was shown to reduce 
Fel d 1 levels in the animals [123], while diet supplementation 
with anti-Fel d 1 antibodies reduced the protein level in cat 
saliva [124,125]. In addition to these approaches, at least one 
biotechnology company is aiming to use CRISPR/Cas9 gene 
editing to create cats that do not synthesize Fel d 1 in their 
salivary glands [121]. 

As suggested by Scheib et al. [13], it is possible that researchers 
and personnel working with slow loris will benefit from cat-
oriented treatments, considering the ample similarity between 
Fel d 1 and BGE protein. Cats, however, may not be unharmed 
by such Fel d 1-targeted approaches. Concerns, as those raised 
by Bienboire-Frosini et al. [81], are that, being a multifunctional 
protein, to eliminate it from the cat chemical repertoire would be 
detrimental to normal physiological and ethological functions 
in domestic cats. Would it be akin to neutering (widely accepted 
and of little consequence), to declawing (debatable but practiced), 
or to removing whiskers (damaging to spatial perception)? 
[126–128]. At this point it is not possible to state how much 
these treatments would affect a cat’s everyday life. 

The hypothesis presented here is based on indirect observations. 
In vitro and in vivo experiments on the molecular plasticity of 
Fel d 1 regarding its ligands (including structural determination 
of protein conformers, ligands, and post-translational 
modifications), despite being extremely complex, would most 
certainly answer some of the questions presented here. From a 
basic science point of view, this would be a unique system to be 
studied, which is currently under risk of being ignored once a 
true hypoallergenic domestic cat becomes available.
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Conclusion
Fel d 1, the major cat allergen, may satisfy some criteria to 
be considered a toxin. In this sense, domestic cats would be 
considered poisonous mammals (able to present a toxin but 
devoid of specialized toxin-delivery apparatus). Multiple facts 
seem able to support the protein toxicity as well as its role in 
intra- and interspecific communication. This Fel d 1 profile is 
strikingly similar to loris BGE protein, a secretoglobin present in 
slow loris venom. In both cases the variation in protein contents, 
instead of post-translational modifications or putative alternative 
splicing, act as a driving force in modulating protein activity 
(toxicity, in particular). This is still exploratory research (i.e. 
hypothesis generating), requiring further advances to move into 
confirmatory research (i.e. hypothesis testing). Nevertheless, the 
analysis of Fel d 1 from a toxinology perspective is a novelty 
that may aid in the understanding of this complex molecule 
and its effects on humans. 
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