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Structural dynamic analysis for time response of bars and
trusses using the generalized finite element method

Abstract

The Generalized Finite Element Method (GFEM) can be

viewed as an extension of the Finite Element Method (FEM)

where the approximation space is enriched by shape func-

tions appropriately chosen. Many applications of the GFEM

can be found in literature, mostly when some information

about the solution is known a priori. This paper presents

the application of the GFEM to the problem of structural

dynamic analysis of bars subject to axial displacements and

trusses for the evaluation of the time response of the struc-

ture. Since the analytical solution of this problem is com-

posed, in most cases, of a trigonometric series, the enrich-

ment used in this paper is based on sine and cosine func-

tions. Modal Superposition and the Newmark Method are

used for the time integration procedure. Five examples are

studied and the analytical solution is presented for two of

them. The results are compared to the ones obtained with

the FEM using linear elements and a Hierarchical Finite El-

ement Method (HFEM) using higher order elements.
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1

1 INTRODUCTION2

There is an increasingly effort among the engineering community for the design of structures3

that allow the efficient use of resources and construction procedures. In this context, the design4

of efficient structures can only be accomplished when the structural behavior is known in5

details. The dynamic behavior of structures requires particular attention since most methods6

available for this kind of analysis need significant computational effort. Consequently, the7

development of more accurate methods can reduce the amount of computational effort needed8

in order to solve a given problem for the same accuracy, allowing the engineer to study a larger9

range of structural solutions and thus conceive better structures.10

Most practical problems from structural dynamic analysis are solved using numerical meth-11

ods. When the time response of the structure is sought the problem can be decomposed in12
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two parts. The first regards the approximation of time variations, that can be made by13

some time integration scheme such as the Newmark Method and the Modal Superposition14

Method[7, 15, 42]. The second is the solution of the resulting boundary value problem for each15

discrete time step. Some methods commonly used for solving boundary value problems are:16

the Finite Difference Method[27], the Boundary Element Method[2], the Meshfree Methods[29]17

and the Finite Element Method (FEM)[7, 23, 42].18

The application of several methods for the solution of structural dynamics problems have19

already been proposed[11, 14, 28, 30], being one of the most common approaches the use of the20

FEM together with direct integration methods[7, 23, 42]. However, several authors observed21

that low order polynomial finite elements may give poor results for structural dynamic analysis22

and thus proposed some kind of improved approach[3, 6, 10, 18, 19, 22, 26, 34, 39–41].23

Most improved versions of the FEM for structural dynamics involve the enrichment of the24

approximation space by some set of functions. In this context, two general trends can be ob-25

served in literature: the enrichment of the approximation space by complete polynomial bases26

or trigonometric bases that resemble the polynomial ones [6, 10, 22, 34]; and the enrichment of27

the approximation space by trigonometric bases that reproduce some fundamental vibration28

mode of the structure[18, 19, 26, 40, 41].29

In the last decades, the development of the Partition of Unity Finite Element Method30

(PUFEM)[5, 31] and its variants, the Generalized Finite Element Method (GFEM)[4, 37] and31

the Extended Finite Element Method (XFEM) [1, 16], allowed new possibilities to the problem32

of structural dynamics[3, 9, 20, 35].33

The works by [9] and [20] applied the PUFEM to evaluate the response spectrum of plates,34

obtaining better results than traditional approaches. The application of the GFEM to the35

problem of modal analysis of bars and trusses was discussed in details by [3]. The paper by36

[35] appears to be the only one to apply the concepts of the PUFEM to evaluate the time37

response of structures using time integration procedures. In the work by [35] the method is38

used to model discontinuities inside a given structure without the need for a finite element39

mesh that fits the geometry of the domain. However, in[35] the method is not used to enrich40

the approximation space of the FEM, but only to reduce the need for using very small finite41

elements due to mesh geometry constraints.42

The work by [3] showed that an approach based on the GFEM is able to obtain very43

accurate results for the problem of modal analysis. This is possible since the enrichment shape44

functions can be built as to resemble the fundamental vibration modes of the structure. Since45

Modal Superposition is based on the fundamental vibration modes of the structure [7, 15, 42],46

it is expected that the approach proposed by[3] is also able to give accurate results for the47

time response analysis.48

In this paper the approach proposed by [3] for modal analysis of bars subject to axial49

displacements and trusses is applied to structural dynamic analysis in order to obtain the50

time response of the structure. For the time integration procedure the Modal Superposition51

approach and the Newmark Method (with α = 0.5 and δ = 0.25) are used [7, 15, 42]. The52

efficiency of the proposed approach is compared with the polynomial Hierarchical Finite Ele-53
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ment Method (HFEM) as described by[36] and the standard linear FEM [7, 23] by means of54

five examples. High resolution versions of the figures containing the time responses presented55

in this paper are also available online as supplementary files.56

The importance of studying the problem in the one dimensional framework is that the shape57

functions used for two dimensional problems can be obtained by taking products of the one58

dimensional shape functions[13, 23, 36]. However, it is easier to obtain analytical solutions for59

one dimensional problems, what allows a rigorous comparison between the accuracy obtained60

by the approximate methods. The extension of the approach proposed here for two dimensional61

problems remains as subject of future works.62

2 HIERARCHICAL FINITE ELEMENT METHOD63

The HFEM for the problem being addressed can be formulated using Lobatto polynomials as64

described by[36]. Some Lobatto polynomials for a finite element with coordinates ξ = [-1,1]65

are66

l1(ξ) =
1 − ξ
2

, (1)

67

l2(ξ) =
1 + ξ
2

, (2)

68

l3(ξ) =
1

2

√
3

2
(ξ2 − 1) , (3)

69

l4(ξ) =
1

2

√
5

2
(ξ2 − 1) ξ, (4)

70

l5(ξ) =
1

8

√
7

2
(ξ2 − 1) (5ξ2 − 1) (5)

and71

l6(ξ) =
1

8

√
9

2
(ξ2 − 1) (7ξ2 − 3) ξ, (6)

that are presented in Fig. 1. The mass and stiffness matrices can be obtained using the shape72

functions from Eqs. (1)–(6) by the standard procedure used for the FEM[7, 23, 42]. Here, the73

consistent mass matrix is used.74

By assuming only the shape functions from Eq. (1) and Eq. (2) one obtains the lagrangian75

linear finite element[7, 23, 42]. However, the extra shape functions that allow higher order76

approximations are all zero at the nodes of the finite element. This ensures that the standard77

procedures used for the linear FEM still hold for the HFEM[36]. Imposition of boundary78

conditions and manipulation of nodal quantities remain the same as used for the FEM. Note79

that if more than one shape function is not zero in a given node of the finite element, special80

techniques must be used to impose the boundary conditions of the problem, such as the81

Lagrange Multiplier Method or some Penalty Method[12, 13]. For this reason most hierarchical82

approaches introduce extra shape functions that are null at the nodes of the finite element.83
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Figure 1 Lobatto shape functions.

The main characteristic of the HFEM is that when the order of the approximation is84

increased the shape functions already in use remain unchanged. The traditional FEM with85

shape functions given by Lagrange polynomials do not share this property, making the use of86

higher order approximations very difficult[36].87

3 GENERALIZED FINITE ELEMENT METHOD88

In the standard lagrangian FEM, the displacements inside a given finite element are approxi-89

mated by[7, 8, 23, 42]90

uh =
n

∑
i=1

uiNi(ξ), (7)

where ui are nodal degrees of freedom, Ni are the polynomial shape functions, ξ is the local91

coordinate system of the element and n is the number of shape functions.92

In the context of the GFEM, the approximation given by Eq. (7) can be enriched by93

considering an approximate solution given by94

uh =
n

∑
i=1

uiNi(ξ) +
m

∑
j=1

cjϕj(ξ), (8)

where ϕj are enrichment functions and cj are the associated degrees of freedom. Here the95

enrichment functions ϕj are obtained using the PUFEM[31] as described by [3, 39].96

In the PUFEM the shape functions are given by the multiplication of a Partition of Unity97

(PU) by basis functions appropriately chosen. The PU used here is the one defined by the shape98

functions obtained for the lagrangian linear finite element, since the sum of these functions99

results in one[8, 23]. This PU is as shown in Fig. 2 and respects the conditions described by100

[31].101
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In Fig. 2, the finite elements are tagged el. 1, el. 2, etc, while the functions that composed102

the PU are tagged ηΩ1, ηΩ2, etc. Each function ηΩj is defined in a subdomain Ωi that is103

defined by the union of two neighbor finite elements, except for Ω1 and Ω5. In the context of104

the PUFEM the subdomains Ωi are called covers or patches. In general, each finite element105

is defined in the intersection between two patches. More details on the PUFEM can be found106

in[5, 31].107

 
ηΩ1 Ω

1 Ω
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Ω
3 Ω
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Ω
5

ηΩ2
ηΩ3

ηΩ4
ηΩ5
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Figure 2 A PU given by linear shape functions of the lagrangian FEM.

Inside a finite element with local coordinates ξ = [-1,1] the PU can be written as108

η1(ξ) =
1 − ξ
2

(9)

and109

η2(ξ) =
1 + ξ
2

, (10)

that are shown in Fig. 3.110

 
η

1
η

2

Figure 3 The PU inside a finite element.
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The basis functions used here are the ones proposed by [3]. Inside a finite element with111

local coordinates ξ = [-1,1] these functions can be written as112

v4j−3 = sin(βj
(ξ + 1)

2
) , (11)

113

v4j−2 = cos(βj
(ξ + 1)

2
) − 1, (12)

114

v4j−1 = sin(βj
(ξ − 1)

2
) (13)

and115

v4j = cos(βj
(ξ − 1)

2
) − 1, (14)

where βj is a parameter that allows the modification of the shape functions. The basis functions116

and the PU for βj = π are shown in Fig. 4.117
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Figure 4 Basis functions and PU inside a finite element for βj = π.

The basis functions from Eqs. (11)-(14) were chosen as trigonometric functions since the118

analytical solution of most problems from dynamic analysis of bars are composed of trigono-119

metric terms[15, 25, 32]. However, the basis functions from Eqs. (11)-(14) were carefully build120

as to result in shape functions that are zero at the nodes of the finite element, as discussed121

later.122

In the context of modal analysis, an optimal value for βj can be estimated in order to123

obtain best results for the approximation of a given fundamental vibration mode. An efficient124
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iterative scheme for evaluating the optimal value for βj was proposed by[3] and leads to very125

accurate results.126

The shape functions for a finite element can be obtained by the multiplication of the PU by127

the basis functions, following the procedure described by[3]. The contribution from the patch128

to the left of the finite element is given by the multiplication of v4j−3 and v4j−2 by η1. The129

contribution from the patch to the right is given by the multiplication of v4j−1 and v4j by η2.130

The resulting PUFEM shape functions are:131

ϕ4j−3 =
1 − ξ
2
[sin(βj

(ξ + 1)
2
)] , (15)

132

ϕ4j−2 =
1 − ξ
2
[cos(βj

(ξ + 1)
2
) − 1] , (16)

133

ϕ4j−1 =
1 + ξ
2
[sin(βj

(ξ − 1)
2
)] (17)

and134

ϕ4j =
1 + ξ
2
[cos(βj

(ξ − 1)
2
) − 1] . (18)

The nodal shape functions can be taken as η1 and η2 itself, that are the Lagrange linear135

polynomials. The approximation space is then given by136

VGFEM = VFEM⋃VPUFEM , (19)

where VGFEM is the approximation space of the GFEM used here, VFEM is the approximation137

space from the FEM using linear finite elements and VPUFEM is the approximation space138

obtained by the PUFEM and defined by the shape functions from Eqs. (15)-(18). The resulting139

shape functions for βj = π are shown in Fig. 5. The mass and stiffness matrices can be obtained140

by the standard procedure used for the FEM [7, 23, 42]. Here, the consistent mass matrix is141

used.142

By modifying the value of βj one is able to adapt the shape functions for different cases[3].143

Besides, several sets of enrichment function from Eqs. (15)-(18) can be considered by assuming144

different values of βj . In order to build a finite element with 10 shape functions, for example,145

one can consider β1 = π and β2 = 2π and include 8 enrichment functions. Including more146

enrichment functions can be made without changing the enrichment functions already used147

and thus the GFEM proposed here is a hierarchical method. This simplifies computational148

implementation and allows the use of higher order approximations.149

As can be seen from Fig. 5, the enrichment functions are zero at the nodes of the finite150

element. It can be demonstrated that this is true for any value of βj . Consequently, the151

implementation of boundary conditions and manipulation of nodal quantities is the same as152

for the standard FEM and do not require special techniques. However, in order to ensure this153

property the basis functions were carefully designed. The use of other sets of trigonometric154

functions may not maintain this property.155
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Figure 5 Shape functions inside a finite element for βj = π.

Here, both the stiffness and mass matrices remain constant during the entire dynamic anal-156

ysis. The same occurs for the shape functions. Consequently, the mass and stiffness matrices157

are evaluated only once, at the beginning of the dynamic analysis, and remain unchanged for158

the entire analysis. Once the stiffness and mass matrices are evaluated the dynamic analysis159

is made in the same way as occurs for the standard lagrangian FEM and the HFEM. In this160

work we have not checked the influence of time dependent shape functions, mass matrices and161

stiffness matrices. An approach where the shape functions are updated iteratively in order to162

comply with wave propagation angles was presented by[9], for a two dimensional problem.163

The stiffness and mass matrices were obtained using analytical integration, by using soft-164

ware for symbolic manipulation. These matrices were obtained for a finite element with ar-165

bitrary values for the element length, elastic modulus, density, cross sectional area and the166

parameter β. The stiffness and mass matrices in closed form were then incorporated into the167

computational routine responsible for the dynamic analysis. It is important to point out that168

the analytical integration of the mass and stiffness matrices is not possible in most GFEM169

applications. In fact, numerical integration in the context of the GFEM is a delicate matter,170

since the shape functions may not be polynomials and then numerical integration may not171

be exact. A more detailed discussion on numerical integration for the GFEM is presented by172

[4]and [17].173

The nodal degrees of freedom of the FEM, the HFEM and the GFEM (as presented here)174

are the same and are related to nodal displacements. These degrees of freedom are ruled by175

the linear lagrangian shape functions. However, the extra degrees of freedom of the HFEM176

and the GFEM (given by the Lobatto polynomials in the case of the HFEM and by the177
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PUFEM shape functions in the case of the GFEM) have no direct physical meaning. These178

extra degrees of freedom affect the displacements inside the domain of the finite element, but179

are not particularly related to a single point of the domain, as occurs for the nodal degrees180

of freedom. For this reason, these extra degrees of freedom are also called field degrees of181

freedom.182

Here, the field degrees of freedom are all zero at the nodes of the finite elements and thus183

nodal displacements can be obtained directly, by taking the value of the associated nodal184

degree of freedom. If one needs to evaluate displacements inside some finite element, then it185

is necessary to take into account the contribution of each shape function of the finite element.186

In this context, the way the degrees of freedom are defined for the HFEM and the GFEM do187

not affect the comparison of the results. In all three methods, nodal displacements can be188

read directly while displacements inside the finite elements can be evaluated by summing the189

contribution of all the shape functions, as occurs in the standard FEM.190

4 TRUSS STRUCTURES191

In order to obtain the equilibrium equations for a truss finite element, that can be oriented192

in an arbitrary direction in space, it is necessary to apply some coordinate transformation193

rule[33].194

For a linear finite element of a planar truss the following coordinate transformation hold195

[ u′1
u′2
] = [ cos θ sin θ 0 0

0 0 cos θ sin θ
]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1

v1
u2

v2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where u’ are the nodal displacements in local coordinates, u and v are the horizontal and196

vertical nodal displacements in global coordinates and θ is the inclination of the bar.197

The coordinate transformation for the HFEM and the GFEM follows the reasoning used198

by[41] for the Composite Element Method. Since the enrichment functions are zero at the199

nodes of the element, the coordinate transformation is given by200

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u′1
u′2
c′1
⋮
c′n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ sin θ 0 0 0 ⋯ 0

0 0 cos θ sin θ 0 ⋯ 0

0 0 0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

v1
u2

v2
c1
⋮
cn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

where c’ are enrichment degrees of freedom in local coordinates and c are enrichment degrees of201

freedom in global coordinates. That is, the enrichment degrees of freedom in local coordinates202

are the same as the enrichment degrees of freedom in global coordinates.203
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5 ERROR EVALUATION204

The error between the analytical solution u(x,t) and the approximate solution uh(x,t) for a205

given position inside the bar x = x0 in the time interval [ti,tf ] can be defined as206

e = ∫
tf

ti
∣u(x0, t) − uh(x0, t)∣dt. (22)

In order to evaluate the error inside the entire bar one can integrate Eq. (22) along its length.207

However, this procedure is not used in this paper because of the computational difficulties208

involved in the evaluation of this integral.209

Evaluating the error by using Eq. (22) may not be efficient in practice since the approximate210

solution is generally known only at discrete time steps. However, an approximation for Eq.211

(22) can be written as212

e ≈
nt

∑
i=1

∆t ∣u(i) − u(i)h ∣ , (23)

where nt is the number of time steps used, ∆t is the time step used to obtain the approximate213

solution, u(i) is the analytical solution at time step (i) and uh
(i) is the approximate solution214

at time step (i).215

Error evaluation according to Eq. (23) is illustrated in Fig. 6. The integral from Eq. (22)216

in a given time interval is approximated by the product between ∆t and ∆u(i). Equation (23)217

can be evaluated efficiently since it only deals with discrete values in time. More details on218

error evaluation for the time response are presented by[39].219

 ∆t

u(i)

u
h

(i)

∆u(i)

t(i)t(i-1) t

u

Figure 6 Error evaluation according to Eq. (23).
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6 NUMERICAL RESULTS220

6.1 Bar subject to initial displacements221

The first example is that of a bar fixed at both ends and subject to initial displacements as222

shown in Fig. 7. The properties of the material were chosen to give the wave velocity equal223

to c =
√
E/ρ = 1m/s and the bar length is equal to 1m. The initial displacement field is zero224

at both ends, has a maximum value umax equal to 0.25m at the middle of the bar and has a225

triangular shape. This initial displacement can be obtained by applying a unitary load at the226

middle of the bar. Finally, there is no force acting on the bar and the initial velocities are null.227

 Initial displacements

u
max

Figure 7 Bar subject to initial displacements.

This problem can be stated as[38]228

∂2u

∂x2
= ∂2u

∂t2
∀x ∈ [0,1] (24)

229

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u(x = 0, t) = u(x = 1, t) = 0
u(x < 0.5, t = 0) = x

2

u(x ≥ 0.5, t = 0) = 1−x
2

∂u(x,t=0)
∂t

= 0

, (25)

that is a wave propagation problem with wave velocity c = 1m/s. The analytical solution230

can be found by separation of variables and by representing the initial conditions by a Fourier231

series as described by [25].232

This example is first studied using Modal Superposition for a time interval of 20s and using233

11 degrees of freedom. The resulting equations from Modal Superposition are solved using the234

Newmark method (with α = 0.5 and δ = 0.25) for a time step equal to 2.5x10−3s. For the235

FEM the mesh is composed of 10 linear finite elements. For the HFEM the mesh is composed236

of two finite elements of order 5, by assuming 6 polynomial shape functions. For the GFEM237

the mesh is composed of two finite elements with 4 enrichment functions as given by Eqs.238

(15)-(18), by assuming β1 = 3π/2. The analytical and the approximate solutions at x = 0.5m239

are presented in Fig. 8, considering 5 modes in Modal Superposition.240

The errors for different numbers of modes included in the Modal Superposition analysis241

are presented in Table 1. The errors obtained by considering only the first mode are presented242
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(a)

 

(b)

Figure 8 Displacements at the middle of the bar obtained with 11 degrees of freedom and 5 modes for a) the
time interval 0-20s and b) 17-20s.
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Table 1 Errors obtained with 11 degrees of freedom for different numbers of modes considered in Modal
Superposition.

Modes 1 2 3 4 5 6 7 8

FEM 0.4560 0.4560 0.5119 0.5119 0.5231 0.5231 0.5271 0.5271

HFEM 0.2931 0.2931 0.1114 0.1114 0.1565 0.1565 0.1611 0.1611

GFEM 0.2931 0.2931 0.1112 0.1112 0.0732 0.0732 0.0865 0.0865

 
Figure 9 Errors obtained with 11 degrees of freedom for different numbers of modes considered in Modal

Superposition.

in the first column, the errors obtained by considering the first two modes are presented in the243

second columns and so on. The errors from Table 1 are also presented in Fig. 9.244

It can be seen that the best results were not obtained by considering every fundamental245

vibration mode of the structure. This is a general trend when dealing with Modal Superposition246

because the higher vibrations modes of the structure may be poorly approximated by the247

FEM[13]. Consequently, including the higher vibrations modes in Modal Superposition may248

reduce the accuracy of the approximate solution.249

From Table 1 and Fig. 9 it can be seen that the best results were obtained with the GFEM250

when considering 5 or 6 modes. The best results for the HFEM were obtained when 3 or 4251

modes were considered. The results obtained with the FEM are very poor in comparison to252

the ones obtained with both the HFEM and the GFEM. This behavior is confirmed by the253

displacements presented in Fig. 8.254

From Fig. 9 another interesting conclusion can be drawn. The inclusion of the fifth mode255

improved the solution given by the GFEM, but worsened the solution given by the HFEM.256

This seems to indicate that the higher modes are better approximate by the GFEM in this257

case.258

The same problem was also solved using 19 degrees of freedom. The mesh used for the259

FEM is composed of 18 linear finite elements. The mesh used for the HFEM is composed260

of 2 finite elements of order 9, by assuming 10 polynomial shape functions. For the GFEM261
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the mesh is composed of two finite elements with 8 enrichment functions as given by Eqs.262

(15)-(18), by assuming β1 = 3π/2 and β2 = 3π. The errors for these cases are presented in263

Table 2 and Fig. 10.264

Table 2 Errors obtained with 19 degrees of freedom for different numbers of modes considered in Modal
Superposition.

Modes 1 2 3 4 5 6 7 8

FEM 0.3028 0.3028 0.2644 0.2644 0.2816 0.2816 0.2880 0.2880

HFEM 0.2931 0.2931 0.1113 0.1113 0.0599 0.0599 0.0384 0.0384

GFEM 0.2931 0.2931 0.1113 0.1113 0.0599 0.0599 0.0384 0.0384

Modes 9 10 11 12 13 14 15 16

FEM 0.2903 0.2903 0.2915 0.2915 0.2919 0.2919 0.2925 0.2925

HFEM 0.0353 0.0353 0.0404 0.0404 0.0547 0.0547 0.0550 0.0550

GFEM 0.0278 0.0278 0.0357 0.0357 0.0470 0.0470 0.0475 0.0475

 
Figure 10 Errors considering 19 degrees of freedom for different numbers of modes considered in Modal Su-

perposition.

As expected the errors were reduced when more degrees of freedom were used. The best265

results for 19 degrees of freedom were obtained with the GFEM when considering 9 or 10266

modes. However, the results obtained with the GFEM and the HFEM are now very similar.267

The results given by the FEM are very poor if compared to the two other methods.268

6.2 Bar subject to harmonic force269

The second example is that of a bar fixed at one end and subject to a harmonic force at the270

other end, as shown in Fig. 11. The properties of the material were chosen to give the wave271

velocity equal to c =
√
E/ρ = 1m/s and the bar length is equal to 1m. The initial displacements272

and velocities are zero.273

For a force given by274

F (t) = f sin(ωt), (26)
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Figure 11 Bar subject to harmonic force.

the problem can be stated as[38]275

∂2u

∂x2
= ∂2u

∂t2
∀x ∈ [0,1] (27)

276

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u(x = 0, t) = 0
∂u(x=1,t)

∂x
= f sin(ωt)

u(x, t = 0) = 0
∂u(x,t=0)

∂t
= 0

. (28)

The analytical solution of this problem is more difficult to obtain than the previous one since277

the boundary condition representing the harmonic force is not homogeneous. The problem278

can be solved using techniques described by [32] and is reproduced here since it was not found279

elsewhere. Considering c as the wave velocity, the displacements are given by280

u(x, t) = fx sin(ωt) + f
m

∑
i=1
{sin(knx) [Cn sin(knct) +Bn(t)]} , (29)

where281

Cn = −
Anω

knc
, (30)

282

Bn(t) =
Anω

2 sin(ωt)
c2k2n − ω2

− Anω
3 sin(knct)

c3k3n − cknω2
, (31)

283

An = −
2 [kn cos(kn) − sin(kn)]

k2n
, (32)

284

kn = π (n −
1

2
) . (33)

This problem is solved numerically for ω = 20rad/s and f = 1N/m2. The analysis is made285

using the Modal Superposition Method for a time interval of 20s and the resulting equations286

are solved using the Newmark method (with α = 0.5 and δ = 0.25) for a time step equal to287

1.25x10−3s.288

The first comparison is made using 21 degrees of freedom. The mesh of the FEM is289

composed of 20 linear finite elements, while the mesh of the HFEM is composed of 4 finite290

elements of order 5. The mesh of the GFEM is composed of 4 finite elements with 4 enrichment291

functions considering β1 = 3π/2. The analytical and the approximate solutions at x = 0.5m292

considering 10 modes in Modal Superposition are presented in Fig. 12.293
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 (a)

 

(b)

 

(c)

 

(d)

Figure 12 Displacements at the middle of the bar obtained with 21 degrees of freedom and 10 modes, in the
time intervals a) 0-5s, b)5-10s, c)10-15s and d) 15-20s.
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The errors for this example are presented in Table 3 and Fig. 13. The best result was294

obtained with the GFEM when considering 10 modes and corresponds to an error of 0.0258.295

The best result obtained with the HFEM was also obtained with 10 modes, but the error in296

this case is 0.0722. The results given by the FEM are much less accurate than the results297

obtained with the other two methods, as can be seen from Fig. 12.298

A closer inspection of Fig. 12 reveals that the displacements obtained with the HFEM and299

the GFEM in the time interval 0-10s are both very similar to the analytical solution. However,300

the results given by the HFEM for the time interval 10s-20s present some deviation from the301

analytical solution, mainly for peak displacements. The solution given by the GFEM, instead,302

is very close to the analytical solution even in these cases.303

Table 3 Errors obtained with 21 degrees of freedom for different numbers of modes considered in Modal
Superposition.

Modes 1 2 3 4 5 6 7

FEM 1.1813 1.1823 1.2071 1.1772 1.1407 1.2813 1.1676

HFEM 1.1813 1.1820 1.2042 1.1661 1.1259 1.1876 0.1651

GFEM 1.1813 1.1820 1.2042 1.1661 1.1259 1.1876 0.1592

Modes 8 9 10 11 12 13 14

FEM 1.1948 1.2150 1.2019 1.1931 1.2000 1.2068 1.2010

HFEM 0.0778 0.0891 0.0772 0.0817 0.0801 0.0817 0.0802

GFEM 0.0530 0.0498 0.0258 0.0379 0.0320 0.0346 0.0328

Modes 15 16 17 18 19

FEM 1.1964 1.2006 1.2048 1.2005 1.1968

HFEM 0.0801 0.0801 0.0889 0.0812 0.0843

GFEM 0.0339 0.0335 0.0446 0.0351 0.0435

 
Figure 13 Errors obtained with 21 degrees of freedom for different numbers of modes considered in Modal

Superposition.

This example is also solved using 37 degrees of freedom. The FEM mesh is composed304
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by 36 linear finite elements, the HFEM mesh is composed of 4 elements of order 9, and the305

GFEM mesh is composed of two finite elements with 8 enrichment functions, by assuming β1306

= 3π/2 and β2 = 3π. The errors for these cases are presented in Table 4 and Fig. 14. The307

displacements obtained using 37 degrees of freedom and 20 modes are presented in Fig. 15.308

Table 4 Errors obtained with 37 degrees of freedom for different numbers of modes considered in Modal
Superposition.

Modes 1 2 3 4 5 6 7 8 9

FEM 1.1813 1.1820 1.2045 1.1676 1.1333 1.2368 1.2341 1.2418 1.2483

HFEM 1.1813 1.1820 1.2042 1.1661 1.1259 1.1876 0.1593 0.0530 0.0494

GFEM 1.1813 1.1820 1.2042 1.1661 1.1259 1.1876 0.1593 0.0530 0.0494

Modes 10 11 12 13 14 15 16 17 18

FEM 1.2433 1.2412 1.2426 1.2447 1.2429 1.2421 1.2428 1.2439 1.2431

HFEM 0.0236 0.0284 0.0168 0.0191 0.0140 0.0169 0.0130 0.0140 0.0126

GFEM 0.0236 0.0284 0.0168 0.0191 0.0140 0.0169 0.0130 0.0139 0.0122

Modes 19 20 21 22 23 24 25 26 27

FEM 1.2425 1.2430 1.2438 1.2431 1.2426 1.2431 1.2436 1.2431 1.2427

HFEM 0.0146 0.0128 0.0134 0.0129 0.0138 0.0133 0.0146 0.0134 0.0158

GFEM 0.0141 0.0120 0.0125 0.0121 0.0131 0.0124 0.0132 0.0125 0.0148

Modes 28 29 30 31 32 33 34 35

FEM 1.2431 1.2435 1.2431 1.2427 1.2430 1.2435 1.2431 1.2428

HFEM 0.0136 0.0136 0.0136 0.0137 0.0137 0.0166 0.0137 0.0173

GFEM 0.0126 0.0126 0.0126 0.0128 0.0127 0.0164 0.0127 0.0172

From both Table 4 and Fig. 14 it can be seen that the results given by the HFEM and the309

GFEM are very similar. The best results for both methods were obtained when considering310

20 modes in the Modal Superposition analysis. The results given by the FEM are much less311

accurate than the ones obtained with the other two methods.312

The comparison between the errors obtained with the linear FEM from Table 3 and Table313

4 indicate that the errors remained almost the same when more degrees of freedom were used.314

Even if this result seems contradictory, since one expects the errors to be reduced when the315

approximation is improved, the reason for this occurrence can be found by comparing the316

displacements from Fig. 12 and Fig. 15. The overall approximation given by the FEM when317

considering 37 degrees of freedom is better than when considering 21 degrees of freedom, except318

at the time interval 12s-18s. From Fig. 15 it can be seen that the approximation given by the319

FEM with 37 degrees of freedom is very poor in the time interval 12s-18s, even worse than the320

ones obtained with 21 degrees of freedom. This increases the error in the total time interval321

0s-20s to the same level as those observed when using 21 degrees of freedom.322
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Figure 14 Errors obtained with 37 degrees of freedom for different numbers of modes considered in Modal

Superposition.

 

(a)

 

(b)

Figure 15 Displacements at the middle of the bar obtained with the FEM using 37 degrees of freedom and 20
modes, at time intervals a) 0s-10s and b) 10s-20s. The results given by the HFEM and the GFEM
cannot be distinguished from the analytical solution by visual inspection.
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When Modal Superposition is used, the analyst is able to improve the approximate solution323

by removing the poorly approximated higher modes from the analysis[7], as can be observed324

in the results of the last two examples. However, in the case that direct integration methods325

are used one is not able to choose which modes will be considered. According to[7], direct326

integration methods are expected to give the same results that would be obtained with Modal327

Superposition by including all fundamental modes in the analysis. The error imbued by the328

higher modes when using direct integration methods must then be reduced by using appropriate329

time steps or some kind of numerical damping[7, 23].330

In this context, the numerical damping that occurs when some time integration schemes331

are used (note that not all time integration schemes give numerical damping) can be beneficial,332

since the influence of the higher vibration modes (that are poorly approximated) can be damped333

out. The Houbolt Method naturally includes some kind of numerical damping, but the analyst334

is not able to control the magnitude of this damping[7, 23]. Some time integration schemes that335

include numerical damping and allow the analyst to control the magnitude of this damping in336

some way are the α-HHT method[21, 23] and the generalized-α method[24]. Here we use the337

Newmark method (with α = 0.5 and δ = 0.25), that according to[7] do not cause numerical338

damping, since we are interested in evaluating the ability of the GFEM and the HFEM to339

approximate the higher vibration modes of the structures. The comparison of the FEM, the340

HFEM and the GFEM together with other time integration schemes should be subject of341

further investigation.342

The results presented for the previous two examples indicate that the GFEM was able to343

obtain better approximations than the HFEM and the FEM when all modes were included in344

Modal Superposition, possibly because the higher modes have been better approximated by345

the GFEM. This behavior plays an important role when direct integration methods are used,346

since in this case the analyst is not able to exclude the influence of higher vibration modes347

from the analysis.348

6.3 Truss subject to harmonic force349

The third example is that of the truss from Fig. 16, that is subjected to a harmonic force and350

null initial displacements and velocities. In this case it is not possible to increase the number of351

degrees of freedom when using the FEM with linear elements, since each bar cannot be divided352

in two finite elements without making the structure unstable. When using the GFEM and the353

HFEM, instead, it is possible to increase the number of degrees of freedom by increasing the354

number of shape functions used.355

All bars have E = 210GPa, A = 0.005m2, ρ = 8000kg/m3 and the truss has L = 3m. The356

example is solved assuming an applied force with magnitude f = 1000N and three different357

frequencies: ω = 5000rad/s, ω = 7500rad/s and ω = 10000rad/s. No analytical solution is358

known for this problem and it is solved only by the approximate methods. Thus no error359

evaluation is performed and the comparison between the results is only qualitative.360

The problem is solved using the Newmark method (with α = 0.5 and δ = 0.25) with a time361

step equal to 1.0x10−5s. Four different meshes are considered: a) FEM with linear elements,362
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F(t) = sin(ω t)1

2

L L

L

Figure 16 Truss subject to harmonic force.

b) HFEM with 6 shape functions per bar, c) GFEM with 6 shape functions per bar, d) HFEM363

with 10 shape functions per bar and e) GFEM with 10 shape functions per bar. All bars of the364

structure are considered as a single finite element. In the case of the GFEM the enrichment365

functions are obtained with β1 = 3π/2 when 6 shape functions are considered and with β1 =366

3π/2 and β2 = 3π when 10 shape functions are considered.367

The vertical displacements at node 1 from Fig. 16 for ω = 5000rad/s are presented in Fig.368

17. In this case it can be seen that both the HFEM and the GFEM obtained the same results369

when using 6 and 10 shape functions per bar. The results obtained with the FEM with linear370

elements, instead, is different from the ones obtained with the HFEM and the GFEM.371

 

Figure 17 Vertical displacements at node 1 for ω = 5000rad/s in the time interval 0s-0.02s. The number after
the name of the formulation indicates the number of shape functions used per bar. The FEM uses
linear elements with 2 shape functions per bar. The results given by the HFEM and the GFEM
cannot be distinguished by visual inspection.
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(a)

 

(b)

Figure 18 Vertical displacements at node 1 for ω = 7500rad/s in the time intervals a) 0s-0.01s and b) 0.01s-
0.02s. The number after the name of the formulation indicates the number of shape functions used
per bar.

The vertical displacements at node 1 for ω = 7500rad/s are presented in Fig. 18. The372

HFEM and the GFEM converged to the same results when 10 shape functions per bar were373

used and thus only the results for the HFEM with 10 shape functions are presented. Taking374

as reference the solutions obtained with 10 shape functions per bar, a close inspection of Fig.375

18 seems to indicate that the GFEM with 6 shape functions obtained more accurate results376

than the HFEM with 6 shape functions. The displacements obtained with the FEM are very377

different from the ones obtained with the other two methods.378

The vertical displacements at node 1 for ω = 10000rad/s are presented in Fig. 19. The379

displacements obtained with the HFEM and GFEM using 10 shape functions per bar converged380

to the same results again. For this reason only the results given by the HFEM using 10 shape381

functions are presented. Taking as reference the solutions obtained with 10 shape functions382

per bar, Fig. 19 indicates that the GFEM with 6 shape functions obtained more accurate383

results than the HFEM with 6 shape functions per bar. Besides, the difference between the384

solutions obtained with 6 shapes functions per bar is more noticeable in this case than for ω385

= 7500rad/s.386

The vertical displacements at node 2 for ω = 10000rad/s are presented in Fig. 20. The387

same conclusions drawn for the displacements at node 1 hold in this case. It seems that the388

GFEM with 6 shape functions obtained more accurate results than the HFEM with 6 shape389

function, taking as reference the solutions obtained with 10 shape functions per bar.390

The comparisons made for the three different frequencies indicate that the GFEM is able391

to obtain better results than the HFEM for higher frequencies, as observed in the previous392

examples and by[3].393
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(a)

 

(b)

Figure 19 Vertical displacements at node 1 for ω = 10000rad/s for the time intervals a) 0-0.01s and b) 0.01-
0.02s. The number after the name of the formulation idicates the number of shape functions used
per bar.

 

(a)

 

(b)

Figure 20 Vertical displacements at node 2 for ω = 10000rad/s in the time interval a) 0-0.01s and b) 0.01-
0.02s. The number after the name of the formulation indicates the number of shape functions used
per bar.
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6.4 Bar subject to impact load394

The fourth example is that of a bar subject to an impact load. The bar is initially at rest and395

is subject to the same boundary conditions as shown in Fig. 11. The properties of the bar are396

now E = 210GPa, A = 0.001m2, ρ = 8000kg/m3 and L = 1m.397

The time dependent load is given by398

F (t) = { f if t ≤ tf
0 if t > tf

, (34)

where f is the force magnitude and tf is the time when the force stops. This applied force is399

as shown in Fig. 21 and is used to model the impact load.400

 
t

F(t)

t
f

f

Figure 21 Impact load.

Here we assume f = 1000N and tf = 0.001s. Note that very different time responses are401

obtained when the value of tf is changed. The problem is solved using the Newmark method402

(with α = 0.5 and δ = 0.25) with a time step equal to 2.5x10−7s.403

The displacements at the middle of the bar are presented in Fig. 22. The analysis was made404

using 11 degrees of freedom. In the case of the linear FEM, this mesh is given by dividing405

the domain into 10 finite elements. In the case of the GFEM and the HFEM the mesh is406

obtained by dividing the domain into 2 finite elements and assuming 6 shape functions per407

finite element. For the GFEM β is taken equal to 3π/2. The reference solution is taken as408

the solution given by the HFEM when using 4 finite elements with 10 shape functions. This409

results in 37 degrees of freedom.410

From the results presented in Fig. 22 it can be seen that the results given by the HFEM411

and the GFEM are very close to the reference solution. The results given by the linear FEM,412

are also able to represent the main trend of the vibration, but are not as close to the reference413

solution. This is especially true for peak displacements and larger time intervals, as can be414

seen in Fig. 22d. The lost of accuracy for larger time intervals appears to be reduced when415

the HFEM and the GFEM are used.416
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(a)

 

(b)
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(c)

 

(d)

Figure 22 Displacement at the middle of the bar for an impact load.
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6.5 Truss subject to impact load417

The last example is that of the truss from Fig. 23 that is subject to an impact load. The truss418

nodes are equally spaced and dx = dy = 2m. The material has properties E = 210GP and419

ρ = 8000kg/m3 while all bars have a cross sectional area equal to A = 0.001m2. There is an420

applied force at the central node of the lower chord. This load is as defined in Eq. (34) and421

Fig. 21, with magnitude f = 10kN and tf = 0.001s, and represents an impact load.422

 
F(t)

u

dy

dx

dx

Figure 23 Truss subject to impact load.

The problem is solved using the Newmark method (with α = 0.5 and δ = 0.25) with a423

time step equal to 1.0x10−5s. Each bar is modeled as a single finite element. In the case of424

the HFEM and the GFEM the analysis is made using 6 and 10 shape functions per finite425

element. For the GFEM we assume β = 3π/2 and β = 3π. For the linear FEM only 2 shape426

functions are used. Note that the bars cannot be divided in two without creating an unstable427

structure and consequently it is not possible to refine the mesh when using the linear FEM.428

The vertical displacements at the node put in evidence in Fig. 23 are presented in Fig. 24, for429

three different time intervals.430

The results given by the HFEM and the GFEM with 6 and 10 shape functions cannot be431

distinguished by visual inspection. From the time interval 0-0.01s, presented in Fig. 24a, we432

note that the displacement wave takes some time in order to arrive at the node monitored. It433

is also possible to see that the results given by the HFEM and the GFEM are very similar,434

while the displacements given by the linear FEM are not coincident with the displacements435

obtained with the other methods.436

From Fig. 24b and Fig. 24c we note that the linear FEM is able to represent the main trend437

of the displacements, but that accuracy is lost for larger time intervals. This lost of accuracy438

for larger time intervals appears to be reduced when the HFEM and the GFEM are used. This439

kind of behavior of the linear FEM can lead to difficulties for obtaining very accurate results440

with the linear FEM, since the mesh cannot be refined just by dividing the finite elements in441

two.442

Latin American Journal of Solids and Structures 1(2012) 1 – 31
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(a)

 

(b)

 

(c)

Figure 24 Vertical displacements for the truss subject to an impact load for different time intervals: a) 0-0.01s,
b)0-0.1s and c) 0.4-0.5s. The results given by the HFEM and the GFEM cannot be distinguished by
visual inspection. The markers were removed from b) and c) in order to allow a better visualization
of the results.
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7 CONCLUSIONS443

This paper presented a GFEM formulation for the dynamic analysis of bars and trusses. The444

time integration procedure was made using Modal Superposition and the Newmark method.445

Numerical errors can result both from the time integration procedure and from the finite446

element approximation. Errors from the numerical integration procedure can be reduced by447

decreasing the time step used or by changing the number of modes considered for Modal448

Superposition, while errors from the finite element method can be reduced by using a more449

accurate approximation.450

The GFEM allows one to use an enriched approximation for the displacements that is easy451

to obtain and does not affect nodal quantities. This approximation leads to better results452

than standard linear FEM. For the examples studied here, the GFEM also presented better453

results than the HFEM. Besides, this GFEM formulation presented here is a hierarchical one454

(as is the case of HFEM), since the approximation can be enriched without changing the shape455

functions used in lower order elements. Finally, the enrichment shape functions proposed do456

not affect the nodal degrees of freedom and thus standard procedures used for the linear FEM457

still hold.458

The results presented here indicate a strong potential of the GFEM for problems from459

structural dynamics. The extension of the approach proposed in this paper to beams and two460

dimensional problems will be subject of future works.461
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