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Susceptibility of Colombian Plasmodium falciparum isolates to
4-aminoquinolines and the definition of amodiaquine resistance

in vitro
Diego F Echeverry+, Claribel Murillo, Piedad Restrepo P, Lyda Osorio
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There are wide variations in the threshold used to define in vitro resistance of  Plasmodium falciparum to amodi-
aquine (AQ), probably due to differences in methodology and interpretation. In vitro susceptibility data of Colom-
bian P. falciparum strains to AQ and N-desethylamodiaquine is used to illustrate the need to standardized method-
ologies and compare inhibitory concentrations, instead of resistant/susceptible phenotypes, when studying the
mechanisms of resistance to AQ and monitoring drug susceptibility trends in the field.
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Amodiaquine (AQ) is an antimalarial compound chemi-
cally and functionally related to chloroquine (CQ) (Hyde
2002). Currently, it is used (in combination with other
antimalarials) as the first choice to treat uncomplicated
Plasmodium falciparum malaria in some countries in Af-
rica and South America (Brasseur et al. 1999, WHO 2001).
In the body, AQ is rapidly metabolized by the hepatic
cytochrome CYP2C8 to N-desethylamodiaquine (DAQ)
(Li et al. 2002) which exerts the main antimalarial therapeu-
tic effect  (Churchill et al. 1985, Basco & Le Bras 1993).
Unfortunately, as with most antimalarial drugs, in vivo
therapeutic failures as well as in vitro resistance of P.
falciparum to AQ have been reported (Olliaro & Mussano
2003). A methodology to assess the therapeutic efficacy
of most antimalarials has been standardized. In contrast,
there are wide variations in the methods used for in vitro
testing and particularly for AQ.

The schizonts maturation and radioisotopic microtests
are the two most frequently used methods for the in vitro
evaluation of antimalarial drugs. The former is based on
the microscopical assessment of the inhibition of sch-
izonts maturation in the presence of different drug con-
centrations. The latter measures the incorporation of ra-
dio-marked hypoxanthine by live parasites exposed to
different drug concentrations. Other two methods, based
on ELISA (pLDH and HRP2), are in an advanced process
of standardization (Noedl et al. 2003).

The in vitro susceptibility of malaria parasites to a
pharmacological compound could be determined using
the IC99, IC90, and the IC50 (IC: inhibitory concentra-
tion). The latter is defined as the concentration of the
drug able to inhibit the growth of 50% of the parasites
with respect to the control without drug, and is the most
commonly used. Among others, factors such as percent
of red blood cell parasited, hematocrit, the level of plas-
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matic proteins, and traces of antimalarial drugs in plasma
affect the estimation of the ICs (Winstanley & Watkins
1992). The immune response with antibodies apparently
do not play a significant role in the in vitro response to
AQ, when the hematocrit levels are < 5% (Wensdorfer &
Paine 1988).

When revising the literature, in spite of the differences
found in the in vitro protocols, it seems that there is a
consensus on the threshold to define resistance to DAQ
(≥ 60 nM) (Ringwald et al. 1996, 2000,  Brasseur et al. 1999,
Aubouy et al. 2004). However, we found no standard cri-
terion that defines resistance or susceptibility to AQ. In
fact, the reported resistance thresholds for AQ vary from
4 to 400 nM (Table I).

The differences in the reported thresholds to define
AQ resistance in vitro described in Table I could be par-
tially explained by: (1) variations in the in vitro methodol-
ogy such as incubation time of the parasite with the drug
(from 24 to 50 h) (Childs et al. 1989, Reynes et al. 1997,
Pradines et al. 1998, Chaparro & Wassermann 1999, Basco
et al. 2002, Rason et al. 2002), the final hematocrit (from 1
to 1.5%) (Childs et al. 1989, Chaparro & Wassermann
1999), and the percent of red blood cell parasited (from 0.1
to 0.8%) (Pradines et al. 1998, Duraisingh et al. 1999, Basco
et al. 2002); the most important parameter probably being
the hematocrit, since the 4-aminoquinolines have the like-
ness to concentrate inside erythrocytes (Pussard et al.
1987, Winstanley et al. 1987); (2) the in vitro tests are
performed with DAQ but the conclusions refer to AQ
(Ringwald et al. 2000, Basco et al. 2002, Aubouy et al 2004);
(3) the use of different commercial presentations of AQ
without taking into account their different molecular
weights (AQ base, AQ hydrochloride or AQ dihy-
drochloride); and (4) the use of parasites adapted to cul-
tures in vitro and with incubation time > 24 h are likely to
show different results from those obtained with fresh iso-
lates (W Wernsdorfer, pers. commun.).

In our lab, the susceptibility to AQ and DAQ of 22 P.
falciparum Colombian isolates and two reference strains
(W2 and D6, resistant and sensitive to CQ respectively)
was determined using the radioisotopic method
(Desjardins et al. 1979, Cerutti et al. 1997). The isolates
that had been kept frozen in liquid Nitrogen were thawed
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following the methodology described by Cerutti et al.
(1997) and maintained in continuous culture in supple-
mented RPMI 1640 (Trager & Jensen 1976, Desjardins et
al. 1979). The samples were synchronized with Sorbitol
1% (Cerutti et al. 1997), evaluated with a percent of red
blood cells parasited of 0.5% and a hematocrit of 1.5%
and exposed to concentrations of AQ base (provided by
WRA) and DAQ (provided by WHO) ranging from 5 to

320 nM. The final concentration of 3[H] hypoxanthine was
0.5 µCi/well and of albumax was 0.5%. The samples were
incubated at 37°C for 48 h (Desjardins et al. 1979, Cerutti
et al 1997); each assay was done by duplicate. The counts
per minute (cpm) were measured in a scintillation counter
(Beckman LS7500) and the IC50 and IC99 were calculated
using the PROBIT program in SPSS 7.5 for windows 98
(SPSS. Inc., Chicago 1996).

TABLE I
Thresholds used to define in vitro resistance of Plasmodium falciparum to amodiaquine

Threshold Method Reference

IC50 ≥ 0.004 mM (4 nM) Isotopic Chaparro & Wasserman 1999
IC50 ≥ 30 nM Schizont maturation Childs et al. 1989
IC50 ≥ 59 nM Isotopic Basco et al. 2002
IC50 ≥ 60 nM Isotopic Reynes et al. 1997
IC50 ≥ 80 nM Isotopic Pradines et al. 1998, Rason et al. 2002

Schizont maturation Ringwald et al. 1996
IC50 ≥ 0.4 mM/l (400 nM) Schizont maturation Segurado et al. 1997
MIC ≥ 0.4 mMol/l of blood (400 nM) Schizont maturation Draper et al. 1988
IC90 ≥ 400 nMol/l blood (400 nM)
in non-immune populations Schizont maturation Wernsdorfer & Paine 1988
IC99 ≥ 400 nM/l blood (400 nM)
in immune populations Schizont maturation Wernsdorfer & Paine 1988

TABLE II
  Amodiaquine (AQ) and desethylamodiaquine (DAQ) inhibitory concentrations (IC) in Plasmodium falciparum

Colombian and two reference strains
(samples with IC50 of AQ ≥ 30nM and DAQ ≥ 60nM are highlighted)

DAQ/
Reference AQ DAQ AQ ratio AQ DAQ
Strains IC50 IC50 IC50 IC99 IC99

W2 21.3 145.6 6.8 77.6 1120.9
D6 9.4 25.3 2.6 50.2 106.4

Field strains

Q1114 9.6 47.5 4.9 45.8 142.4
Q1147 30.0 125.1 4.1 230. 501.5
Q1306 34.4 122.7 3.5 200.5 696.2
Q1266 14.2 51.8 3.6 255.0 2294.9
TA7519 25.7 71.4 2.7 150.6 707.2
TA7529 13.2 62.7 4.7 97.7 650.0
TA4609 26.7 79.7 2.9 217.2 346.9
TA6182 26.7 177.5 6.6 173.1 4308.0
TA4641 23.0 38.3 1.6 128.3 367.4
TA4640 20.1 86.0 4.2 216.8 1060.3
TA10254 30.5 111.8 3.6 53.8 230.4
TU384F 13.1 62.4 4.7 55.1 156.9
TU9288 27.2 69.9 2.5 52.5 547.8
TU741 41.0 355. 8.6 845.2 4783.9
TU545F 18.4 159.9 8.6 77.1 330.7
TU9255 22.2 101.5 4.5 189.7 530.9
TU8064 11.6 39.5 3.3 105.1 493.6
TU11365F 39.6 222.3 5.6 237.8 16281.9
CA2855 64.6 198.0 3.0 225.1 2831.4
BV5029 37.1 122.4 3. 161.9 286.8
BV5029F 33.3 94.8 2.8 316.1 968.6
BV5037 30.7 94.2 3.0 126.2 449.2
Mean 27.0 113.4 4.2 189.1 1771.2
SD 12.4 74.0 1.8 164.9 3492.1

SD: standard deviation
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In the Colombian strains, the mean DAQ IC50 (113.45
nM) was 4.25 times higher than the one for AQ (27 nM).
The IC50 results of W2 and D6 also followed this pattern
(Table II).  The mean  DAQ and AQ IC99 of the field iso-
lates (1771.27 nM and 189.17 nM, respectively) were well
above the IC99s reported by Childs et al. (1989) in samples
from Thailand (157 nM and 46,7 nM, respectively). The
relatively high IC99s of Colombian isolates suggests the
presence of AQ and DAQ resistance. However, our and
Child’s study used different methodologies (culture vs
fresh isolates, and radioisotopic vs schizont maturation
method) making them difficult to compare.  Looking at
Table I, the thresholds to define AQ resistance as IC50 >
60 nM (the proposed threshold for DAQ) contradict our
findings and reports showing that AQ is three times more
potent than DAQ (Pussard et al. 1987, Winstanley et al.
1987, 1990). Hence, the threshold to define AQ resistance
should be lower than the one described for DAQ (Churchill
et al. 1985, Childs et al. 1989).

When in vitro resistance to DAQ and AQ is defined as
an IC50 ≥ 60 nM and ≥ 30 nM respectively, 82% (18/22)
field isolates were resistant to DAQ and 41% (9/22) to
AQ. All samples that were resistant to AQ were also resis-
tant to DAQ but not all samples resistant to DAQ were
resistant to AQ, which does not support the statement
that resistance to DAQ predicts resistance to AQ (Basco
et al. 2002, Aubouy et al. 2004).  In fact, samples (includ-
ing W2 strain) with DAQ IC50 > 120 nM (twice the de-
fined threshold) showed AQ IC50 below 30 nM.  The IC50
values of AQ and DAQ are highly correlated (Pearson r =
0,736 P < 0.001) suggesting that the inconsistencies in
defining resistance could be explained by inaccurate
thresholds. In fact, a linear regression analysis with log
transformed data showed that, in this dataset, the DAQ
IC50 60 nM was equivalent to AQ IC50 15.48 nM. This AQ
IC50 will classify eight more of our isolates as AQ resis-
tant. For AQ IC50 30 nM the equivalent DAQ IC50 was
119.28 nM, consistent with the threshold proposed by
Childs et al. (1989) to define resistance to AQ (Childs et al.
1989). Based on this data, AQ IC50 values between 15 nM
and 30 nM could be used to identify mutations or copy
numbers associated with AQ resistance using a similar
approach to that of Price et al. (2004) for mefloquine resis-
tance. Nevertheless, this assumes that the 60 nM thresh-
old used to define in vitro DAQ resistance is accurate,
which is not necessarily true.

Pharmacokinetic and pharmacodynamic studies help
to orientate the definition of a sensitive/resistance in vitro
threshold to antimalarial drugs and should be expanded.
In the meantime, it will be helpful to standardize method-
ologies and use continuous in vitro data (i.e. ICs rather
than resistant/susceptible phenotypes) in studies deal-
ing with the identification of the mechanisms of resis-
tance to AQ and monitoring drug susceptibility trends in
the field.  In public health it is probably more relevant to
monitor in vitro resistance to DAQ instead of AQ, since
DAQ exerts the major antimalarial activity in vivo. On the
other hand, understanding the mechanism of resistance
to AQ would be useful in the design of new drugs, par-
ticularly 4-aminoquinoline derivatives.
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