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The need for new drugs to treat schistosomiasis - The 
treatment and control of schistosomiasis currently relies 
on a single drug, praziquantel. Although safe, effective 
and relatively cheap, the massive use of this drug, for 
example in the Schistosomiasis Control Initiative in Af-
rica (Fenwick et al. 2009), renders the selection of field 
strains of schistosome that are resistant to praziquantel 
more and more likely. Resistant isolates have already 
been characterized in endemic areas (Doenhoff et al. 
2002) and the selection of parasites in the laboratory that 
are stably resistant in the absence of drug pressure has 
been demonstrated (Fallon & Doenhoff 1994, Couto et 
al. 2011). In view of the lag time between the discovery 
of a new lead compound and its eventual approval for 
use, it is urgent to start the search early and indeed a 
number of strategies are being pursued. The challenge is 
to develop a new drug that will be as effective and, ide-
ally, as cheap to produce as praziquantel. 

The approaches to this problem currently in progress 
can be grouped into several categories: the use of anti-
malarials (Shu-Hua et al. 2006, Manneck et al. 2011), the 
benzodiazepines (Baard et al. 1979) (first investigated 
before the advent of praziquantel and now being revis-
ited), antioxidant enzyme inhibitors (Sayed et al. 2008) 
and finally the use of anti-cancer drugs and strategies. 
Ethnopharmacological approaches, based on plants used 

by traditional healers in endemic areas, remain relatively 
unexplored (Togola et al. 2008). All these strategies have 
advantages and disadvantages. Artemisinins are front-
line drugs for the treatment of malaria and artemisinin-
based combination therapy is now the recommended 
treatment strategy (Eastman & Fidock 2009). They are 
also effective against schistosomes and, in contrast to 
praziquantel, kill the larval stages in vivo (Utzinger et 
al. 2002). However, their use against schistosomiasis 
is discouraged since there is a risk of promoting resis-
tance of Plasmodium falciparum in endemic areas where 
schistosomiasis and malaria overlap (Keiser & Utzinger 
2007). Interest in the benzodiazepines was originally di-
minished due to their side-effects (impairments to psy-
chomotor functions, sedation and ataxia) (O’Boyle et al. 
1985). However, the fact that these could be abolished 
by treatment with flumazenil meant that meclonazepam 
could be reconsidered as a lead compound and is now ac-
tively investigated (Thibaut et al. 2009). “Achilles heel” 
approaches based on targeting vital enzyme activities 
of the parasite are relatively new. The characterization 
of oxadiazoles as powerful inhibitors of Schistosoma 
mansoni thioredoxin glutathione reductase with activ-
ity against the parasite in vivo opened up a new class of 
compounds for investigation (Sayed et al. 2008). 

The search for potential drug targets has been facili-
tated and stimulated by the availability of the genome 
sequence for two schistosomes (Berriman et al. 2009, 
The Schistosoma japonicum Genome Sequencing and 
Functional Analysis Consortium 2009). Three strategies 
based on the genomic data are possible. First, the search 
for schistosome-specific molecules in vital pathways 
would in theory permit the development of drugs with 
no adverse effect on the host. Second, the identifica-
tion of orthologues of proteins that have previously been 
shown to be targets of anthelminthics, such as ion chan-
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nels (for instance the voltage-gated Ca2+ channel that is 
a putative target of praziquantel) (Jeziorski & Green-
berg 2006) and neurotransmitter receptors, such as the 
acetylcholine receptor targeted by levamisole (Martin 
& Robertson 2007 for review) might allow the use of 
the existing drugs as lead compounds. Finally we can 
seek to identify orthologues of proteins already target-
ed in other pathologies. By this latter approach, which 
has been termed “piggy-backing” (Dissous & Greveld-
ing 2011), anti-cancer drugs, such as imatinib, that tar-
get protein kinases, can be used as lead compounds for 
treating schistosomes since they express orthologues 
of the target proteins. Indeed, imatinib has been shown 
to kill adult schistosomes in vitro and, prior to parasite 
death, the drug affects morphology and causes separa-
tion of worm couples (Beckmann & Grevelding 2010). 
Our approach is similar, since we propose to consider 
schistosomes themselves as cancerous growths: they 
have an intense metabolic activity and a high rate of cell 
division (for the production of eggs by female worms) 
that is outside the control of the host. We are therefore 
concentrating on classes of enzymes that are shared with 
the human host, but can be specifically targeted in can-
cer cells; inhibition of these enzymes arrests growth or 
induces apoptosis in cancer cells, but not in normal cells. 
These are enzymes that modify histones and thereby al-
ter the state of the chromatin, inducing activation or re-
pression of gene transcription.

Histone modifying enzymes (HME) as drug targets 
- HME include histone deacetylases (HDAC) that have 
been intensively studied as drug targets, but other classes 
of enzyme, including histone acetyltransferases (HAT), 
histone methyltransferases and histone demethylases are 
increasingly investigated. HME are central actors in the 
regulation of the epigenetic modification of chromatin 
and aberrant epigenetic states often associated with can-
cer led to interest in HME as targets for therapy. HDACs 
deacetylate acetylated lysine residues in a variety of pro-
teins, including histones, but also transcription factors and 
cofactors, as well as non-nuclear proteins such as tubulin. 
There has been a considerable effort to develop HDAC 
inhibitors (HDACi); a number are in clinical trials and 
two are currently approved for use by the US Food and 
Drug Administration. Suberoylanilide hydroxamic acid 
(SAHA, vorinostat) has been approved for use in adults 
with cutaneous T-cell lymphoma (CTCL) (Duvic et al. 
2007) and extensively tested against other types of cancer 
either alone or in combination with other agents (Wag-
ner et al. 2010 for review). A second HDACi, depsipeptide 
(FK228, Romidepsin) was also approved initially for use 
in CTCL. Broadly, HDACi induce cell death in cancer 
cells via apoptosis (see below), but they can also act on the 
cell cycle, on tumour angiogenesis or via the regulation of 
host cell responses (Bolden et al. 2006 for review).

HDACi have also stimulated interest as anti-parasitic 
drugs and have been tested against P. falciparum (An-
drews et al. 2000, 2008), Toxoplasma gondii (Strobl et 
al. 2007) and the major kinetoplastid parasites (Mai et 
al. 2004, Horn 2008). In the case of P. falciparum, it was 
possible to develop HDACi that are significantly more 
toxic to the parasite than toward human cells (Andrews et 

al. 2008, Wheatley et al. 2010). We have shown (Dubois 
et al. 2009) that HDACi such as trichostatin A (TSA) and 
valproic acid (VPA) cause the death of S. mansoni larvae 
and adult worms in vitro and that this is probably via the 
induction of apoptosis in the parasites (see below). Schis-
tosome HDACs, as well as other HME, are therefore 
promising targets for the development of new drugs.

The nucleosome, the basic unit of chromatin, is formed 
by an octamer of four histones around which 147 bp of 
DNA are wound. The histone proteins (H2A, H2B, H3 
and H4) consist of a globular domain and an unstructured 
tail domain. These tails can undergo a variety of post-
translational modifications (acetylation, methylation, 
phosphorylation, ubiquitinylation, sumoylation etc.) that 
affect the overall chromatin structure and the transcrip-
tion of genes and together make up the “histone code” (Je-
unwein & Allis 2001). Two of these modifications seem 
to be particularly important in affecting the higher order 
structure of the chromatin fibre and in the consequent 
regulation of transcription: acetylation of lysine residues 
and the methylation of lysines or arginines of the tails of 
histones (Fig. 1). In this review we will focus on the role 
of the acetylation/deacetylation balance and inhibitors of 
the enzymes involved as drug candidates.

The acetylation or deacetylation of conserved lysine 
residues in the amino-terminal tails of histones repre-
sents a crucial element in the chromatin-based mecha-
nisms of transcriptional regulation and the histone code. 
Broadly, acetylation via HAT annuls the positive charge 
of the lysine and reduces chromatin compaction, favour-
ing transcription, whereas deacetylation, via HDAC has 
the opposite effect (Fig. 2). However, acetylation also 
provides binding sites for bromodomain-containing tran-
scriptional effectors (Jeunwein & Allis 2001). It is also 
an over-simplification to suggest that HDAC are always 
associated with transcriptional repression (Zupkovitz et 
al. 2006). The enzymes involved in these processes also 
have roles in the deacetylation of other proteins, actors 
in transcriptional complexes or in some cases, cytosolic 
proteins such as tubulin.

Fig. 1: residues in the tail domains of histones H2A, H2B, H3 and H4 
constituting the nucleosome that are potentially modified by acetyla-
tion (hexagons) or methylation (polyhedrons). 
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A large number of transcriptional coactivators are 
now recognized to possess HAT activity and it is pos-
sible to distinguish at least six families of HAT proteins 
(Sterner & Berger 2000): the GNAT superfamily (PCAF/
GCN5), the MYST family, the CBP/p300 family, the nu-
clear receptor coactivator (SRC/ACTR/TIF) family, the 
TAFII 250 family and the GNAT related family (TFII-
IC). An orthologue of the HAT, GCN5 from S. mansoni 
was shown to possess conserved catalytic properties (de 
Moraes Maciel et al. 2004) and to specifically acetylate 
lysine 14 of histone H3 (de Moraes Maciel et al. 2008). In 
addition, two orthologues of mammalian CBP/p300 that 
also had conserved HAT activities have been character-
ized (Bertin et al. 2006). 

HDAC in eukaryotes have traditionally been divided 
into three classes, with classes I and II comprising en-
zymes that share similar catalytic domains and a Zn2+-
dependent catalytic mechanism. More recently, a sepa-
rate class (IV), comprising only HDAC 11 in mammals, 
was described (Gregoretti et al. 2004). Class III com-
prises the enzymes related to yeast Sir2 that are NAD+-
dependent and phylogenetically unrelated to classes I 
and II. In common with Gregoretti et al. (2004), these 
will be referred to hereafter as sirtuins.

 HDACs and sirtuins are members of ancient enzyme 
families that are present in achaebacteria, eubacteria, 
protists, plants, fungi and animals. HDAC class I is rep-
resented in mammals by HDACs 1, 2, 3 and 8 and are 
generally smaller than the class II HDACs (4-10) with 
only relatively short N and C-terminal domains sur-
rounding the catalytic domain. Class II HDACs have 
generally larger N or C-terminal domains and HDAC6 
has two catalytic domains. Indeed HDAC6 is grouped 
with HDAC10, which has a second, truncated, catalytic 
domain in a sub-class IIb. HDAC 1 forms homo or het-
erodimers (with HDACs 2 or 3) and HDAC 3 also inter-
acts with class II HDACs (Gregoretti et al. 2004).

In a preliminary study, we cloned and characterized 
three class I HDACs present in the S. mansoni genome, 
orthologues of mammalian HDACs 1, 3 and 8, and con-

firmed their identities by phylogenetic analysis (Oger et 
al. 2008). The identification of an orthologue of HDAC8 
in an invertebrate was unexpected as it had been sug-
gested that this was a vertebrate-specific enzyme (Greg-
oretti et al. 2004). All three have conserved catalytic 
domains, but divergent C-terminal domains. Insertions 
in the SmHDAC8 catalytic domain indicate that it may 
exhibit specific enzymatic properties compared to the 
mammalian counterpart. Structure-guided optimiza-
tion strategies could take into account these differences. 
SmHDAC 1, 3 and 8 mRNAs are expressed at all life-
cycle stages, SmHDAC3 being expressed at a lower level 
than SmHDAC1 and 8. SmHDAC1 was shown to repress 
NF-κB and Gal4-dependent transcriptional activity in a 
mammalian cell line. This activity was dependent on the 
catalytic activity of SmHDAC1 since transcription was 
partially restored by treatment with the HDAC inhibi-
tor TSA and a catalytic site mutant form of SmHDAC1 
failed to repress transcription (Oger et al. 2008). 

A preliminary in silico study also allowed the iden-
tification of three class II HDACs encoded in the S. 
mansoni genome, orthologues of HDACs 4, 5 and 6. The 
full-length coding sequences and splice variants of each 
of these HDACs has been verified using rapid amplifica-
tion of cDNA ends-polymerase chain reaction (RACE-
PCR) (unpublished observations) and the characteriza-
tion of their expression profiles during the S. mansoni 
life-cycle is under investigation. 

Sirtuins can be separated into four main classes (with 
a 5th class present in Gram-positive bacteria) (Frye 2000) 
and the human sirtuins (7 in all) comprise members of 
all four groups. Sirtuins (Sirt) 3, 4 and 5 are localized in 
the mitochondria, Sirts 6 and 7 are exclusively nuclear, 
Sirt 1 has a dual nuclear/cytosolic localisation and Sirt 2 
is cytosolic (Michishita et al. 2005). In addition to their 
lysine deacetylase activity, sirtuins metabolize NAD 
and can act as mono-ADP-ribosyltransferases. Indeed 
Sirt4 is a mitochondrial enzyme that ADP-ribosylates 
and down-regulates glutamine dehydrogenase (Haigis et 
al. 2006). Five sirtuins are encoded in the S. mansoni 
genome, orthologues of human sirtuins 1, 2, 5, 6 and 
7 (unpublished observations). Their predicted localiza-
tions (PSORTII) (Nakai & Horton 1999) are similar to 
those of the human orthologues

HAT and HDACi - Most efforts to develop drugs 
based on HMEs have concerned the HDACs, but both 
HAT and HDACi have either anti-proliferative effects 
or cause apoptosis in tumour cell lines. Derivatives of 
γ-butyrolactone were designed as GCN5 inhibitors and 
high throughput screening led to the identification of iso-
thiazolones as inhibitors of P300/CBP-associated factor 
(PCAF) and p300 (Stimson et al. 2005). More recently, 
chemicals derived from medicinal plants such as anac-
ardic acid, garcinol and curcumin were found to be potent 
inhibitors of p300 and PCAF and the two latter chemicals 
induced histone hypoacetylation in cancer cells, leading 
to apoptosis (Balasubramanyam et al. 2004).

Inhibitors of class I and II HDACs can be classed in 
four families according to their structure: short-chain 
fatty acids (butyric acid derivatives including VPA), hy-
droxamic acid derivatives, including TSA and SAHA, 

Fig. 2: schematic representation of the effects of histone acetylation 
and deacetylation on gene transcription. HAT: histone acetyltrans-
ferase; HDAC: histone deacetylase.
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that were first detected for their capacity to induce 
apoptosis in screens on transformed cells before being 
shown to be HDACi (Richon et al. 1998), benzamides 
and cyclic tetrapeptides. Representatives of each of 
these families are currently in clinical trials against di-
verse cancers and half maximal inhibitory concentra-
tion values for these inhibitors are generally in the µM 
or nM range (Wagner et al. 2010).

In cancer therapy, HDACi have proved to have po-
tent activities at concentrations that are minimally toxic 
to the host, although they do have side-effects (Bolden 
et al. 2006, Wagner et al. 2010 for reviews). HDACi se-
lectively kill cancer cells in vitro at concentrations 10-
fold lower than for normal cells. The effects of HDACi 
are cell-type dependent and the molecular pathways en-
gaged to mediate their effects are not fully elucidated. 
However, they are capable of inducing apoptosis via 
several pathways, including death receptors, the mi-
tochondrial pathway, selective activation of BH3-only 
proteins or via the regulation of the production of reac-
tive oxygen species. Many HDACi can induce cell-cycle 
arrest at G1/S and they inhibit cancer vascularisation, 
possibly via the downregulation of the expression of 
the chemokine receptor CXCR4. Finally, HDACi can 
enhance antitumour immunity, either by rendering ma-
lignant cells more visible to the immune system or by 
altering immune cell activity and/or cytokine produc-
tion (Bolden et al. 2006).

Less is known about the consequences of inhibiting 
sirtuins; only a limited number of inhibitors have been 
described and some do not inhibit human subtypes. The 
first synthetic inhibitor described was sirtinol, but pre-
cipitation of the enzyme by the inhibitor may contrib-
ute to in vitro inhibition. Indoles active down to 0.1 µM 
have been described and the anticancer activity of one 
of these, cambinol, was shown to be effective in an ani-
mal model (Heltweg et al. 2006). Splitomicin derivatives 
have been characterized that inhibit recombinant Sirt2 
and have antiproliferative properties and promote tubu-
lin hyperacetylation in a breast cancer cell line (Neuge-
bauer et al. 2008). In addition, thiobarbiturates have 
been recently discovered to be a novel class of sirtuin 
inhibitor (Uciechowska et al. 2008).

HDACi as drugs against parasites - Parasites can be 
likened to tumours in that they undergo intense metabolic 
activity that is outside the control of the host. Schisto-
somes do not proliferate within the human host, but have 
in common this intense metabolic activity and a high 
level of proliferation of the vitelline cells involved in the 
massive production of eggs. Moreover, parasites, like tu-
mours, render themselves invisible to the immune system, 
either by means of genetic variation as in the case of ma-
laria parasites (Templeton 2009), or like schistosomes, by 
adsorbing host determinants onto their surface (Sher et al. 
1985). HDACi and sirtuin inhibitors have therefore been 
tested for their activity against a variety of parasites.

The use of HDACi against malaria parasites started 
with the demonstration of the activity of apicidin (a cy-
clic tetrapeptide HDACi) in inhibiting growth of P. fal-
ciparum in vitro. Subsequent work showed that TSA was 

also active in vitro and that suberic acid bisdimethylam-
ide had a cytostatic effect on the murine malaria para-
site Plasmodium berghei in vivo (Andrews et al. 2000). 
Subsequently, compounds derived from L-cysteine or 
2-aminosuberic acid were designed to inhibit P. falci-
parum HDAC-1 based on homology modelling with hu-
man class I and class II HDAC enzymes (Andrews et al. 
2008). These compounds showed a high antiproliferative 
activity in the nM range and some were much more toxic 
toward the parasites than toward mammalian cells. More 
recently, Wheatley et al. (2010) described a series of in-
hibitors with cinnamic acid derivatives or non-steroidal 
anti-inflammatory drugs as HDAC-binding motifs. 
These were found to be up to 10 times more toxic to-
ward P. falciparum than a normal human cell line. This 
work underlines the possibility of designing inhibitors 
with increased specificity toward HDACs of parasites 
via molecular modelling.

Similarly, a variety of hydroxamic acid class HDACi, 
including TSA and SAHA at nM concentrations, were 
capable of inhibiting proliferation of the apicomplexan 
parasite T. gondii in vitro and completely protected 
monolayers of HS68 cells against infection (Strobl et al. 
2007). Moreover, in the case of the kinetoplastid para-
site Trypanosoma brucei, an apicidin analogue has been 
shown to have potent and selective antiproliferative ef-
fects (Murray et al. 2001). 

The inhibition of sirtuins has been less investigat-
ed for its therapeutic potential in protozoan parasites. 
Although P. falciparum Sir2 was inhibited by nicotin-
amide, a natural product of the sirtuin reaction, it was 
not sensitive to sirtinol or splitomicin (Merrick & Du-
raisingh 2007). However, recent studies (Chakrabarty et 
al. 2008, Prusty et al. 2008) have shown that both nico-
tinamide and the synthetic inhibitor surfactin inhibit 
PfSir2 activity and are potent inhibitors of intra-eryth-
rocytic growth of the parasite. Chakrabarty et al. (2009) 
have also developed lysine-based tripeptide analogues 
as PfSir2 inhibitors, one of which also markedly inhibit-
ed parasite intra-erythrocytic growth. Moreover, sirtinol 
was found to inhibit the in vitro growth of Leishmania 
infantum via the induction of apoptosis (Vergnes et al. 
2005). Structural studies of Leishmania Sir2 (Kadam et 
al. 2008) have recently (Tavares et al. 2010) led to the 
characterization of bisnaphthalimidopropyl derivatives 
as inhibitors and potential drugs. 

The use of HAT inhibitors has been more limited, 
but anacardic acid has been shown to have parasiticidal 
effects on P. falciparum that are associated with changes 
in global gene expression (Cui et al. 2008). An in silico 
screening approach using a modelled P. falciparum HAT 
suggested the use of curcumins and diarylheptanoids as 
potential lead compounds (Singh & Misra 2009).

Effects of HDACi on schistosomes - The inhibitors of 
class I and II HDACs, VPA SAHA and TSA both inhib-
ited global HDAC activity in schistosomes (Dubois et 
al. 2009). When used to investigate the effects of HDAC 
inhibition on schistosomula and adult worms maintained 
in in vitro culture, TSA and VPA both caused dose de-
pendent mortality of schistosomula and adults, with TSA 
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showing the most marked effect (range from 1-10 µM).  
TSA treatment of schistosomula led to an increase in 
caspase 3/7 mRNA expression and enzyme activity that 
was mirrored by TUNEL labelling of larvae, showing 
that apoptosis was induced (Dubois et al. 2009). 

Both TSA and VPA were shown to cause an increase 
in general levels of protein acetylation in schistosomes; 
more particularly of histone 4, whereas histone 3 acety-
lation was much less affected. This general increase in 
acetylation was shown to be accompanied by an increase 
in the expression of the genes encoding orthologues of 
caspases 3 and 7, but not of the SmHDAC1 gene. The 
caspase 3 gene has previously been shown to be upreg-
ulated in cell lines after treatment with SAHA (Tan et 
al. 2006), human HDAC1 is upregulated by TSA (Zup-
kovitz et al. 2006) and the absence of upregulation of 
SmHDAC1 in schistosomula was surprising. However, 
ChIP analysis of H4 acetylation in the promoters of these 
genes showed that the SmHDAC1 promoter is already 
maximally acetylated in untreated parasites, whereas the 
caspase 3 and 7 gene promoters showed significantly in-
creased acetylation after TSA treatment. Together, these 
results showed that, as with tumour cell lines, HDACi 
induced hyperacetylation of histones, deregulated gene 
expression and induced apoptosis in schistosomes. 

In order to determine whether schistosome sirtuins 
might also be considered drug targets, we have recently 
treated schistosomula in culture in the presence of sir-
tinol. This compound proved a potent inducer of para-
site death and this correlated with a positive TUNEL 
assay (Fig. 3).

The challenge - the Schistosome Epigenetics: Tar-
gets, Regulation, New Drugs (SEtTReND) project (set-
trend.cebio.org/) - Schistosome HDACs, sirtuins and 
by extension, other HMEs are clearly potential drug tar-

gets. However, there are several challenges to overcome 
in order to develop drugs based on inhibitors of these 
enzymes. The inhibitors have to be made as specific as 
possible for the schistosome enzymes in order to mini-
mize side-effects that can be caused either by reactivity 
with the human enzymes or by off-target effects. They 
have to be bio-available and to be administered by the 
oral route to render mass-treatment possible. And they 
have to be cheap to produce. 

Rather than approach this problem piece-meal by 
looking at possible targets and drugs in isolation, we 
have decided to adopt a holistic approach to drug de-
velopment based on the HMEs. A project, called SEt-
TReND, was developed with nine partner teams based 
in Europe and Brazil that has received financial sup-
port from the European Commission (FP7-Health). 
The different approaches to be undertaken during the 
project are summarized in Fig. 4. They include: (i) the 
identification of all the enzymes involved in histone 
acetylation/deacetylation and methylation/demethyla-
tion by mining the schistosome genome database and 
by validation of the predicted sequences using RACE-
PCR and molecular cloning; (ii) phenotypic screening 
using established inhibitors of the different HME sub-
classes on schistosomes in culture, combined with the 
TUNEL assay, in order to refine the choice of enzyme 
classes as targets; (iii) validation of target HMEs by 
RNA interference and determination of an apoptotic 
phenotype. This will be combined with the determina-
tion of gene expression signatures of interfered schis-
tosomes to generate a profile corresponding to specific 
inhibition of a target. This can be compared with sig-
natures generated after drug treatment to determine 
drug specificity and potential off-target effects; (iv) the 
production of pure recombinant enzymes for testing 
inhibitors and for 3D structural determination (X-ray 
crystallography); (v) high-throughput screening on re-
combinant enzymes with compound libraries combined 
with fragment-based screening; (vi) a parallel rational 

Fig. 3: effect of sirtinol on schistosomula in culture. Schistosomula 
(2,000 per well of a 6-well plate) were incubated for 24 h as previ-
ously described (Dubois et al. 2009) in the presence of 10 µM sirtinol 
or solvent [dimethylsulfoxide (DMSO)] and then stained using 4’,6-
diamidino-2-phenylindole (Dapi) (nuclei, blue stain) and the TUNEL 
reagents (in situ cell death detection kit, TMR Red, Roche). 

Fig. 4: the Schistosome Epigenetics: Targets, Regulation, New Drugs 
(SEtTReND) project. Schematic representation of the strategy for 
drug discovery targeting histone modifying enzymes (HME). RACE- 
PCR: rapid amplification of cDNA ends-polymerase chain reaction.
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drug-design approach based on modelling the catalytic 
pocket of the enzymes and in silico screening, fol-
lowed by optimization; (vii) lead compounds generated 
by either or both of these two last approaches will be 
tested on schistosomes in culture and in infected mice. 
Successful leads will then go forward for optimisation 
(specificity, bio-availability).

The issue of specificity is clearly crucial when deal-
ing, as here, with enzymes that have functions conserved 
throughout evolution. All the more so when considering 
that schistosomes are metazoans and not as phylogeneti-
cally distant from humans as the protozoan parasites, 
such as P. falciparum, for which apparently specific 
HDACi have been developed. Among the S. mansoni 
class I HDACs that we characterized (Oger et al. 2008) 
SmHDAC1 and 3 have highly conserved catalytic do-
mains and it would be difficult to develop specific in-
hibitors for these enzymes. SmHDAC8, however, is phy-
logenetically distant from its orthologues (mammalian 
or insect) and has several insertions in the catalytic do-
main. Moreover, the predicted subcellular localization 
of SmHDAC8 is cytosolic, in contrast to the nuclear lo-
calization of the human orthologue. This suggests that 
the schistosome enzyme may have a different role and 
different substrates. Similarly, the sirtuins SmSirt1 and 
2 show notable differences in their catalytic domains 
compared to mammalian orthologues (not shown) and it 
is therefore probable that other schistosome HMEs will 
show sufficient differences in order to render possible 
the development of specific inhibitors. Therefore, the 
combination of high-throughput and rational approaches 
to drug discovery, followed by optimisation of the lead 
compounds, should allow us to validate this strategy as a 
paradigm for drug development against schistosomes. 
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