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The sensitivity of parameters that govern the stability of population size in Chrysomya albiceps and
describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density-
dependent model of population growth. Our  simulations show that variation in fecundity and mainly in
survival has marked effect on the dynamics and indicates the possibility of transitions from one-point
equilibrium to bounded oscillations. C. albiceps exhibits a two-point limit cycle, but the introduction of
diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point
dynamics. Population dynamics of  C. albiceps is here compared to dynamics of  Cochliomyia macellaria,
C. megacephala and C. putoria.
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The invasion of new habitats by organisms is
an important ecological phenomenon since invad-
ing species generally have tremendous ecological
and economic impact on new areas  (Hengeveld
1989, Andow et al. 1993, Kareiva 1996). Biologi-
cal invasions can take place in different ways in-
cluding invasions into patchy environments and by
stratified diffusion both in short and long-range dis-
persal (Shigesada & Kawasaki 1997). The conse-
quences of an invasion may vary from competi-
tion for food or space between invading and na-
tive species, to invasion of parasites and the spread
of epidemic diseases (Hengeveld 1989, Shigesada
& Kawasaki 1997).

Invader populations depend on physical and bio-
logical factors for success in invasion and coloniza-
tion process (Stiling 1996). Among the main bio-
logical factors associated to population growth as

well as success in colonization, persistence and ex-
tinction of populations in new areas deserve special
attention since the future of the invading species in
its new habitat depends basically on the period of
time that they stay in the new habitat (Hengeveld
1989, Caughley & Gunn 1996, Hanski 1998).

The temporal change in the population density
of organisms at certain spatio-temporal coordinates
can occur as a result of births, deaths, immigration
and emigration (Rhodes & Odum 1996, Hastings
1997). Methodologically it is simpler to study de-
mographic processes only in a temporal context
because they are essentially an one-dimensional
problem (Turchin 1998). Migration, however, in-
volves two scales – temporal and spatial – render-
ing its study intrinsically more complex (Schneider
1989). Ecologists have realized that movement is
a critical but little understood process affecting
population numbers (Ranta et al. 1998). Movement
can subtract or add individuals to a population, can
alter the outcome of species interactions, provide
crucial genetic variability and rescue population
from extinction (Kendall & Fox 1998, Turchin
1998). However, to know whether any of these
postulated effects are of practical importance, we
need to be able to investigate dispersal.

Around twenty years ago, three species of blow-
flies originary from Africa and Asia, Chrysomya
albiceps, C. megacephala and C. putoria have be-
come established in Brazil (Guimarães et al. 1978,
1979, Baumgartner & Greenberg 1984). This inva-
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sion has culminated with the sudden decline in popu-
lation numbers of an ecologically similar species,
Cochliomyia macellaria (F.), which is native to the
Americas (Greenberg & Szyska 1984). Some life-
history aspects of the introduced species can be im-
plied in the displacement of the native species C.
macellaria, since C. albiceps is a species that ex-
hibits a predatory behavior on larvae of other spe-
cies during the larval stage (Coe 1978, Gagné, 1981,
Erzinçlioglu & Whitcombe 1983, Faria et al. 1999).

This behavior has been studied in details by a
choice and no-choice experiment, where there are
strong evidences to believe that C. albiceps larvae
prefer C. macellaria larvae instead of C.
megacephala and C. putoria (Faria et al. 1999). In
addition Chrysomya species have shown higher
competitive ability than C. macellaria in experi-
mental and natural conditions (Wells & Greenberg
1992a,b,c, Reis et al. 1999). Besides the biologi-
cal invasion problem, these species are important
mechanic vectors of diseases and causers of facul-
tative myiasis in humans and animals (Zumpt 1965,
Greenberg 1971, 1973, Baumgartner & Greenberg
1984, Wells 1991).

We have initiated a research program as an at-
tempt to better understand the blowflies invasion
process (Godoy et. al. 1996, 1997, Reis et al. 1996).
In this program we have integrated mathematical
and biological approaches in order to address ques-
tions involving spatio-temporal dynamics. By use
of mathematical models of population growth, the
dynamic behavior of two invader species, C.
megacephala and C. putoria, and of the native spe-
cies C. macellaria was analyzed and the results
indicate that the introduced and native species dif-
fer markedly in their equilibrium dynamics (Godoy
et al. 1993, 1996, 1997, Von Zuben et al. 1993,
Reis et al. 1996, Teixeira et al. 1998). Application
of the mathematical model using density-depen-
dent parameters such as fecundity and survival
derived from experimental populations showed that
C. megacepahala and C. putoria exhibit stable
oscillations with numbers fluctuating  between two
points in sucessive generations (Godoy et al. 1993,
Von Zuben et al. 1993), whereas in C. macellaria
the dynamics is characterized by damping oscilla-
tions in population size leading to one fixed point
equilibrium (Reis et al. 1996, Godoy et al. 1997).

In this paper we investigate the theoretical dy-
namics of experimental populations of C. albiceps
as  an attempt to understand  its population biol-
ogy and compare the results obtained  with those
observed by Reis et al. (1996), Godoy et al. (1997)
and Teixeira et al. (1998). We specifically, ana-
lyzed the population dynamics of C. albiceps by
means of a mathematical model that incorporates
fecundity and survival as density-dependent demo-

graphic parameters in discrete time. We also in-
vestigated the sensitivity of these  parameters to
changes in the magnitude of its values and ana-
lyzed the dynamic behavior in a spatial structure
based on the coupled lattice maps formalism, in
order to investigate if the population dynamics of
these species is influenced by spatial migration.

MATERIALS AND METHODS

Laboratory population of C. albiceps - Speci-
mens of C. albiceps were collected in the vicini-
ties of the campus of Universidade Estadual
Paulista, Botucatu, São Paulo, Brazil. Adult flies
were maintained in laboratory conditions in cages
(30x30x30cm) covered with nylon at 25 ± 1°C and
were fed water and sugar ad libitum. Adult females
were fed fresh beef liver to permit the complete
development of the gonotrophic cycle (Linhares
1988). The experiment was performed using the
generation F2, which is progeny of one generation
which had its life cycle completed in the labora-
tory. Exploitative intraspecific competition among
immatures, which is known to occur under natural
conditions (de Jong 1976, Lomnicki 1988) was
established in the laboratory by setting up six rep-
licated larval densities, developing in 20 g of
ground beef, ranging from 100 to 1,000 larvae per
vial at intervals of 200.

This range of densities is suitable to simulate
intraspecific competition process in C. albiceps
since it produces decrease in demographic param-
eters as a function  of density (Godoy  et al. 1993,
Von Zuben et al. 1993, Reis et al. 1994, 1996).
Fecundity was measured counting the number of
eggs per female and expressed as the average of
daily egg output, which is based on the length of
the gonotrophic cycle of Chrysomya species at
25°C (Avancini & Prado 1986, Linhares 1988).
Maximum sample size for estimation of fecundity
was 30 females per vial. Sample sizes smaller than
30 in some vials were due to either low immature
survival rates or incomplete ovarian development.
Survival was estimated as the number of adults
emerging from each vial.

Mathematical model - The mathematical model
developed by Prout and McChesney (1985) was
applied to investigate the dynamics of laboratory
populations of C. albiceps. This model is based on
a finite difference equation that models population
dynamics considering the number of immatures,
eggs or larvae, in succeeding generations, nt+1 and
nt. Prout and McChesney’s model incorporates two
density-dependent processes, the variation of fe-
cundity and survival as function of density of
immatures, nt. The recursion is written in the non-
linear finite difference equation
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where F* and S* are the intercepts in the re-
gression analysis of fecundity and survival as a
function of larval density. These parameters de-
scribe the theoretical values for maximum fecun-
dity and survival, respectively. The factor of ½
indicates that only half of the population are adult
females which contribute with eggs to the next gen-
eration. The values of  f and s are regression coef-
ficients that estimate the slope of fecundity and sur-
vival on the density of immatures. The exponen-
tial function was used because it fitted the C.
albiceps data equal to or better than linear and hy-
perbolic functions and, the linear regression is
known to produce larger slopes in absolute mag-
nitude that produces larger eigenvalues which do
not accurately describe the model dynamics at car-
rying capacity (Mueller 1986). In addition the de-
crease in fecundity as a function of density of
immatures can be viewed biologically as a Pois-
son process, which is decribed by an exponential
function (Rodriguez 1989).

The effect of parameter variation on the popu-
lation dynamics of C. albiceps was investigated
through simulations varying maximum fecundity
(F*) and survival (S*), intercepts in the regression
analysis. All simulations were carried out with
Matlab (Moler et al. 1987). In the simulations re-
ported here, fecundity was arbitrarily allowed to
vary up to a mean daily egg output of 40 eggs (the
maximum value of fecundity observed for females
of this species; pers. obs.).

Spatial structure was incorporated to equation
(1) employing the physical formalism of coupled
map lattices (Bascompte & Solé 1994). The spa-
tial dimension was incorporated as a discrete lat-
tice of points with the populations arranged on the
nodes of this square lattice and the population in
each node is linked with dispersal to the four near-
est neighbors. The spatial structure is incorporated
to equation (1) yielding an equation for the spatio-
temporal dynamics as

nt+1(i, j) = ½ F* S* e 
– (f + s) nt (i, j) nt (i, j) + D∇2nt (r)     (2)

where D, is the diffusion rate that indexes dispersal
as the fraction of the population that is exchanged
in each node, (i, j), and

∇2nt(r) = nt(i - l, j) + nt(i + l, j) + nt(i, j - 1) + nt(i, j + 1) - 4nt (i, j)
(3)

defines the geometry of the diffusion between
points in the lattice. The term D∇2nt(r) gives the
diffusion effects which define the individuals that
disperse to the adjacent nodes, and those that im-
migrate from these nodes. Dispersal between nodes,

i. e., the local populations, was established in a 3 x
3 lattice yielding a total of nine adjacent nodes.
Dispersal occurred by simple diffusion with a fixed
fraction of each population migrating to a nearest
neighbor each generation. The migration rate (D)
was set to 0.2 and both it and the carrying capacity
and the migration rate (D) were kept constant
throughout generations although varied randomly
between adjacent nodes.  The spatio-temporal dy-
namics was simulated using eqn 2 and carried out
with MatLab (Moler et al. 1987).

The findings for the temporal and spatial dy-
namics of  C. albiceps obtained in this paper are
compared and discussed with those obtained for
C. megacephala, C. putoria and C. macellaria,
which are described in Godoy et al. (1996, 1997)
and Reis et al. (1996) using the same mathemati-
cal formalism.

RESULTS

Survival and fecundity of C. albiceps decreased
as function of density of immatures and this de-
crease was statistically significant (Tables I, II).
Slopes of the exponential regression for fecundity
and survival were significantly different from zero
(P < 0,001) (Table II). Theoretical values for maxi-
mum fecundity (F*) and survival (S*), and the re-
gression coefficients (Table II) describing the de-
pendence of  fecundity (f) and survival (s) upon
density of immatures were incorporated to equa-
tion (4), which can be written as

nt+1 = ½ [(27.11 e 
– 0.001 nt )(0.56 e 

– 0.003 nt) nt 
]     (4)

The qualitative dynamics of C. albiceps can be
assessed by the eigenvalue associated with equa-
tion (1), which is larger than 1 in modulus
(λ = -1.0398) and has so two points stable equilib-
rium.

The dynamic behavior observed for C. albiceps
was derived from the application of fixed param-
eter values to the non-linear difference equation
(1). Bifurcation diagrams show that increasing val-
ues for fecundity produce qualitative changes in
the dynamics of the C. albiceps (Fig. 1) and, for
values of fecundity larger than 26 eggs, there is
apparently a transition in the dynamics from stable
equilibrium to two point limit cycle. When sur-
vival is analyzed, the upper limit is 1.0, which rep-
resents a theoretical maximum viability of 100%.
In this case we can see that the effect of survival
on the dynamics of  C. albiceps is much more no-
ticeable than that of fecundity, since two bifurca-
tions were realized (Fig. 1).

 The consequences of diffusive dispersal for the
population dynamics of C. albiceps  are illustrated
in Fig. 2. The oscillations in population numbers

nt+1 = ½ F* S* e 
– (f + s) nt nt                   (1)
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as a function of time measured in generations is
shown, both for the non-spatial homogeneous
model, equation (1), and the spatially structured
model, equation (2) (Fig. 2). Our simulations sug-
gest that the linkage between populations intro-
duced by diffusive dispersal produces a qualita-
tive effect on the local dynamics of C. albiceps
from  two point limit cycle to stable equilibrium
(Fig. 2). In addition, spatial structure introduced a
small quantitative effect in the population dynam-
ics, characterized by the change in the spectrum of
the oscillations.

DISCUSSION

The mathematical analysis performed in this
study reveals that C. albiceps shows a dynamic
behavior represented by a limit cycle of  two points,
since λ = -1,0398 (larger than one in module). This
behavior was also observed in C. megacephala and
C. putoria (Godoy et al. 1993, Von Zuben et al.
1993), but it differs from the native species, C.
macellaria, that shows damping oscillations in
population size leading to one fixed point equilib-
rium (Reis et al. 1996). We noted, however, that
the value of λ obtained for C. albiceps is very close
to one  if compared to the other values observed
for C. megacephala,  λ  = -1.3761 and C. putoria,
λ = -1.2399 (Godoy et al. 1996). This result sug-
gests that C. albiceps is a species apparently more
susceptible to changes in its dynamic behavior than
C. megacephala and C. putoria.

TABLE II

 Parameters of regression analysis of fecundity and
survival on larval density

Fecundity Survival

Maximum  (F) 27.11 0.565
Regression coeficient (f) 1 x 10-3 3 x 10-3

t value 18.36a 5.48
r2 68.5 75
F 337 30

a: P < 0.001

TABLE I

 Mean daily fecundity and survival in six larval densities of Chrysomya albiceps

Fecundity
(number of eggs) Survival (%)

Densities N x ± Sd N x ± Sd

  100 25 26.46 ± 4.13 2 54 ±   8.5
  200 54 21.02 ± 2.96 2 34 ±   9.5
  400 29 19.24 ± 2.97 2 12 ± 11.4
  600 17 15.91 ± 3.15 2     7.2 ±   6.8
  800 22 13.63 ± 2.87 2     6.9 ±   2.4
1000 10   8.57 ± 2.43 2  2 ± 0

Stability of equilibrium has been extensively
investigated in insect populations (Dennis et al.
1995, Costantino et al. 1995, 1997, 1998, Cushing
et al. 1998) and perhaps the most important ques-
tion arising in this context be what governs the tran-
sitions from stable to unstable equilibria. The ef-
fects produced by the manipulation of the param-
eter values are well known in theoretical popula-
tion models (May & Oster 1976, Edelstein-Keshet
1998) and evidences for such changes come from
theoretical and empirical studies (Cavalieri &
Koçak 1995, Costantino et al. 1995, 1997, Denis
et al. 1995, 1997). Experiments designed to test
prediction of population models have shown that
shifts in dynamical behavior can occur, from stable
point equilibria, to stable limit cycles, to aperiodic
cycles in response to changes in the rate of adult
stage mortality (Costantino et al. 1995, 1997, Denis
et al. 1995, 1997).

In our study the simulations revealed that the
transition from asymptotic stable equilibrium to
bounded oscillations occurs with an increase in
fecundity and survival. It is interesting to note that
the results of this study indicate a more frequent
variation of dynamic behavior when the survival
values are manipulated. Recently, Godoy et al.
(1996) used the same technique to analyse the tran-
sition of dynamic behavior in C. megacephala, C.
putoria and C. macellaria and observed that the
effect of survival on the dynamics of these species
is much less noticeable than of fecundity, since no
more than one bifurcation was obtained in the three
species studied (Fig. 1). Fecundity was shown in
the simulations to be the most important  demo-
graphic parameter to bring about shifts in the dy-
namic behavior of experimental populations of C.
megacephala, C. putoria and C. macellaria (Godoy
et al. 1996).

 The coupled map lattices suggest that the link-
age between populations introduced by diffusive
dispersal  produces a qualitative effect on the local
dynamics of C. albiceps from two point limit cycle
to stable equilibrium (Fig. 2). These results con-
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firm the findings by Godoy et al. (1997) which re-
vealed that the linkage between populations intro-
duced by diffusive dispersal may produce qualita-
tive and quantitative effects on the local dynamics
of C. megacephala, C. putoria and C. macellaria
(Fig. 2).

The dynamics system in which C. albiceps is
inserted gives a wide range of interesting questions
since it apparently balances between stability and
periodic behavior. This apparent ambiguity as a
function of both the parametric manipulation and
the spatial  structure introduced in the model, places
C. albiceps between  C. macellaria, the native spe-
cies that exhibits stable dynamics and the other
introduced species, C. megacephala and C. putoria,
that show two point limit cycle (Reis et al. 1996).
We consider this point interesting because in this
sense C. albiceps is a species that shows a dynamic
behavior more susceptible to changes than C.
megacephala and C. putoria. We do not know if
this characteristic is advantageous to C. albiceps,

however it has proved to be a species with con-
spicuous abilities under competitive stress,  what
probably have influenced negatively the structure
of the community where it lives (Ullyett 1950, Coe
1978, Faria et al. 1999).

The spread of invading organisms is the out-
come of complex interactions involving the dynam-
ics of populations at temporal and spatial scales
(Hengeveld 1989). The importance of the spatial
component has always been recognized (Lewis &
Kareiva 1993), although recently a stronger em-
phasis has been placed on spatial structure as re-
sult of theoretical developments that have estab-
lished a correlation between migration and dynamic
behavior of populations (Comins et al. 1992, Allen
et al. 1993, Hastings 1993, Bascompte & Solé
1995, Ruxton 1995, Kendall & Fox 1998). The
results found in these investigations show two op-
posite ways, on the one hand the complex or cha-
otic temporal dynamics can be induced by the pres-
ence of the spatial dimension (Comins et al. 1992,

Fig. 2: evolution of population size across generations obtained from the non-spatial, homogeneous model (draft line) given by
equation (1), and the spatially structured model (bold line) given by equation (2).
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Pascual 1993) and on the other hand, simple peri-
odic dynamics may be induced by the presence of
the diffusive dispersal (Hastings 1993, Csilling et
al. 1994). Our simulations indicate that the spatial
dimension induces an overall stabilizing effect on
the dynamics of C. albiceps. This paper, together
with the previous focus the connection between
population dynamics and the invasion of blowflies
(Reis et al. 1996, Godoy et al. 1996, 1997), seem
to confirm the findings of Costantino et al. (1995,
1997) and Allen et al. (1993), which have taken
together a new conceptual thread connecting sen-
sitivity to demographic changes, qualitative
changes in dynamic behavior and extinction rates.
In addition, the peculiar characteristics found in
C. albiceps, which seem to have implications to
population dynamics, open a series of new perspec-
tives for studies of equilibrium dynamics.
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