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Spatio-temporal Dynamics and Transition from Asymptotic
Equilibrium to Bounded Oscillations in Chrysomya albiceps
(Diptera, Calliphoridae)
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The sensitivity of parameters that govern the stability of population stAerysomya albicepand
describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density
dependent model of population growth. Our simulations show that variation in fecundity and mainly in
survival has marked effect on the dynamics and indicates the possibility of transitions from one-point
equilibrium to bounded oscillation§.. albicepexhibits a two-point limit cycle, but the introduction of
diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point
dynamics. Population dynamics 6f albicepss here compared to dynamics@bchliomyia macellaria,
C. megacephalandC. putoria.
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The invasion of new habitats by organisms isvell as success in colonization, persistence and ex-
an important ecological phenomenon since invadinction of populations in new areas deserve special
ing species generally have tremendous ecologicattention since the future of the invading species in
and economic impact on new areas (Hengevelts new habitat depends basically on the period of
1989, Andow et al1993, Kareiva 1996). Biologi- time that they stay in the new habitat (Hengeveld
cal invasions can take place in different ways in1989, Caughley & Gunn 1996, Hanski 1998).
cluding invasions into patchy environments and by The temporal change in the population density
stratified diffusion both in short and long-range disef organisms at certain spatio-temporal coordinates
persal (Shigesada & Kawasaki 1997). The consean occur as a result of births, deaths, immigration
guences of an invasion may vary from competiand emigration (Rhodes & Odum 1996, Hastings
tion for food or space between invading and nat997). Methodologically it is simpler to study de-
tive species, to invasion of parasites and the spreatbgraphic processes only in a temporal context
of epidemic diseases (Hengeveld 1989, Shigesatlacause they are essentially an one-dimensional
& Kawasaki 1997). problem (Turchin 1998). Migration, however, in-

Invader populations depend on physical and biorolves two scales — temporal and spatial — render-
logical factors for success in invasion and colonizang its study intrinsically more complex (Schneider
tion process (Stiling 1996). Among the main bio-1989). Ecologists have realized that movement is
logical factors associated to population growth aa critical but little understood process affecting

population numbers (Ranta et al. 1998). Movement
can subtract or add individuals to a population, can
alter the outcome of species interactions, provide
crucial genetic variability and rescue population
Research supported by grants from Fundag&o de Ampdrom extinction (Kendall & Fox 1998, Turchin
a Pesquisa do Estado de S&o Paulo (nos. 95/9299-9 4r888). However, to know whether any of these
98/07474-6). postulated effects are of practical importance, we
CJVZ, FJVZ and SFR has been supported by researgped to be able to investigate dispersal.
I/?r'#%"r‘l’fohgse nftri(fJiE:no (eonneS<:en”c:|(c)'>g'i\lc?)C|0nal de Desenvol-  Around twenty years ago, three species of blow-
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sion has culminated with the sudden decline in popgraphic parameters in discrete time. We also in-
lation numbers of an ecologically similar speciesyestigated the sensitivity of these parameters to
Cochliomyia macellarigF.), which is native to the changes in the magnitude of its values and ana-
Americas (Greenberg & Szyska 1984). Some lifedlyzed the dynamic behavior in a spatial structure
history aspects of the introduced species can be ifmased on the coupled lattice maps formalism, in
plied in the displacement of the native spe€ies order to investigate if the population dynamics of
macellarig sinceC. albicepsis a species that ex- these species is influenced by spatial migration.
hibits a predatory behavior on larvae of other spe-
cies during the larval stage (Coe 1978, Gagné, 1981, MATERIALS AND METHO_DS )
Erzinclioglu & Whitcombe 1983, Faria et al. 1999).  Laboratory population of Calbiceps- Speci-
This behavior has been studied in details by @ens ofC. albicepswere collected in the vicini-
choice and no-choice experiment, where there atgs of the campus of Universidade Estadual
strong evidences to believe ti@atalbicepdarvae  Paulista, Botucatu, Sdo Paulo, Brazil. Adult flies
prefer C. macellarialarvae instead ofc. were maintained in laboratory conditions in cages
megacephalandC. putoria(Faria et al. 1999). In (30x30x30cm) covered with nylon at 25 + 1°C and
addition Chrysomyaspecies have shown higherwere fed water and sugar ad libitum. Adult females
competitive ability tharC. macellariain experi- were fed fresh beef liver to permit the complete
mental and natural conditions (Wells & Greenberglevelopment of the gonotrophic cycle (Linhares
1992a,b,c, Reis et al. 1999). Besides the biologi988). The experiment was performed using the
cal invasion problem, these species are importageneration k, which is progeny of one generation
mechanic vectors of diseases and causers of faculhich had its life cycle completed in the labora-
tative myiasis in humans and animals (Zumpt 196%ory. Exploitative intraspecific competition among
Greenberg 1971, 1973, Baumgartner & Greenbeighmatures, which is known to occur under natural
1984, Wells 1991). conditions (de Jong 1976, Lomnicki 1988) was
We have initiated a research program as an asstablished in the laboratory by setting up six rep-
tempt to better understand the blowflies invasioficated larval densities, developing in 20 g of
process (Godoy et. al. 1996, 1997, Reis et al. 199G)round beef, ranging from 100 to 1,000 larvae per
In this program we have integrated mathematicafia| at intervals of 200.
and biological approaches in order to address ques- This range of densities is suitable to simulate
tions mvolvmg spatio-temporal dyn_amlcs. By us@ntraspecific competition process @ albiceps
of mathematical models of population growth, theince it produces decrease in demographic param-
dynamic behavior of two invader speci€s, eters as a function of density (Godeyal. 1993,
megacephalandC. putorig and of the native spe- \/on Zuben et al. 1993, Reis et al. 1994, 1996).
ciesC. macellariawas analyzed and the resultsSeecundity was measured counting the number of
indicate that the introduced and native species dlg-ggs per female and expressed as the average of
fer markedly in their equilibrium dynamics (Godoyda”y egg output, which is based on the length of
et al. 1993, 1996, 1997, Von Zuben et al. 1993, gonotrophic cycle oEhrysomyaspecies at

Reis et al. 1996, Teixeira etal. 1998) ApplicatiorQ5oC (Avancini & Prado 1986, Linhares 1988)
of the mathematical model using densny—depergj

q h f di g ' Maximum sample size for estimation of fecundity
ent parameters such as tecundity and survivgjag 30 females per vial. Sample sizes smaller than
derived from experimental popglatlons showed thay i some vials were due to either low immature
C. megacepahalandC. putoriaexhibit stable g i) rates or incomplete ovarian development.
oscillations with numbers fluctuating between twi urvival was estimated as the number of adults
points in sucessive generations (Godoy et al. 199 merging from each vial

Von Zuben et al. 1993), whereasGnmacellaria :

the dynamics is characterized by damping oscillg; Mathematical modelThe mathematical model
he dy  char °d Dy damping 0SCliaye, e10ned by Prout and McChesney (1985) was
tions in population size leading to one fixed poin

o . lied to investigate the dynamics of laboratory
equilibrium (Reis et al. 1996, Godoy et al. 1997), pplied . ; .

In this paper we investigate the theoretical dy‘-)o.pl.“""t".)nS oC. alb|cep.sTh|s model is based on
namics of experimental populations@ifalbiceps a finite .dlfferenc.e equation that models_populatlon
as an attempt to understand its population bio?lynam'(iS cons!dermg thg. number Otf. |mmat(LjJres,
ogy and compare the results obtained with tho %S or arv(;i&' |2§uccee, Ing %er|1¢ra ok
observed by Reis et al. (1996), Godoy et al. (199@' routand McChesney's model incorporates two
and Teixeira et al. (1998). We specifically, anadensity-dependent processes, the variation of fe-
lyzed the population dynamics 6f albicepsby ~cundity and survival as function of density of
means of a mathematical model that incorporaté@maturesn;. The recursion is written in the non-
fecundity and survival as density-dependent demdnear finite difference equation
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—1, * ox a—(f+59) i. e, the local populations, was established in a 3 x
ey =¥2F"S7e n @ 3 lattice yielding a total of nine adjacent nodes.
whereF* and S are the intercepts in the re- Disp_ersal occurred by simple Qiffus_ion with a fixed
gression analysis of fecundity and survival as §action of each population migrating to a nearest
function of larval density. These parameters déiighbor each generation. The migration r&e (
scribe the theoretical values for maximum fecun/@s Setto 0.2 and both it and the carrying capacity
dity and survival, respectively. The factor of 1,2nd the migration rateD) were kept constant
indicates that only half of the population are aduffiroughout generations although varied randomly
females which contribute with eggs to the next geretween adjacent nodes. The spatio-temporal dy-
eration. The values ofands are regression coef- Namics was simulated using eqn 2 and carried out
ficients that estimate the slope of fecundity and sulVith MatLab (Moler et al. 1987). _
vival on the density of immatures. The exponen- 1 ne findings for the temporal and spatial dy-
tial function was used because it fitted tae namics of C. albicepsobtained in this paper are
albicepsdata equal to or better than linear and hyeompared and discussed with those obtained for
perbolic functions and, the linear regression i&: MegacephalaC. putoriaandC. macellaria
known to produce larger slopes in absolute maghich are described in Godoy et al. (1996, 1997)
nitude that produces larger eigenvalues which ¢d'd Reis et al. (1996) using the same mathemati-
not accurately describe the model dynamics at c#@! formalism.
rying capacity (Mueller 1986). In addition the de- RESULTS
crease in fecundity as a function of density of
immatures can be viewed biologically as a Pois:

son process, which is decribed by an exponentlgrease was statistically significant (Tables I, ).

function (Rodriguez 1989). . : /
The effect of parameter variation on the popu_Slopes of the exponential regression for fecundity

lation dynamics ofC. albicepswas investigated and survival were significantly different from zero

. . . ; .. (P<0,001) (Table Il). Theoretical values for maxi-
through simulations varying maximum fecundny&num fecu%((llity ) a)nd survival §), and the re-

(F) and survival ), intercepts in the re(~:’r(:"ss"0ngression coefficients (Table Il) describing the de-

analysis. All simulations were carried out with \ X

; . pendence of fecundityf)(and survival § upon
g/loarttgg éggﬁgﬁa&?ﬁg;g%}ﬁ::@ ufl;l?ltcl)c\;\?: dr? Clt:iensity of immatures were incorporated to equa-
vary up to a mean daily egg output of 40 eggs (thé N (4), which can be written as
maximum value of fecundity observed for females ey = ¥5[(27.116-00010)(0, 5660003y n 1 (4)

of this species; pers. obs.).
Spatial structure was incorporated to equation The qualitative dynamics @. albicepsan be

(1) employing the physical formalism of coupled : ; ; )
map latices (Bascompte & Solé 1904, The speee££6d b he eoenvale sssocited wih e
tial dimension was incorporated as a discrete lajy :

tice of points with the populations arranged on th A = -1.0398) and has so two points stable equilib-

nodes of this square lattice and the population in The dynamic behavior observed @ralbiceps

each node is linked with dispersal to the four neay- : s .
est neighbors. The spatial structure is incorporate\(’evqa s derived from the application of fixed param-

to equation (1) yielding an equation for the spatio-lerB\{slueS.to g_]e non—I|nﬁar dr|]ffer_ence e_quatloln
temporal dynamics as (2). Bifurcation diagrams show that increasing val-

ues for fecundity produce qualitative changes in
i=wFrsre=t+INGn (i y+Dn (@ (2) the dynamics of th€. albiceps(Fig. 1) and, for
Mt ) e 0D "0 @) values of fecundity larger than 26 eggs, there is
whereD, is the diffusion rate that indexes dispersaapparently a transition in the dynamics from stable
as the fraction of the population that is exchangeeljuilibrium to two point limit cycle. When sur-
in each node,i(j), and vival is analyzed, the upper limitis 1.0, which rep-
o _ o . . resents a theoretical maximum viability of 100%.
TP =n@-L)+nG+LD+nlj-D+nGi+D-40D  |n this case we can see that the effect of survival
on the dynamics ofC. albicepds much more no-

defines the geometry of the dziffusion betweeRiceaple than that of fecundity, since two bifurca-
points in the lattice. The ter@O°n(r) gives the ons were realized (Fig. 1).

diffusion effects which define the individuals that e consequences of diffusive dispersal for the

disperse to the adjacent nodes, and those that ig},lation dynamics a. albicepsare illustrated
migrate from these nodes. Dispersal between nod Fig. 2. The oscillations in population numbers

Survival and fecundity o. albicepsiecreased
5 function of density of immatures and this de-
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TABLE |
Mean daily fecundity and survival in six larval densitie€bfysomya albiceps
Fecundity
(number of eggs) Survival (%)
Densities N X + Sd N X + Sd
100 25 26.46 + 4.13 2 54 + 8.5
200 54 21.02 + 2.96 2 34 + 9.5
400 29 19.24 + 2.97 2 12 + 11.4
600 17 15.91 + 3.15 2 7.2 + 6.8
800 22 13.63 * 2.87 2 6.9 + 24
1000 10 8.57 + 2.43 2 2 + 0
TABLE Il Stability of equilibrium has been extensively
Parameters of regression analysis of fecundity andlnvestlgated in insect populations (Dennis e't al.
survival on larval density 1995, Costantinet al. 1995, 1997, 1998, Cushing
- - et al. 1998) and perhaps the most important ques-
Fecundity Survival  ion arising in this context be what governs the tran-
Maximum ) 27.11 0.565 sitions from stable to unstable equilibria. The ef-
Regression coeficienf)( 1 x 103 3x10%  fects produced by the manipulation of the param-
tzvalue 18.38 5.48 eter values are well known in theoretical popula-
r 68.5 75 tion models (May & Oster 1976, Edelstein-Keshet
F 337 30 1998) and evidences for such changes come from
a P <0.001 theoretical and empirical studies (Cavalieri &

Kocgak 1995, Costantino et al. 1995, 1997, Denis

as a function of time measured in generations & & 1995, 1997). Experiments designed to test
shown, both for the non-spatial homogeneouRrediction of population models have shown that
model, equation (1), and the spatially structuregMifts in dynamical behavior can occur, from stable
model, equation (2) (Fig. 2). Our simulations Sugpomt equilibria, to stable limit cycles, to aperiodic
gest that the linkage between populations intrccYC/€S in response to changes in the rate of adult
duced by diffusive dispersal produces a qualite2la9€ mortality (Costantino et al. 1995, 1997, Denis
tive effect on the local dynamics . albiceps ©t al. 1995, 1997). _

from two point limit cycle to stable equilibrium . !N our study the simulations revealed that the
(Fig. 2). In addition, spatial structure introduced &'ansition from asymptotic stable equilibrium to
small quantitative effect in the population dynam- ounded oscillations occurs with an increase in

ics, characterized by the change in the spectrum fcundity and survival. Itis interesting to note that
the oscillations. the results of this study indicate a more frequent

variation of dynamic behavior when the survival
DISCUSSION values are manipulated. Recently, Godoy et al.
The mathematical analysis performed in thi§1996) used the same technique to analyse the tran-

study reveals tha€. albicepsshows a dynamic sition of dynamic behavior i@. megacephaleC.
behavior represented by a limit cycle of two pointgputoria andC. macellariaand observed that the
sinceh =-1,0398 (larger than one in module). Thigffect of survival on the dynamics of these species
behavior was also observeddnmegacephaland s much less noticeable than of fecundity, since no
C. putoria(Godoy et al. 1993, Von Zuben et a|_more_than one bifurpation was obt.ained inthe thre_:e
1993), but it differs from the native speci€s, Species studied (Fig. 1). Fecundity was shown in
macellaria that shows damping oscillations inthe simulations to be the most important demo-
population size leading to one fixed point equilibgraphic parameter to bring about shifts in the dy-
rium (Reis et al. 1996). We noted, however, thafiamic behavior of experimental populationsCof
the value ol obtained folC. albicepss very close MegacephalzC. putoriaandC. macellariag Godoy
to one if compared to the other values observe?f al. 1996). _ _
for C. megacephala) =-1.3761 anc. putorig The coupled map _Iattlcgas suggest that t_he Imk—
A = -1.2399 (Godoy et al. 1996). This result sugage between populations mtroduced by diffusive
gests tha€. albicepss a species apparently moredispersal produces a qualitative effect on the local
susceptible to changes in its dynamic behavior thalynamics oC. albicepsrom two point limit cycle
C. megacephalandC. putoria to stable equilibrium (Fig. 2). These results con-
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firm the findings by Godoy et al. (1997) which re-however it has proved to be a species with con-
vealed that the linkage between populations intraspicuous abilities under competitive stress, what
duced by diffusive dispersal may produce qualitagrobably have influenced negatively the structure
tive and quantitative effects on the local dynamicef the community where it lives (Ullyett 1950, Coe
of C. megacephaleC. putoriaandC. macellaria 1978, Faria et al. 1999).
(Fig. 2). The spread of invading organisms is the out-
The dynamics system in which albicepss come of complex interactions involving the dynam-
inserted gives a wide range of interesting questionss of populations at temporal and spatial scales
since it apparently balances between stability angHengeveld 1989). The importance of the spatial
periodic behavior. This apparent ambiguity as aomponent has always been recognized (Lewis &
function of both the parametric manipulation anareiva 1993), although recently a stronger em-
the spatial structure introduced in the model, placgtasis has been placed on spatial structure as re-
C. albicepdbetweenC. macellariathe native spe- sult of theoretical developments that have estab-
cies that exhibits stable dynamics and the othdished a correlation between migration and dynamic
introduced specie§,. megacephalandC. putoria,  behavior of populations (Comins et al. 1992, Allen
that show two point limit cycle (Reis et al. 1996)et al. 1993, Hastings 1993, Bascompte & Solé
We consider this point interesting because in this995, Ruxton 1995, Kendall & Fox 1998). The
senseC. albicepsis a species that shows a dynamicesults found in these investigations show two op-
behavior more susceptible to changes tRan posite ways, on the one hand the complex or cha-
megacephalandC. putoria. We do not know if otic temporal dynamics can be induced by the pres-
this characteristic is advantageou<talbiceps ence of the spatial dimension (Comins et al. 1992,
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Pascual 1993) and on the other hand, simple pefiostantino RF, Cushing JM, Dennis B, Desharnais RA,
odic dynamics may be induced by the presence of Henson SM 1998. Resonant population cycles in
the diffusive dispersal (Hastings 1993, Csilling et t294n;9207r2”y fluctuating habitat&ull Math Biol 60

al. 1994). Our simulations indicate that the spati el _ ) :
dimensk))n induces an overall stabilizing effe[():t O#OStam'”o RF, Desharnais RA, Cushing JM, Dennis B
the dynamics o€. albiceps This paper, together éi?;cgga;%g%g%gim'cs inan insect population.
with the previous focus the connection betweegsijing A1, Janosi M, Pastor G, Scheuring | 1994. Ab-
population dynamics and the invasion of blowflies  sence of chaos in a self-organized critical coupled
(Reis et al. 1996, Godoy et al. 1996, 1997), seem map lattice Phys Rev E 501083-10092.

to confirm the findings of Costantino et al. (1995Cushing JM, Costantino RF, Dennis B, Desharnais RA,
1997) and Allen et al. (1993), which have taken Henson SM 1998. Nonlinear population dynamics:
together a new conceptual thread connecting sen- models, experiments and dalalheor Biol194: 1-
sitivity to demographic changes, qualitative  9- i _ _
changes in dynamic behavior and extinction rate§ennis B, Desharnais RA, Cushing JM, Costantino RF
In addition, the peculiar characteristics found in 992 Nonlinear demographic dynamic dynamics:

. : . o mathematical model, statistical methods and biologi-
C. albiceps which seem to have implications to cal experimentsEcol Monog 65261-281.

population dynamics, open a series of new Persp&§anns B, Desharnais RA, Cushing JM, Costantino RF
tives for studies of equilibrium dynamics. 1997. Transitions in population dynamics: equilib-
ACKNOWLEDGMENTS ria to periodic cycles to aperiodic cyclesAnim
. . ) Ecol 66:704-729.
To the anonymous reviewer for making suggestionge Jong G 1976. A model of competition for food. I.
that improved the clarity of the manuscript. Frequency-dependent variabilitiedm Nat 110
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