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Selective PDE4 inhibitors as potent anti-inflammatory drugs
for the treatment of airway diseases

Vincent Lagente/+, Corinne Martin-Chouly, Elisabeth Boichot, Marco A Martins*,
 Patrica MR  Silva*

INSERM U620, Faculté de Pharmacie, Université de Rennes 1, 2, avenue du Professeur Léon Bernard, 35043,
 Rennes Cedex, Rennes, France *Laboratório de Inflamação, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo

Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil

Phosphodiesterases (PDEs) are responsible for the breakdown of intracellular cyclic nucleotides, from which
PDE4 are the major cyclic AMP metabolizing isoenzymes found in inflammatory and immune cells. This generated
greatest interest on PDE4 as a potential target to treat lung inflammatory diseases. For example, cigarette smoke-
induced neutrophilia in BAL was dose and time dependently reduced by cilomilast. Beside the undesired side effects
associated with the first generation of PDE4 inhibitors, the second generation of selective inhibitors such as
cilomilast and roflumilast showed clinical efficacy in asthma and chronic obstrutive pulmonary diseases trials, thus
re-enhancing the interest on these classes of compounds. However, the ability of PDE4 inhibitors to prevent or
modulate the airway remodelling remains relatively unexplored. We demonstrated that selective PDE4 inhibitor RP
73-401 reduced matrix metalloproteinase (MMP)-9 activity and TGF-β1 release during LPS-induced lung injury in
mice and that CI-1044 inhibited the production of MMP-1 and MMP-2 from human lung fibroblasts stimulated by
pro-inflammatory cytokines. Since inflammatory diseases of the bronchial airways are associated with destruction
of normal tissue structure, our data suggest a therapeutic benefit for PDE4 inhibitors in tissue remodelling associated
with chronic lung diseases.
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The selective targeting of phosphodiesterases type 4
(PDE4) has been actively pursued as a novel therapeutic
approach in the treatment of respiratory diseases as-
sociated with inflammatory processes such as asthma and
chronic obstructive pulmonary disease (COPD). The
rationale for their use in respiratory disease is based on
the clinical efficacy of non-selective PDE inhibitors such
as theophylline, the detection of PDE4 in many of the
cells involved in these diseases and the emergence of
positive results from a number of pharmacological studies
and clinical trials currently evaluating the efficacy of
selective PDE4 inhibitors in respiratory diseases (Barnette
1999,  Spina  2000). PDE4 represent the major class of PDE
expressed in human inflammatory cells (Wang et al. 1999)
and in particular in macrophages, eosinophils and
neutrophils, the main cell types present in the lungs of
asthmatic and COPD patients.

PDE4 are members of the phosphodiesterase (PDE)
superfamily of enzymes, which comprises at least 11
members hydrolyzing cyclic AMP (adenosine 3’,5’-cyclic
monophosphate) and/or cyclic GMP (guanosine 3’,5’-cy-
clic monophosphate) (Houslay et al. 1998, Conti & Jin
1999, Giembycz 2000, 2001). In the case of PDE4, there are
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four gene products and multiple splice variants resulting
in a variety of PDE4 isoforms. PDE4 selectively catalyse
the hydrolysis of cAMP and the anti-inflammatory effects
of selective PDE4 inhibitors were supposed to result of
the reduction of cAMP hydrolysis. However, some recent
studies have demonstrated that PDE4 could also act
through cAMP-independent mechanisms. Indeed, we have
observed that PDE4 inhibitors triggered a cAMP-in-
dependent inhibition of fMLP-induced O2.- release from
bronchoalveolar lavage cells of rats exposed to lipo-
polysaccharide (Jacob et al. 2004). We also showed that
the inhibitory effect of PDE4 inhibitors on O2.- produc-
tion is mediated by the activation of p44/42MAPK and
that PDE4 inhibit p44/42MAPK

 by a direct interaction (Jacob
et al. 2004). This study allowed us to identify a novel
mechanism involving MAPK in the pathway connecting
PDE4 to fMLP-induced O2.- generation in neutrophils.
Therapeutical potential of selective PDE4 inhibitors

During last decade, numerous studies have de-
monstrated the modulation of inflammatory cells activation
by selective PDE4 inhibitors. It is now established that an
elevation of cAMP is able to inhibit some of inflammatory
processes. The use of PDE4 inhibitors, preventing cAMP
hydrolysis, appears obvious to treat inflammatory
diseases like asthma and COPD.

Rolipram, a first generation selective PDE4 inhibitor,
has been shown to decrease influx of inflammatory cells
to the site of inflammation induced by various stimuli
(Lagente et al. 1994,1995, Teixeira et al. 1997). In vitro ex-
posure of rat eosinophils to rolipram decreases eosino-
phil migration evoked by either PAF or LTB4 (Alves et al.
1996). It has also been demonstrated that salbutamol it-
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self did not modify eosinophil migration evoked by either
PAF or eotaxin in vitro but clearly improved the inhibitory
effect of rolipram suggesting an involvement of the cAMP
pathway in the eosinophil chemotaxis (Silva et al. 2001).
In a guinea pig model of lipopolysaccharide (LPS)-induced
lung neutrophilia, rolipram was able to inhibit 63% of neu-
trophil infiltration (Toward & Broadley 2001), could com-
pletely abolish neutrophil influx induced by antigen chal-
lenge in Brown Norway rats (Howell et al. 1995) and could
decrease by 75% LPS-induced lung neutrophilia in mice
(Miotla et al. 1998). In a recent study, we compared the
effect of a selective PDE4 inhibitor, cilomilast and a gluco-
corticoid, dexamethasone on cigarette smoke and LPS in-
duce airway neutrophilia (Leclerc et al. 2004). As expected
both cilomilast and dexamethasone were able to dose-
dependently block LPS-induced neutrophilia. Cilomilast
was also able to block neutrophilia induced by cigarette
smoke with the same efficacy. However, dexamethasone
treatment at the same dose was unable to block neutro-
philia induced by cigarette smoke exposure (Leclerc et al.
2004). Furthermore, the selective PDE4 inhibitor, CI-1044
given orally (30 mg/kg/day), significantly inhibited the
development of emphysema by 89%, 24 weeks following
cigarette smoke exposure in mice (Pruniaux et al. 2003)
and support the use of  PDE4 in-hibitors as a new COPD
therapy.

One of the major anti-inflammatory effect of PDE4
inhibitors is their ability to down-regulate cytokine
production both in vivo and in vitro. In vivo, some studies
report the ability of PDE4 inhibitors to reduce TNF-α
release in the blood or in BAL fluids of various species
(Griswold et al. 1998, Corbel et al. 2002a). In vitro, several
selective PDE4 inhibitors, including rolipram and
cilomilast, have been previously shown to inhibit the
release of TNF-α by LPS-stimulated murine mononuclear
cells, human monocytes or whole blood from healthy
individuals (Souness et al. 1996, Gonçalves de Moraes et
al. 1998). Furthermore, we recently showed that rolipram
and cilomilast inhibit LPS-stimulated TNF-α production
in the whole blood from patients with COPD (Ouaged et
al. 2004). The novel PDE4 inhibitor CI-1044 which induced
a potent inhibition of PDE4 activity both in vitro and in
vivo (Burnouf et al. 2000), is 2 to 10 times more potent
than rolipram and cilomilast respectively, to inhibit LPS-
stimulated TNF-α release in the human whole blood from
patients with COPD.

Nevertheless, the ability of PDE4 inhibitors to prevent
or modulate the airway remodelling remains a relatively
unexplored area.  Matrix metalloproteinases (MMPs) play
an important role in the proteolytic degradation of the
extracellular matrix (ECM), both in physiological processes
and during pathological events (Corbel et al. 2002b). The
most accepted theory for the pathogenesis of  COPD,
which includes emphysema and/or chronic bronchitis, and
idiopathic pulmonary fibrosis (IPF), involves deteriorated
lung homeostasis. This abnormal remodelling results in a
net increase in deposited ECM and collagen content in
lungs, resulting from MMPs/TIMPs imbalance (Jeffery
2001). These lung disorders are also characterized by a
striking fibroblast/myofibroblast proliferation and activa-
tion, which increase the production of matrix-degrading

enzymes (Crouch 1990, Segura-Valdez et al. 2000). Fur-
thermore, local over-expression of cytokines and/or
growth factor stimulates resident lung fibroblasts to syn-
thesize increased amount of collagen and different MMPs
such as collagenase-1 (MMP-1), gelatinases A and B
(MMP-2 and MMP-9) (Sasaki et al. 2000, Zhu et al. 2001).

However, we reported that the selective PDE4 inhibitor,
piclamilast reduced antigen challenge induced-cell
recruitment in airways of sensitized mice, but also
diminished gelatinase B  MMP -9 (Belleguic et al. 2000).
We have also demonstrated that piclamilast (RP 73-401),
reduced  MMP-9 activity and TGF-β1 release during acute
lung injury in mice, suggesting that PDE4 inhibitors might
modulate tissue remodelling associated with lung injury
(Corbel et al. 2002a). Furthermore recent studies have
shown that two selective PDE4 inhibitors, cilomilast and
rolipram, inhibited fibroblast chemotaxis and fibroblast-
mediated collagen gel contraction. It has also been
demonstrated that cilomilast might inhibit the TNF-α-
induced release of both MMP-1 and MMP-9 from HFL-1
(Kohyama et al. 2002a,b). Fibroblasts cultured with PMA
or TNF-α released increased amounts of pro-MMP-1,
whereas TGF-β1 had no effect (Martin-Chouly et al. 2004).
Incubation with CI-1044 or cilomilast significantly
prevented the TNF-α  increase in pro-MMP-1. These
results suggest that PDE4 inhibitors are effective in
inhibiting the pro-MMP-2 and pro-MMP-1 secretion
induced by TNF-α  and might underline a potential
therapeutic benefit of selective PDE4 inhibitors in lung
diseases associated with abnormal tissue remodelling
(Martin-Chouly et al. 2004).
Clinical experience with selective PDE4 inhibitors

The most advanced PDE4 inhibitors in clinical
development i.e., cilomilast and roflumilast have demons-
trated encouraging efficacy to date. Cilomilast has been
shown to improve both pulmonary function and symptoms
of COPD in 424 patients with moderate-to-severe disease,
producing significant improvements in FEV1, FVC and
PEFR versus placebo over 6 weeks (Compton et al. 2001).
In addition, consistent improvements in patient quality of
life approaching that defined as clinically relevant were
observed compared with placebo (Giembycz  2001,  Com-
pton et al.  2001). In addition, cilomilast significantly re-
duces the risk of exacerbations and provides sustained
improvements in lung function over 6 months in patients
with mild-to moderate disease (Edelson 2001). Inter-
estingly, the improvements in lung function observed with
cilomilast are independent of smoking status (Zhu et al.
2002). More recently, the anti-inflammatory effects of
cilomilast observed in preclinical studies have been
confirmed in a small, randomized, placebo-controlled trial
of 59 patients with COPD (Gamble et al.  2003). After 12
weeks of cilomilast therapy, bronchial biopsies taken from
treated patients indicated that cilomilast significantly
reduces levels of inflammatory markers, i.e. CD8 T cells
and CD68 macrophages (Gamble et al. 2003). Roflumilast
has also shown encouraging efficacy in patients with
COPD, with significant improvements observed in FEV1
and PEFR versus baseline (Leitchl et al. 2002).

A major benefit of cilomilast and roflumilast is their
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superior safety and tolerability profile versus theophyl-
line and the first generation PDE4 inhibitors. Indeed, theo-
phylline is associated with serious cardiovascular and
central nervous system side effects, even at therapeutic
doses. These effects are generally attributed to non-
selective inhibition of PDEs, as well as concomitant
adenosine receptor antagonism and include tachycardia
and serious arrhythmias, focal and generalized seizures,
and coma (Barnes 2003). When the first generation PDE4
inhibitors were developed, it was hypothesized that these
compounds could present less side effects than
theophylline, due to their selectivity for PDE4. However,
these agents were associated with a number of adverse
events, including nausea, vomiting and gastric acid
secretion, which limit their clinical use (Barnette 1999). In
contrast, second generation PDE4 inhibitors have an
improved therapeutic ratio. Cilomilast has proven safe and
well tolerated at doses of up to 15 mg in both short- and
long-term dosing trials, with a moderate incidence of
adverse events which appears in more than 5% of patients
(Giembycz 2001, Compton et al. 2001). The most common
adverse experience was nausea, which arose most often
in the cilomilast 10 and 15 mg treatment groups. Nausea
arose most commonly within a few days of starting
treatment and was generally mild or moderate and self-
limiting. Vomiting was infrequent in all treatment groups.
The most common serious adverse event was exacerbation
of COPD, which was responsible for all three cases in the
placebo group. There was no pattern or trend for any
serious adverse reactions associated with cilomilast.
Strategies to avoid side-effects induced by oral PDE4
inhibitors

The therapeutic promise of PDE4 inhibitors has been
tempered by their significant side-effects, particularly
nausea and emesis. Thus the broad goal of drug devel-
opment has been to improve the side-effect profile of PDE4
inhibitors while maintaining or improving efficacy. One
strategy that has been pursued with some success is based
upon the observation that PDE4 enzymes exist in both
low- and high-affinity rolipram-binding conformations
(Torphy et al. 1992a, Jacobitz et al. 1996). Although
inhibition of the low-affinity rolipram-binding conformation
correlates with inhibition of cyclic AMP hydrolysis and
with inhibition of several inflammatory cell functions,
inhibition of high-affinity rolipram binding appears to
correlate with the production of certain side effects
(Barnette et al. 1996, Souness et al. 1997).  This has been
demonstrated with a selective PDE4 inhibitor derived from
9-benzyladenine (NCS 613), which elicited anti-inflam-
matory properties (Boichot et al. 2000). The fact that NCS
613 did not stimulate the gastric acid secretion suggest
that this compound structurally unrelated to rolipram, may
produce fewer gastrointestinal side effects (Boichot et al.
2000).

Compounds with relative selectivity for the low-
affinity form of the enzyme would therefore be expected
to display better therapeutic ratios than rolipram, which is
selective for the high affinity conformation  (Barnette et
al. 1996).

A second promising strategy is the development of
subtype selective PDE4 Inhibitors. Indeed, type 4 phos-
phodiesterases consist of 4 subtypes A, B, C and D, en-

coded by 4 genes (Conti & Jin 1999), which are al-
ternatively spliced in different variants 1, 2, 3 (2, 3, 4, 5, 6).
Two different structures of these variants can be dis-
tinguished, short forms (65-75 kDa) and long forms (80-
130 kDa). The difference between short and long forms
lies in the N-terminal region, at the level of UCR1 and
UCR2 (upstream conserved regions): short forms are trun-
cated at UCR2 and long forms have both UCR1 and UCR2
(Bolger et al. 1997). The different PDE4 subtypes are dif-
ferently expressed depending on the tissue. PDE4A is
expressed in all tissues except in neutrophils (Wang et al.
1999), PDE4B is widely expressed and is the pre-dominant
PDE4 subtype in monocytes and neutrophils (Wang et al.
1999), but lacks in cortex and epithelial cells (Jin et al.
1998), PDE4C is absent from circulating inflammatory cells,
cortex and hippocampus and has been detected in lung
and testis (Obernolte et al. 1997,  Manning et al. 1999,
Martin-Chouly et al. 2004) and PDE4D is particularly ac-
tive in lung, cortex, cerebellum and T cells (Erdogan &
Houslay 1997, Jin et al. 1998). The up-regulations of the
PDE4B subtype in response to pro-inflammatory agents
suggest that PDE4B could be particularly involved in in-
flammatory processes. However, by screening a large num-
ber of PDE4 inhibitors against the recombinant human
enzyme, it has been able to identify a few selective sub-
type inhibitors (Manning et al. 1999). The results obtained
using these kinds of compounds suggest that PDE4A and
or PDE4B may play the major role in regulating LPS-in-
duced TNF-α release and T-cell proliferation but do not
rule out PDE4D as an important mediator of other activi-
ties in mononuclear leukocytes and other immune and
inflammatory cells (Manning et al. 1999, Jin & Conti 2002).
Using an in vitro model of DMSO-treated HL60 cells, we
found a change of PDE4 subtype profile during differen-
tiation (Jacob et al. 2002). PDE4B was the predominant
isoenzyme, PDE4D was down-regulated and PDE4A was
no longer detectable. Additionally, the more NADPH oxi-
dase was activated by PMA, the less PDE4A was ex-
pressed, suggesting that NADPH oxidase activity could
be used as a surrogate marker of PDE4A down-regula-
tion. Rolipram and Ariflo (cilomilast), two selective PDE4
inhibitors, dose-dependently inhibited receptor-coupled
activation of superoxide. These results suggest that
PDE4B is the main subtype involved in regulating super-
oxide induced by immune complex activation. Further-
more, these cells, expressing almost exclusively PDE4B
subtype, could be useful to identify selective PDE4B in-
hibitors (Jacob et al. 2002).

More recently, using mice deficient in either the PDE4B
or PDE4D gene, Robichaud and colleagues (2002) pro-
vide evidence that emesis resulting from administration
of PDE4 inhibitors is due to the selective inhibition of
PDE4D. This is an unfortunate finding because the most
clinically advanced PDE4 inhibitors are selective for
PDE4D.
 Conclusion

Type 4 phosphodiesterases have the potency to
modulate a large range of inflammatory mediators release
through cAMP-dependent and cAMP-independent
mechanisms. Several times, PDE4B subtype has been
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shown to be particularly involved in these inflammatory
processes, indicating that this PDE4B subtype could be a
good target for new anti-inflammatory compounds with
less side effects than already known non-subtype selective
PDE4 inhibitors. These side effects, mainly nausea and
emesis, considerably limit the use of these drugs. PDE4
inhibitors are very promising compounds, which could
bring new alternatives for the treatment of chronic
diseases like asthma, chronic obstructive pulmonary
disease and atopic dermatitis.
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