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Self-diffusion by vacancy mechanism is studied in two metals of hexagonal close packed structure, namely 
Hafnium and Zirconium. Computer simulation techniques are used together with many-body potentials of the 
embedded atom type. Defect properties are calculated at 0 K by molecular static while molecular dynamic is 
used to explore a wide temperature range.
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1. Introduction

A detailed revision on bulk and interface boundary diffusion in 
group IV hexagonal close packed (hcp) metals (Ti, Zr and Hf) and al-
loys has been recently carried out by Herzig et al.1. Also, an overview 
on self– and impurity diffusion in hcp Ti and Zr, due to Pérez et al., 
is found in quotation2. It is well known that metals of the IV group 
exhibit phase transition from α (hcp) to β body centered cubic (bcc), 
being the temperature of the reaction 1156 K for Ti, 1138 K for Zr 
and 2016 K for Hf. The relatively low transition temperature for Ti 
and Zr makes difficult diffusion experiments in the α-phase, while 
diffusion in α-Hf can be studied in a larger temperature interval. Con-
siderable amount of experimental results collected in �������������  Herzig et al.1 
and ������������  Pérez et al.2 support the fact that small metallic atoms, such as Fe, 
Cr or Ni, act as fast-diffusing impurities and produce a pronounced 
enhancement effect on both self- and substitutional bulk solute dif-
fusion in these metals. Regarding self-diffusion behavior, the studies 
in α-Hf demonstrate generally a good linearity of the Arrhenius plot, 
and only at the lowest temperature a slight upward deviation can be 
supposed1. Also α-Ti, contrary to α-Zr, shows an Arrhenius behavior 
independently of the impurity content1-2. According to �������������  Herzig et al.1, 
self-diffusion in high purity materials is intrinsically ‘normal’ and is 
represented by linear Arrhenius plots which correlate well with self-
diffusivities in other hcp metals with no phase transition in the solid 
state. Precisely, α-Zr and α-Hf impurities free materials are the object 
of the present work, where computer simulation techniques are ap-
plied in order to analyze normal vacancy-mediated bulk diffusion. 

The scheme of the present paper is as follows. In Section II, the 
calculation procedure is briefly described and the potential used to 
represent the interatomic interactions in α-Hf is presented. In Section 
III, the effect of the hcp lattice anisotropy on self-diffusion is con-
sidered. In Section IV, the obtained results for the vacancy migration 
are reported and the vacancy/tracer diffusivity in the hcp structure is 
discussed. Finally, in Section V, the calculated results are compared 
with the measured ones. 

2. Calculation Procedure

Molecular static (MS) and molecular dynamic (MD) are used to 
calculate defect energies in crystallites where the atomic interactions 
are represented by many-body potentials of the embedded atom type 
(EAM)3-4.

MS simulations, based on the conjugate gradient method5, are 
carried out in crystallites of approximately N = 2000 atoms under 
constant volume condition. The quasi-static approximation6 is applied 
to calculate the barrier for the vacancy migration. Briefly, a nearest-
neighbor divacancy conveniently oriented is created and an extra 
lattice atom is located in different positions between the vacant sites. 
In order to prevent recombination, no displacement towards the near-
est vacancy is allowed. The (3N-1) coordinates that remain free are 
allowed to relax in order to minimize the energy under the interatomic 
potential, and in this way, to find the minimum energy path.

MD simulations are performed in order to study the temperature 
dependence of the tracer diffusion coefficient Dt. Temperatures range 
from 800 to 1500 K for α-Hf and from 700 to 1000 K for α-Zr. In 
the absence of free surfaces or an appropriate vacancy density, the 
crystals remain stable within the times of the simulations even at the 
high temperature limits. A crystallite composed of N = 383 particles 
and a vacant site is simulated under periodic boundary conditions. 
For each temperature the system is balanced, as well as a reference 
perfect lattice, to null pressure in a canonical ensemble. Then, the 
evolution of the system at constant energy and volume is allowed for 
the period of time that assures a reasonable jump statistics.

The interatomic potential used to represent α-Zr has been devel-
oped by Pasianot and Monti7 and previously employed in studies on 
the energetic of bulk vacancy and self-interstitials and the structure 
and energetic of grain boundaries8 and surfaces9. The potential for 
α-Hf has been developed according to the same procedure followed 
for α-Zr.

The EAM scheme3-4 assigns to each atomic site ‘ i ’ an energy 
E

i
 given by
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where V is a pair potential, R
ij
 is the distance between atoms ‘i’ and 

‘j’, F is the so-called embedding function and ρ
i
 is an ‘electronic-like’ 

density given by a superposition of atomic pair-like functions
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In order to determine V, F (ρ) and ϕ, references 7 and 10 are 
followed. F (r) is imposed to have null first derivative at the perfect 
lattice density r

0
, this makes V (R) an effective pair potential. The 

function j is chosen as a Thomas-Fermi like screening function, 
continuous up to the second derivative and smoothly matched to 
zero at the cut-off distance (see Equation 5 and Table 1 in Pasianot 
and Monti7). V (x) is a seven-piece cubic polynomial continuous up 
to the second derivative according to 
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where H (x) is the Heaviside step function, x
k
 stand for adequately 

chosen knot points and A
k
 are coefficients determined in the following 

way. The seven coefficients plus the embedding function and its sec-
ond derivative at the perfect lattice constitute nine unknowns exactly 
solved for through a system of equations involving the two lattice 
parameters a and c, the cohesive energy E

c
, the five elastic constants 

and an approximate value for the vacancy formation energy E
f
ν . The 

obtained coefficients for the α-Hf potential are reported in Table 1.
Notice that the potential for α-Hf reported in Pasianot and 

Savino10 has a longer range that the present one, for which the x
k
’s are 

the same that those for the α-Zr potential. Finally, F (ρ) in Equation 
1 is obtained as indicated in ������������������  Pasianot and Monti7.

3. Diffusivity in hcp Lattices

Diffusion by the vacancy mechanism in the hcp lattice takes place 
by two different first-neighbor jumps6,11. The tracer can either jumps 
to a vacant site located in the same basal plane, or to one located 
outside that plane. They are hereafter named b-jump and nb-jump, 
respectively. In terms of these jumps, the tracer diffusion components 
parallel and perpendicular to the c-axis are written as

( ) ( )D T c f C D T a f C a f C
4
3

2
3

2
1

II

t

AZ

nb

I

t

BX

b

AX

nb2

0

2

0

2

0
C C C= = +o o o	 (4)

( ) ( )D T c f C D T a f C a f C
4
3

2
3

2
1

II

t

AZ

nb

I

t

BX

b

AX

nb2

0

2

0

2

0
C C C= = +o o o

	

Above, Cν is the equilibrium vacancy concentration at temperature 
T given by

Cν = exp(– G
f
ν / K

B
T)	 (5)

where G
f
ν is the vacancy formation free energy and K

B
 is the Boltz-

mann constant.
Γ is the vacancy jump frequency for basal or non-basal jumps given 
by

Γ = n exp(– Gm
n / K

B
T)	 (6)

where Gm
n is the vacancy migration free energy, and n is the atomic 

attempt frequency.
Finally, f’s stand for the correlation factors. For self-diffusion 

in the hcp structure, these factors are shown to depend on the ratio  

r nb

b

C
C=  according to the following expressions12:

f
AZ 0

 = (4.208 + 2.944 r) / (6.208 + 2.944 r)	��� (7)

f
AZ 0

 = (15.478 r2 + 22.651 r + 8.902) /
(15.478 r2 + 30.859 r + 13.846)

f
BX 0

 = (9.534 r2 + 24.651 r + 12.846) /
(15.478 r2 + 30.859 r + 13.846)

 The purpose of this work is to determine the vacancy migration 
energies associated to both b and nb-jumps, indicated as E

m
b and Em

nb, 
respectively, and compare the values predicted by MS and MD simula-
tions. The quantity known as vacancy migration frequency

* ( / )exp S km Bo o= 	 (8)

where S
m
 is the vacancy migration entropy, can also be evaluated for 

each type of jump. 

4. Results

According to the quasi-static method applied in the MS simula-
tions, the results for the vacancy migration energy quoted in Table 2 
are obtained.

It is noted that, for both materials, basal jumps are slightly less 
energetic than non-basal jumps.

Regarding MD simulations, the atomic migration contribution to 
diffusion parallel to the c-axis is calculated as
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where t is the run length, < Z2 (t) > is the mean-square displacement 
projected along the c-axis for all the atoms and B is the asymptotic 
value of the same quantity for a perfect bulk, which is independently 
calculated and subtracted in order to retain only the diffusive part13. 
Similar expressions are valid for directions X and Y, that are perpen-
dicular to the c-axis. The associated migration energy is obtained from 
the slope of the D* (T) plot vs. 1/T. Particularly, the energy for the 
non-basal jump is obtained from the plot of D*

II, while from the plots 
for directions X or Y an effective energy that corresponds both to basal 
and non-basal jumps is determined. In addition, the self-diffusion coef-
ficients of Equation 4 are related to the corresponding D* (T) by
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/
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where 1 / N is the vacancy concentration in our model system. 
Figure 1 is the Arrhenius plot for D*

II
 (T) calculated in both materi-

als, the corresponding migration energies being Em
nb  = 0.57 ± 0.03 eV 

for α-Zr and Em
nb  = 0.79 ± 0.03 eV for α-Hf. 

Table 1. V (x) (in eV) potential parameters, xk in units of a.

k x
k

A
k

1 1 - 33.0011430

2 1.05 46.2517934

3 1.55 - 13.1186081

4 1.60 16.1087793

5 1.65 0.1722513

6 1.70 0.3503380

7 1.75 - 3.8273967

Table 2. Vacancy migration energy calculated by molecular static.

 Em
b  (eV) Em

nb  (eV)

α-Zr 0.577 0.597

α-Hf 0.83 0.85
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Another way to determine the defect migration energy is from 
the jump frequency Γ. By MD, the jumps can be identified by check-
ing, at each time step, the occupation number of elementary cells in 
a reference lattice. Every change in the occupation number implies 
that a jump has occurred. By recording the involved lattice sites and 
the occurrence time step, the jumps can be easily classified and the 
corresponding frequencies evaluated13,14. In doing that, the oscilla-
tions (they occur when an atom jumps and immediately returns to the 
original site) are filtered for the time interval τ ≤ 0.3 ps for α-Zr and 
τ ≤ 0.4 ps for α-Hf. They are approximately twice the corresponding 
Debye periods13. The oscillations would produce an increase of the 
jump frequency and no effect on the atomic diffusion. On the other 
hand, the return jumps that take place for a greater time interval than 
two Debye periods are included in Γ but discounted through the cor-
relation factors. Figures 2a and 2b show the Arrhenius plot for the 
frequency of basal (solid line and black circles) and non-basal (dotted 
line and white circles) jumps for α-Zr and α-Hf, respectively. The 
slope of the straight lines gives the vacancy migration energy, the 
obtained values are quoted in Table 3. 

Note that the obtained values for the non-basal jumps are in good 
agreement with those obtained from the mean square displacement pro-
jected along the c-axis and, as previously predicted by MS, basal jumps 
are also found to be slightly less energetic than non-basal ones.

Finally, the vacancy migration frequencies ν* defined in (8) can 
be obtained from the intercepts in Figures 1 and 2. Table 4 collects 
the results.

Values predicted by the mean square displacement are slightly 
higher than those obtained from the jump frequency, and non basal 
jumps have higher vacancy migration frequency than the basal ones. 
Taking n in (8) as the Debye value, it is seen from Table 4 that the 
vacancy migration entropy results in the range 0.9 to 1.6 K

B
, in 

reasonable agreement with the values deduced from experiments at 
least for fcc metals15. 

The results obtained in this work allow the evaluation of the 
diffusion activation energy Q = E

f
n + Em

n  for vacancy-mediated bulk 
mechanism. The vacancy formation energy E

f
n , which unrelaxed value 

is a parameter fitted by the potential, is predicted to be 1.74 eV for 
α-Zr and 2.11 eV for α-Hf.

As previously discussed in Pasianot and Monti7, the above E
f
n  

value for α-Zr could be lower than the experimental one. According 
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Figure 1. Atomic migration contribution to the diffusion coefficient D*
II 

obtained from Equation 9 for lattices with one vacancy: α-Zr (black circles) 
and α-Hf (white circles).

Table 3. Vacancy migration energy calculated from the jump frequency evalu-
ated by molecular dynamic.

Em
b (eV) Em

nb  (eV)

α-Zr 0.51 ± 0.01 0.53 ± 0.01

α-Hf 0.76 ± 0.01 0.79 ± 0.03

Table 4. Vacancy migration frequency obtained from the Arrhenius plots of both 
the mean square displacement (in parenthesis) and the jump frequency.

n*nb (1013 s-1) n*b (1013 s-1)

α-Zr (2.22) 1.92 ± 0.02 1.61 ± 0.02

α-Hf (2.66) 2.22 ± 0.02 1.35 ± 0.02
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Figure 2.  Temperature dependence of the jump frequencies.

to Hood et al.16, the positron annihilation spectroscopy technique 
(PAS) gives only a lower bound of about 1.5 eV, so a higher value 
than the one fitted by the potential could be expected. In this line, 
by applying the full-potential linear muffin-tin orbital method, an 
unrelaxed E

f
n  value of 2.07 eV 18 is predicted. On the other hand, the 

present results for Em
n, although slightly dependent on the simulation 
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method, are consistent with experimental findings based on PAS that 
estimate a value in the range 0.6-0.7 eV 17.

Finally, the diffusion activation energy here calculated is about 
2.30 eV 7. This result is lower than the ones obtained from experi-
ments. Effectively, 3.06 eV is reported in Herzig et al.1 and attributed 
to an intrinsically normal behavior, while in Pérez et al.2, and for 
temperatures below 900K, 3.50 eV is reported from a non-linear 
Arrhenius plot. Assuming a normal diffusion behavior, we consider 
that the discrepancy between experiments and calculations can be 
a consequence of the E

f
ν value fitted by the potential, as previously 

discussed in Pasianot and Monti7. 
In α-Hf, and following a common practice10,19, the interatomic 

potential has been fitted to an unrelaxed vacancy formation energy 
taken as a third of the cohesive energy. That value, 2.15 eV, is in 
reasonable agreement with the one obtained from ab initio calcula-
tions, 2.37 eV18, and with the experimental result, 2.45 ± 0.2 eV 20. 
No measured values for the vacancy migration energy are known to 
the authors, the ones calculated in this work being around 0.8 eV. 
Finally, the calculated diffusion activation energy is about 2.93 eV. 
This prediction seem to be in reasonable agreement with the experi-
mental result of 3.23 eV 1. 

5. Conclusions 

It has been shown a good agreement between results obtained by 
Molecular Static and Molecular Dynamic in relation to the vacancy 
migration parameters in α-Zr and α-Hf modeled by EAM type in-
teratomic potentials. 

For both materials and computer simulation techniques, the va-
cancy migration energies and entropies for basal jumps are slightly 
lower than those for the non-basal ones, in agreement with the early 
Zener’s predictions21 that larger migration energy implies also larger 
migration entropy.

For α-Hf, the interatomic potential presented in this work predicts 
a diffusion activation energy in reasonable agreement with the value 
obtained from experiments in Herzig et al.1. 
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