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Microstructural Characterization of As-cast Hf–B Alloys
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An accurate knowledge of several metal–boron phase diagrams is important to evaluation of 
higher order systems such as metal–silicon–boron ternaries. The refinement and reassessment of 
phase diagram data is a continuous work, thus the reevaluation of metal–boron systems provides the 
possibility to confirm previous data from an investigation using higher purity materials and better 
analytical techniques. This work presents results of rigorous microstructural characterization of as-cast 
hafnium–boron alloys which are significant to assess the liquid composition associated to most of the 
invariant reactions of this system. Alloys were prepared by arc melting high purity hafnium (minimum 
99.8%) and boron (minimum 99.5%) slices under argon atmosphere in water-cooled copper crucible 
with non consumable tungsten electrode and titanium getter. The phases were identified by scanning 
electron microscopy, using back-scattered electron image mode and X-ray diffraction. In general, a 
good agreement was found between our data and those from the currently accepted Hafnium–Boron 
phase diagram. The phases identified are αHf

SS
 and B-Rhom

SS
, the intermediate compounds HfB and 

HfB
2 
and the liquide L. The reactions are the eutectic L ⇔ αHf

SS
 + HfB and L ⇔ HfB

2
 + B-Rhom, 

the peritectic L + HfB
2
 ⇔ HfB and the congruent formation of HfB

2
.
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1. Introduction
Metal-silicon-boron (Me–Si–B) alloys have been 

intensively studied due to their potential for the development 
of high temperature structural materials1–5. Considering 
that these materials are highly demanded in service, 
multicomponent based alloys seems to be the only 
possibility to satisfy all the requirements for structural 
integrity6. In this sense, phase diagram information becomes 
extremely important. We have investigated several Me–Si–B 
systems from the point of view of phase stability and, as part 
of this work, the evaluation of binaries metal–silicon (Me–
Si) and metal–boron (Me–B) became necessary. We have 
verified inconsistencies in binary systems such as Nb–B7, 
V–B8 and Ta–B9, what demonstrates that the refinement and 
reassessment of phase diagram data is a continuous work. 
In this investigation, the microstructural characterization of 
as-cast (AC) hafnium–boron (Hf–B) alloys has been carried 
out. Revisiting the Hf–B system provides the opportunity 
to confirm previous data from an investigation using higher 
purity materials and better analytical techniques. Among 
other issues, it contributes to understand the solidification 
pathway of more complexes hafnium–silicon–boron (Hf–
Si–B) alloys, helping the goal of establishing the liquidus 
projection of this ternary system.

The currently accepted Hf–B phase diagram, from the 
work of Rudy and Windisch10, based on results of XRD 
analysis by means of Debye-Scherrer photographs and 
metallography of the samples, is shown in Figure 1. This 
diagram indicates the stability of the phases βHf body-
centered cubic (BCC), αHf hexagonal compact (HCP), 
rhomboedric boron (B-Rhom) and liquid (L), as well as the 
intermediate phases HfB and HfB

2
.

Rogl and Potter11 assessmed the Hf–B system based on 
the experimental results of Rudy and Windisch10 and Portnoi 
and Romashov12,13. Bitterman and Rogl14 repeated the same 
assessment into the study of the Hf–B–C ternary system. 
Table 1 shows the proposals of Rudy and Windisch10, Rogl 
and Potter11, Portnoi and Romashov12 and Bitterman and 
Rogl14 for the reactions in the Hf–B system.

2. Experimental Procedure
Samples with compositions in all extension of the Hf–B 

diagram, 19 in total, were prepared. Pieces of Hf (minimum 
99.8%) and B (minimum 99.5%) were arc-melted under 
argon atmosphere in water-cooled copper crucible with non-
consumable tungsten electrode and titanium getter to remove 
residual O

2
/H

2
O/N

2
. Each alloy was melted three times in 

an effort to produce homogeneous ingots of 3-4 g. It has 
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Table 1. Proposals of Rudy and Windisch10, Rogl and Potter11, Portnoi and Romashov12 Bitterman and Rogl14 for the reactions in the 
Hf–B system.

Reaction Composition (% at. B) Temperature (°C) Reference Remarks

L ⇔ βHf 0 2231 10 Experimental

0 2220 12

0 2231 11 Calculated

0 2233 14

βHf ⇔ αHf 0 1743 10 Experimental

0 1780 12

0 ~1780 11 Calculated

0 1743 14

βHf
SS

 + HfB ⇔ αHf
SS

<02 50 <02 1800 + 15 10 Experimental

<0.5 50 <0.50 2073 ± 15 11 Calculated

0.70 50 1.50 1791 14

βHf
SS

 + HfB
2
 ⇔ αHf

SS
02 66.67 02 1800 ± 15 12 Experimental

L ⇔ αHf
SS

 + HfB ~13 ~02 50 1880 ± 15 10 Experimental

14.40 2 50 1874,70 11 Calculated

15 1.10 50 1881 14

L ⇔ αHf
SS

 + HfB
2

~11 ~02 ~66.67 1820 12 Experimental

L + HfB
2
 ⇔ HfB ~24 66.67 50 2100 ± 20 10 Experimental

22.50 66.70 50 2098.70 11 Calculated

22 66.70 50 2104 14 Calculated

L ⇔ HfB
2

66.67 3380 ± 20 10 Experimental

66.67 3330 12

66.67 3380.90 11 Calculated

66.67 3377 14

Figure 1. Hf–B Phase Diagram proposed by Rudy and Windisch10.
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Reaction Composition (% at. B) Temperature (°C) Reference Remarks

L ⇔ HfB
2
 + βB-Rhom ~99 66.67 100 2065 ± 15 10 Experimental

~99 66.67 100 2065 12

97.30 66.70 ~98 2065 11 Calculated

99 66.70 100 2065 14

L ⇔ βB-Rhom 100 2092 10 Experimental

100 2170 12

100 2092 11 Calculated

100 2075 14

HfB + HfB
2 
⇔ Hf

3
B

4
50 66.70 42.85 435.60 11 Calculated

HfB
2 
+ βB-Rhom

 
⇔ HfB

12
66.70 ~98 92.31 2058 11

Table 1. Continued...

Table 2. Crystalographic data of the phases of the Hf–B system.

Phase Structure 
type

Space 
group 

Pearson 
symbol

Wyckhoff 
position

Simetry Occupation x y z Ref.

a (Å) b (Å) c (Å)

βHf W Im3m cI2 2a m3m Hf 0 0 0 16, 17

3.2260

αHf Mg P6
3
/mmc hP2 2c 6m2 Hf 0.33330 0.66670 0.25000 17, 18

3.1980 5.0610

HfB FeB Pnma oP8 4c .m. B 0.03600 0.25000 0.61000 19

4c .m. Hf 0.18000 0.25000 0.12500

6.5185 3.2160 4.9190

HfB
2

AlB
2

P6/mmm hP3 1a 6/mmm Hf 0 0 0 17, 20

2d 6m2 B 0.33330 0.66670 0.50000

3.1390 3.4730

B-Rhom B R-3mh hR423 36i 1 B 0.00203 0.17779 0.32317 21

36i 1 B 0.01424 0.37071 0.03783

36i 1 B 0.04431 0.26123 0.08013

36i 1 B 0.25163 0.01528 0.15315

18h .m B 0.38876 0.61124 0.11076

18h .m B 0.41969 0.58032 0.17999

18h .m B 0.44408 0.55592 0.05327

18h .m B 0.50326 0.49674 0.19449

18h .m B 0.53676 0.46323 0.06706

18h .m Cr 0.53881 0.46120 0.34031

18h .m B 0.56428 0.43571 0.13520

18h .m B 0.61025 0.38975 0.27838

18h .m B 0.72309 0.27692 0.16006

18h .m B 0.75685 0.24315 0.23192

6c 3m B 0 0 0.11483

6c 3m Cr 0 0 0.36549

3a –3m B 0 0 0

10.9637 23.8477

been calculated the composition interval for each alloy from 
the mass losses associated to the melting steps, supposing 
that all mass losses were either from Hf or B volatilization. 
The composition adopted for each alloy is expressed by the 
mean value of this interval. The alloys were characterized 
via scanning electron microscope in the back-scattered 
electron mode, and X–ray diffraction were performed in a 

Shimadzu XRD6000 diffractometer, at room temperature, 
with CuKα radiation and graphite monochromator. For the 
analysis via scanning electron microscope, the alloys were 
prepared following standard metallographic procedures: hot 
mounting in resin; grinding in the sequence #220-#4000 with 
SiC paper; and polishing with colloidal silica suspension 
(OP-S). The images were obtained in a LEO 1450VP 
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Table 3. Alloy compositions, identified phases in each alloy and 
type of invariant reaction observed.

Composition 
(at.%)

Phases present Observed reaction

Hf88B12 αHf
SS

 and HfB L ⇔ αHf
SS

 + HfB

Hf77B23 αHf
SS

 and HfB L ⇔ αHf
SS

 + HfB

Hf75B25 αHf
SS

, HfB and HfB
2

L + HfB
2
 ⇔ HfB

Hf50B50 αHf
SS

, HfB and HfB
2

L + HfB
2
 ⇔ HfB

Hf33.4B66.6 αHf
SS

, HfB and HfB
2

L ⇔ HfB
2

Hf7.7B92.3 HfB
2 
and B-Rhom L ⇔ HfB

2
 + B-Rhom

Hf01B99 HfB
2 
and B-Rhom L ⇔ HfB

2
 + B-Rhom

Figure 2. X–ray diffractograms of as-cast: a) Hf88B12; b) Hf77B23; 
c) Hf75B25; d) Hf50B50; e) Hf33,4B66,6; f) Hf7,7B92,3 and 
g) Hf01B99 alloys.

instrument. For the X-ray diffraction experiment the samples 
were mechanically ground and sieved to below 80 mesh. The 
measurement conditions were: 10° < 2θ  90°; 0.05° (2θ step) 
and 2 seconds integration time. The phases in each sample 
were identified based on the simulated diffractions patterns 
obtained from the program PowderCell for Windows® 
(version 2.3)15 using crystallographic data shown in Table 2.

3. Results and Discussion
Table 3 shows the phases present in each alloy as 

well as the type of invariant reaction observed in each 
microstructure.

The Figure 2 shows X–ray diffractograms and the 
Figure 3 the micrographs of the Hf88B12 (a), Hf77B23 (b), 
Hf75B25 (c), Hf50B50 (d), Hf33,4B66,6 (e), Hf7,7B92,3 
(f) and Hf01B99 (g) in the as-cast condition.

The alloy with composition 12 at.% B intended to verify 
the composition of the liquid in the eutectic transformation 
L ⇔ αHf

SS
 + HfB in Hf-rich region, as proposed by 

Rudy and Windisch10. The diffractogram of the Hf88B12 
alloy (Figure 2a) has indicated the presence of αHf solid 
solution (αHf

SS
) and HfB phases while the micrograph of 

this alloy (Figure 3a) shows essentially a typical eutectic 
microstructure composed of αHf

SS
 and HfB phases, which 

confirms the Rudy and Windisch’s proposal10 (Figure 1) for 
the composition of the liquid that participates of the reaction 
L ⇔ αHf

SS
 + HfB at approximately 13 at.% B, close to the 

composition calculated by Rogl and Potter11 and Bitterman 
and Rogl14, respectively, at 14.4 at.% B and 15 at.% B.

The alloys with compositions between 20 at.% B 
and 50 at.% B intended to verify the composition of the 
liquid in the peritetic transformation L + HfB

2
 ⇔ HfB, as 

proposed by Rudy and Windisch10. The diffractogram of 
the Hf77B23 alloy (Figure 2b) has indicated the presence 
of αHf

SS
 and HfB phases. It is noted a relative increase in 

the intensity of the HfB peaks compared to the previous 
alloy. The micrograph of this alloy (Figure 3b) indicates 
primary precipitation of HfB and the αHf

SS
 + HfB eutectic 

microstructure in the remaining region, in agreement with 
the previous result.

The diffractograms of the Hf75B25 (Figure 2c) and 
Hf50B50 (Figure 2d) alloys have indicated the presence of 
αHf

SS
, HfB and HfB

2 
phases. In the microstructure of the 

Hf75B25 alloy (Figure 3c), precipitation of HfB is observed 
with a typical αHf

SS
 + HfB eutectic microstructure in the 

remaining region. Due to the small amount of HfB
2 
phase 

and a low contrast with respect to HfB, it is not possible to 
point the HfB

2
 phase in the micrograph. On the other hand, 

the microstructure of the Hf50B50 alloy (Figure 3d) shows 
clearly the primary precipitation of HfB

2
, which is involved 

by HfB, an evidence of the peritectic formation of HfB, 
with a typical αHf

SS
 + HfB eutectic microstructure in the 

remaining region. The absence of HfB
2 
phase in the Hf77B23 

alloy (Figure 2b) and its presence in the Hf75B25 alloy 
(Figure 2c) indicates that the transition from HfB primary 
to HfB

2
 primary should occur between 23 at.% B and 

25 at.% B, which correspond to the liquid composition of 
the peritectic reaction L + HfB

2
 ⇔ HfB. This is in agreement 

with the proposal of Rudy and Windisch10 at approximately 
24 at.% B (Figure 1) and slightly in disagreement with the 
composition calculated by Rogl and Potter11 and Bitterman 
and Rogl14, respectively, 22.5 at.% B and 22 at.% B.

The alloy with composition 66.6 at.% B intended 
to verify the composition of the liquid in the congruent 
transformation L ⇔ HfB

2
, as proposed of Rudy and 

Windisch10. The diffractogram of the Hf33.4B66.6 alloy 
(Figure 2e) has indicated the presence of the HfB

2 
phase and 

minor amounts of αHf
SS

 and HfB. In agreement with these 
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Figure 3. Micrographs of as-cast: a) Hf88B12; b) Hf77B23; c) Hf75B25; d) Hf50B50; e) Hf33,4B66,6; f) Hf7,7B92,3 and g) Hf01B99 alloys.
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results, the microstructure of this alloy (Figure 3e) shows 
large amount of primary HfB

2
, the αHf

SS
 and HfB phases 

being present in the last regions to solidify. In addition, 
these results confirm the congruent formation of HfB

2
 as 

considered for Rudy and Windisch10 (Figure 1), Rogl and 
Potter11 and Bitterman and Rogl14.

The alloys with compositions between 70 at.% B and 
100 at.% B intended to verify the composition of the liquid 
in the eutectic transformation L  HfB

2
 + B-Rhom

SS
, as 

proposed of Rudy and Windisch10. The diffractograms of the 
Hf7.7B92.3 alloy (Figure 2f) and Hf01B99 alloy (Figure 2g) 
have indicated the presence of HfB

2
 and B-Rhom

SS
 phases. 

In the microstructure of the Hf7.7B92.3 alloy (Figure 3f), 
primary precipitation of HfB

2
 is observed with a typical 

HfB
2
 + B-Rhom

SS
 eutectic microstructure in the remaining 

region. On the other hand, the Hf01B99 alloy (Figure 3g) 
presents a large amount of primary B-Rhom

SS
 phase, 

and the presence of the HfB
2 

phase in the last parts to 
solidify, possibly formed by the HfB

2 
+ B-Rhom

SS
 eutectic. 

These results indicate that the liquid composition of the 
L  HfB

2
 + B-Rhom

SS
 eutectic reaction should be around 99 

at.% B, as proposed by Rudy and Windisch10, Figure 1, and 
Bitterman and Rogl14, but slightly in disagreement with the 
composition calculated by Rogl and Potter11 at 97.3 at.% B.

4. Conclusions
In this investigation we have carried out a detailed 

microstructural characterization of as-cast Hf–B alloys 
which allowed the evaluation of the invariant reactions 
involving the liquid phase in this system. The phases 
identified are αHf

SS
 and B-Rhom

SS
, the intermediate HfB 

and HfB
2 
compounds and the liquid L. The reactions are the 

eutectic L ⇔ αHf
SS

 + HfB and L ⇔ HfB
2
 + B-Rhom

SS
, the 

peritectic L + HfB
2
 ⇔ HfB and the congruent formation of 

HfB
2
. In general, a good agreement was found between our 

data and those of the currently accepted Hf–B phase diagram 
as proposed by Rudy and Windisch10.
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