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Aqueous Nanofluids Based on Copper MPA: Synthesis and Characterization
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The application and use of efficient cooling fluids have become increasingly important due to the 
increasing industrial and energy demand associated with the miniaturization of various electronic 
devices. The search for high-efficiency heat exchanger fluids in the early 1990s led to the development 
of a new class of refrigerants called nanofluids. The use of nanofluids is linked to obtaining stable 
colloidal dispersions which exhibit high thermal conductivity. For this purpose, the efficiency of a 
nanofluid will depend on the type of fluid used and the dispersed nanomaterial. In this work, a stable 
aqueous nanofluid based on mercaptopropionic acid-coated copper sulfide nanoparticles (Cu2S/MPA), 
synthesized by the chemical reduction method, was developed. The nanofluid presented colloidal 
stability in alkaline medium and an average increase of 36% in thermal conductivity for a volumetric 
fraction of 0.05%.
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1. Introduction

The increasing demand for heat flows and energy loads in 
many technological areas, such as electronics, transportation, 
and data center servers, requires more efficient heat dissipation 
to ensure operational use and extend the lifetime of refrigerated 
components.1-6 The use of conventional refrigeration fluids 
has been enhanced to develop more efficient heat exchanger 
fluids. In this context, in the early 1990s, a new material class 
was conceived. These new materials were more efficient than 
liquid refrigeration and became known as nanofluids.7-10 The 
interest in the development of more efficient refrigeration 
methods has caused an increase in the number of studies that 
have been reported in nanofluid tests. Indeed, in a review by 
Babu et al 2017, it is affirmed that in the USA in 2008 the 
use of nanofluids in the energy industry saved 10-30 trillion 
Btu of energy during the course of the year.8

Nanofluids are composites formed by the stable colloidal 
dispersion of nanomaterials (with a size less than 100 m) in 
a conventional cooling fluid.3-11 Conventional fluids used in 
liquid refrigeration, such as water, ethylene glycol and oils, 
have low thermal conductivity (thermal conductivity of water 
0.613 W/m·K at 300 K), while solid materials, on the other 
hand, have higher thermal conductivity values. Due to the high 
thermal conductivity of solids, the addition of nanomaterials 
(such as ceramics, metals, alloys, semiconductors and carbon 
derivatives) is a way of increasing the thermal conductivity 
of conventional fluids, resulting in a fluid composite with 
higher heat exchange efficiency.6,12,13

The addition of nanomaterials to conventional refrigeration 
fluids in small volumetric fractions produces systems with 
higher colloidal stability when compared to micrometric 
systems. In addition, nanomaterials can flow smoothly 
without causing clogging of refrigeration systems and provide 
improvements in the thermal properties of the fluid.9-12

The key issue to obtaining efficient nanofluids is to 
synthesize nanomaterials that have appreciable colloidal 
stability by modifying or functionalizing their surfaces. Aiming 
to produce nanofluids with higher colloidal stability in recent 
years, several materials have been studied as surface agents 
of nanoparticles, such as polymers, surfactants, aminosilanes 
and other multifunctional molecules.14-16

Nanofluids are produced by two different routes, designated 
as a one-step method and a two-step method.4-12 In the one-
step method, the nanomaterials were synthesized directly 
in a conventional cooling fluid, forming the nanofluid. The 
major advantage of this method is to avoid the formation 
of nanoparticle agglomerates, which favors the colloidal 
stability of the nanofluids. However, most of the synthetic 
routes used in the one-step method require materials that 
have low vapor pressure and are usually very expensive. 
Chemical routes have been proposed for a wide variety of 
materials, but in this method the impurities of the synthesis 
remain in the final product, which affects the quality of the 
nanofluid.17-22

In the two-step method, the nanomaterial is first synthesized, 
washed and then dispersed in the conventional fluid to form 
nanofluid. This is the most widely used method because it is 
cheaper and allows high-scale use. The main difficulty of this 
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method is related to the agglomeration of the nanomaterials. 
To overcome this problem, surface agents and mechanical 
agitation or ultrasound are used to break these aggregates 
and produce nanofluids with high colloidal stability.22,23

Recent works have addressed the use of nanoparticles 
based on metallic copper and copper oxides and sulfides. Wilk 
et al 2017 published an experimental paper that analyzed the 
thermal conductivity of uncoated 40 nm copper spherical 
nanoparticles in the 0.101 volumetric fraction and observed 
an increase in thermal conductivity of 11.5% at 23°C.24 
Xuan et al, in 2000, observed increases of 2.5 to 7.5% in the 
thermal conductivity of the nanofluids with nanoparticles 
of suspended copper in water in the volumetric fractions of 
1.24 to 1.78.25 Then in 2006 Liu et al published a result of 
copper nanofluid in uncoated water at the 1% volumetric 
fraction in which the conductivity of the nanofluid increased 
by 23.8%.26 In 2010 Wei et al reported a study using CuS/
Cu2S-based nanofluids at different concentrations and 
observed oscillations in the thermal conductivity of the 
nanoparticles produced.27 Pryazhnikov et al 2017 published 
a paper where they evaluated the thermal conductivity 
of different oxide-based nanofluids as a function of size 
and volumetric fraction. The conclusions of their study 
observed that many factors affect the thermal conductivity 
of nanofluids, not only concentration of the nanoparticles, 
but also the size, type of material and type of base fluid.28 
Therefore, the results described in the literature are highly 
dissimilar, since in many studies the purity and chemical 
and colloidal stability of the materials used are not clear and 
hinder the correlation of different publications.

In the present work, a copper sulfide-based nanofluid with 
high thermal conductivity was synthesized by the two-step 
method. Firstly, Cu2S nanoparticles were synthesized by the 
chemical reduction method in the presence of mercaptopropionic 
acid (MPA) to obtain the nanomaterial. After synthesizing 
the nanoparticles, they were washed and then dispersed in 
distilled water in order to obtain the nanofluid.

2. Experimental

2.1. Materials

All the chemical reagents and solvents used in the 
work presented analytical grade and were used without 
any purification. For the synthesis, Argon (Ar) was used 
as purge gas. Sodium borohydride (96% Fluka), copper 
nitrate trihydrate (98% Sigma Aldrich), triethylene glycol 
(99% Sigma Aldrich), mercaptopropionic acid (>99% Sigma 
Aldrich), ethanol (99.5% Synth) and acetone (99.5% Synth).

2.2. Methods: synthesis of Cu2S nanoparticles 
and obtaining nanofluid

The copper sulfide nanoparticles were synthesized by 
chemical reduction method.3,29-31 The procedure performed 

was the dissolution of 2 mmol of copper nitrate in 20 mL in 
triethylene glycol. The solution was placed in a three-necked 
flask and left under magnetic stirring under argon atmosphere 
for 30 minutes at a temperature of 55 °C. Then 140 µL of 
mercaptopropionic acid was added to the synthesis. After 
10 minutes of reaction, 6 mmol of sodium borohydride were 
injected to the synthesis under stirring for 10 minutes, and 
the temperature was adjusted to 140 °C for 120 minutes. 
The nanoparticles were washed twice with ethanol and once 
with acetone, the obtained material was dispersed in 30 ml 
of distilled water to form the aqueous Cu2S nanofluid, and 
this was left under mechanical stirring (3 rpm) for 7 days 
to stabilize.

2.3. Characterization

The X-ray powder diffraction (XRD) of the samples 
was recorded in the 2θ range of 20 to 50° with rate 0.02°/s 
using the Siemens D5005 system equipped with a Cu 
Kα(I=1.5418 Å) radiation source with a voltage of 40 KV 
and current of 40 mA.

The FTIR measurements were carried out in a PerkinElmer 
Frontier Dual Range FTIR spectrometer using the system 
resolution set at 4 cm-1 while performing 28 scans using 
potassium bromide KBr pellets (approximately 1:99, at a 
pressure of about 10 bar of the pellet) in the region of 4000 
to 400 cm-1.

DSC analysis was performed on a NETZSCH DSC 404 
F3 Pegasus. The temperature range varied between 25 °C and 
600 °C with a heating rate of 10 °C min-1 and N2 atmosphere 
(50 mL·min-1). The mass used was approximately 33.6 mg 
in closed and sealed aluminum crucibles and the empty 
capped crucible was taken as reference.

The Zeta potential (ζ) and dynamic light scattering (DLS) 
were determined in a Zetasizer Nano ZS, Malvern. The zeta 
potential was determined using 20 microliters of fluid to each 
milliliter of sodium chloride electrolyte, and the samples 
were titrated in the range of 7 to 11.5 measured with 0.5 
pH step, measured in triplicate at 25 °C. The zeta potentials ​​
were obtained from the triplicate of measurements, in which 
the average and the standard deviation were calculated from 
electrophoretic movement measurements performed using 
phase analysis light scattering. Measurement of dynamic 
light scattering (DLS) was performed in triplicate polystyrene 
cuvettes at a temperature of 25 ° C using a He-Ne laser (λ 
= 633 nm) with a dispersion angle of 173°.

Transmission Electron Microscopy (TEM) images were 
obtained in a JEOL 3010 TEM-HR operating at 300 kV. The 
samples were dispersed in isopropanol in an ultrasound bath 
and then dropped onto a copper grid coated with carbon film. 
The measurements of high-resolution images were analyzed 
by Fourier transform (FFT) using the software "Digital 
Micrograph (Gatan)". To calculate the mean diameter at 
least 150 particles were counted using "ImageJ" software.
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The thermal conductivity of the nanofluid was measured 
by the hot wire method, which is based on heating a probe 
that functions as a linear heat source within the fluid to 
be evaluated. This method is widely used to measure the 
conductivity of nanofluids because it minimizes natural 
convection due to its relative simplicity.32 The measurement 
was performed with a TP-08 model probe, the temperature 
was equilibrated using a cooling bath, and the temperature 
was measured using a mercury bulb thermometer. Five 
measurements were made for each temperature in the range 
of 10 to 60 °C. The probe was calibrated using glycerin at 
all temperatures analyzed, which is the fluid with known 
thermal conductivity. After the calibration of the probe, 
the data were obtained based on five measurements carried 
out in the nanofluid with a time interval of 600 seconds 
between the measures, to achieve thermal stabilization of 
the system between each measurement. Based on these five 
measurements, the average and the standard deviation of 
the thermal conductivity for the nanofluid were calculated 
at each of the temperatures analyzed. The uncertainty value 
provided by the manufacturer is ± 3% + 0.02 W/m · K, so 
that for the measurements performed in the range of 10 to 
40 ° C the observed standard deviation was less than 3%. 
Even for the temperatures of 50 and 60 ° C these were of 4.8 
and 9.0%, and they can provide overestimated values ​​of the 
thermal conductivity due to the contribution of convective 
effects of the nanofluid.

3. Results and Discussion

3.1. Nanoparticle Characterization

The X-ray diffractogram in Figure 1 shows the crystalline 
pattern of the synthesized nanoparticles. The diffractogram 
presents broadening peaks that refer to a low crystallinity of 
the material and are also associated with the nanometric size 
of the synthesized material. Based on this, two crystalline 
phases were identified; CuS JPCDS 6-464 and Cu2S JPCDS 
83-1462, of which the major part is Cu2S. As is known in the 
literature, the synthesis of this type of material is common to 
form multivalence compounds as a function of the synthetic 
conditions.33,34

Figure 2 presents the transmission micrograph of the 
sample, and these images allow us to confirm the nanometric 
size and shape of the synthesized material. The nanoparticles 
were nearly spherical, and they interact strongly with each 
other by the mercaptopropionic layer. In Figure 2 (b) crystalline 
planes with a lattice spacing of 0.1967 nm are observed, very 
close to the plane (6 3 0) of Cu2S JPCDS 8314-62.

Electron transmission micrograph particle counting 
was also performed to determine the average diameter of 
the copper sulfide nanoparticles, and the calculated mean 
diameter was 5.2 ± 1.6 nm.

The coating of nanoparticles was investigated by FTIR 
infrared spectroscopy. Figure 3 shows the infrared spectra 
of the precursor used in the MPA coating and the spectrum 
of the synthesized nanomaterial.

The bands in the 2665.1 and 2572.5 cm-1 regions of the 
S-H stretching were present in the MPA sample and absent 
in the Cu2S sample, confirming the binding of MPA to the 
metal by the thiol group. The bands in the region of 3430.7 
cm-1 were attributed to the OH stretching in the sample, while 
the band at 2935.6 cm-1 was attributed to the asymmetrical 
and symmetrical stretching of the C-H bonds. The bands in 
the region of 1571.2 cm-1 to the 1427.5 cm-1 regions were 
attributed to the asymmetrical and symmetrical stretching 
of COO- group.35-37 Calculating the difference, delta (Δ), 
between the asymmetrical and symmetrical stretching bands 
yields a value of 143.7 cm-1 which is known in the literature 
as the ionic delta of some carboxylates, consistent with the 
pH of the sample.38

Figure 1. X-ray diffraction pattern of Cu2S nanoparticles

Figure 2. Transmission micrograph of Cu2S sample: a) High-
resolution and b) low magnification c) histogram of the nanoparticle 
count d) Fourier transform
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In Figure 4 we observed the DSC curve of the sample 
in a nitrogen atmosphere to show possible phase changes.

pH was not analyzed due to the instability of the sample in 
acid medium.40,41 The experimental points were fitted by the 
Boltzmann equation and are shown in Figure 5.

Figure 3. Infrared spectra of the Cu2S and MPA sample.

Figure 4. DSC of the Cu2S sample.

The sample presents two endothermic thermal events 
that occur at 100 and 300°C respectively. The first one was 
correlated to the mass loss of adsorbed water and organic 
materials. The second was attributed to degradation of the 
bonded organic matter on the surface of the nanoparticles.39

3.2. Nanofluid Characterization

An aliquot of the sample was taken to determine the 
nanomaterial concentration in the nanofluid, and the analysis 
was performed by the technique of flame atomic absorption 
spectrophotometry. It was determined that the concentration 
of copper in the nanofluid was 2.28 g L-1. Based on the 
concentration, the volumetric fraction of the nanoparticles 
in the nanofluid was calculated, considering that the density 
of Cu2S equal to 5.6 g/cm³ obtained a volumetric fraction 
of approximately 0.05%.

To complement the characterization of the sample, the 
Zeta-potential measurement of the sample was performed 
as a function of pH (Figure 5). The titration of the sample 
was performed from basic pH 11.5 to neutral pH, but acid 

Figure 5. Zeta potential curves (ζ) as a function of pH for Cu2S 
sample in water and 0.001 mol L-1 NaCl electrolyte. In the graph 
the points correspond to the experimental data, and the line presents 
the fitting using the Boltzmann equation.

The sample was titrated as pH function in distilled 
water and NaCl electrolyte 0.001 mol L-1 to confirm the zeta 
potential curve profile of the synthesized nanomaterial. The 
analysis of the curves shows that the material produced has 
a considerable zeta potential value at basic pH greater than 
9 (ζ>|25 (mV)|). Also, the isoelectric point of the sample in 
the titrated range was not observed, which shows that the 
material can be used in this pH range. It is more stable at pH 
values between 9 and 10.5.42 The hydrodynamic diameter 
of the nanoparticles was investigated at pH 9, as can be 
seen in Figure 6.

Figure 6. The hydrodynamic diameter of Cu2S sample (DLS) by 
number.

Based on the data obtained by the DLS, the sample is 
polydisperse and shows a high polydispersity index (PDI 
= 0.284), indicating the presence of aggregates. These may 
be due to the strong interactions between the MPA and the 
nanoparticles forming organized structures, such as observed 
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in TEM. Although there are aggregates, their concentration 
in the sample is almost negligible, as can be observed 
from the DLS graph. A statistical number of the sample is 
formed by nanoparticles with a hydrodynamic diameter in 
the range of 30 nm.

The thermal conductivity of the nanofluid synthesized 
by the hot wire method43,44 was evaluated using a probe 
previously calibrated with glycerin. To quantify the increase 
in the thermal conductivity of the nanofluid, the measurement 
was made in distilled water (base fluid) and then in the 
nanofluid for each of the temperatures, correcting the values 
based on the calibration constants obtained. The increases 
in the thermal conductivity of nanofluid in relation to water 
are presented in Figure 7.

small volumetric fraction of copper sulfide nanoparticles 
(φ = 0.05%) and to generate an average increase of 36% in 
thermal conductivity. The nanoparticles were obtained by 
the chemical reduction method and were formed by mixing 
copper sulfide phases, the majority of which consist of Cu2S 
sulfide. FTIR analysis showed that the nanoparticles are coated 
with MPA, which allows its dispersion in the base fluid and 
guarantees its colloidal stability. Transmission micrographs 
allowed the average size of the nanoparticles to be calculated 
as 5.2 ± 1.6 nm. The DLS size was in the range of 30 nm, 
and the zeta-potential at pH 9.0 was -25 mV, ensuring a good 
colloidal stability for the nanofluid. The nanoparticles were 
dispersed in distilled water without the use of high shear 
rates dispersers. The increase in thermal conductivity of the 
nanofluid of approximately 36%, combined with its colloidal 
stability, suggests that the nanofluid produced could be a 
promising heat exchanger candidate, since even in smaller 
volumetric fractions, higher increases were obtained in 
thermal conductivity, when compared to other materials 
derived from copper.
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