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This paper describes a modeling procedure for tandem cold metal rolling, including the 
linearization step and system identification for control. The tandem cold rolling process is described 
by a mathematical model based on algebraic equations developed for control purposes and empirical 
relations. A state-space model is derived and detailed analyses in open loop are presented, concerning 
the sensitivity with regard to the variations in process parameters and results for the application of 
a new subspace identification method are compared with classical methodologies. Therefore, this 
work intents to be a contribution for developments in new control strategies for tandem cold rolling 
process that offer the potential to reduce the design efforts, the commissioning time and maintenance 
in rolling mills. The preliminary results obtained with this model have shown reasonable agreement 
with operational data presented at literature for industrial cold rolling process.
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system identification

1.	 Introduction
The tandem cold rolling of metal is a highly complex 

engineering process, with interactions of the multiple 
process variables, non-linearity and time delays, both 
extremely dependents of the operating conditions and the 
rolling mill speed. In general, the rolling mill automation 
technology deal with the control problem by division 
into sub problems, where both the adjust thickness and 
the interstand tension are independent1, decentralized 
strategy. This classical strategy is employed and the results 
produced are acceptable, but fundamentals studies2,3 show 
the possibility of important progresses in product quality 
by the use of advanced control strategies.

The process controller design is essentially based on an 
adequate process model for control. A model for control, 
differently from a model for prediction is not characterized 
by great math complexity. The aim is to achieve a 
model with a good similarity to the process variable in 
the operating point neighborhood, and that be easily 
implemented computationally. The dominant idea4-7 is the 
process linearization and the state space modeling practice, 
usually recommended for MIMO systems, multiple-input 
multiple‑output system.

As well as the modeling and simulation, the identification 
of the process is an essential step in development of new 
controllers. In industrial applications, in general, there 

are complex plants, petrochemical8, iron and steel, etc. In 
general models for these plants are sought for in the standard 
black box state space linear form, since the main use for 
these models is to enable the design of a predictive controller.

The subspace identification method (SIM) is a good 
candidate for performing identification of industrial plants, 
since this method is tailored for obtaining MIMO black 
box linear state space models. SIM’s can deal with open or 
closed loop operation, and in this last case a decorrelation 
preprocessing of the data is necessary, for avoiding a biased 
model.

The SIM do not require the use of any initial parameter 
estimate, and the model structure, namely the number of 
states, is also obtained from the data, by means of a singular 
value analysis. Further details about the SIM and the several 
alternative implementations, the reader is referred to the 
literature9.

Identification of general industrial processes was 
considered10, where the subspace identification method 
called N4SID was compared to the PEM (Prediction Error 
Method), with respect to computational complexity and 
prediction error value. From the outset, it must be stressed 
that the SIM and PEM are not competing methods, but 
complementary ones. For instance, initial order and system 
parameter estimates can be obtained by SIM, and then be 
given to the PEM as initial conditions.
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This work aims at showing the deduction of a model, 
tailored for control, for a tandem cold metal rolling of 
5-stands, the dynamic simulation of this process and results 
with application of SIMF8, a new subspace identification 
method implementation that will be employed as basis 
for the research and development in new controllers. The 
results can enable advances in search of better quality for 
rolled products.

The main contributions of this paper are: a)  a linear 
model for 5-tandem cold metal rolling mill in state-space 
representation is proposed, where the output vector contains 
not only the output thickness and interstand tension, but 
also the roll force; b)  this model offers the possibility of 
performing disturbance analysis in process variables, such 
as mill thickness input, strip input tension on stand 1 and 
strip output tension on stand 5; c)  interstand time delay 
is considered for a linear approximation, by using 4 first 
order lags in cascade and d) a new subspace identification 
method, called SIMF, was employed to obtain a state space 
model from input/output data and the result compared with 
the classical N4SID method, providing better performance, 
since the user has better control over the design parameters, 
which can hardly be automated when the system order is 
high, as in the present case.

With the above consideration in mind, the paper is 
organized as follows. In Section 2, the cold rolling process 
is mathematically described by classical equations and a 
state-space representation is derived. Then, in Section 3 
some aspects of subspace identification are introduced. 
The results are shown in Section 4, where simulations for 
3 operating points are performed and compared with the 
literature for validation. A 10th order black-box model is 
identified via SIMF. Finally, the concluding remarks are 
presented in Section 5.

2.	 Tandem Cold Rolling Process
In the flat sheet production, the desired thickness is 

an important specification to achieve. Therefore the steel 

strip is passed through several stands in a tandem cold 
mill. Figure 1 illustrates this operation. The multiple stands 
cause considerable interaction of thickness and interstand 
tension. These variables interaction and the necessity to 
reach the dimensional specifications of steel strip give 
rise to a complex control problem. In order to control 
this process, output thickness and interstand tension are 
defined as controlled outputs. A state-space representation 
is presented here and can be used in the development of 
new control strategies.

2.1.	 Process modeling

In this process, the passage of the strip through the 
individual pairs of work rolls results in successive thickness 
reductions by compressive force applied to material in a 
small region, the roll bite shown in Figure  2. In rolling 
processes special attention is provided to strip deformation 
on roll bite. The mathematic model of the process, in this 
work, is composed by a set of algebraic equations greatly 
applied in industrial areas1.

The strip deformation occurs by the movement of the 
work rolls, caused by position and speed actuators that were 
treated by a first order dynamic with time constant adjusted 
with industrial practice and literature suggestions11.

The equations that compose this mathematical model are 
introduced later and Table 1 contains a symbol description 
used in this modeling. Below, the subscripts in and out mean 
the parameters values in input or output stand, respectively, 
0 indicates parameter in operating point and i is associated 
to stand i.

The deformation modeling in roll bite is described by 
the specific roll force calculation. It is force by strip width 
in kN.mm–1 and the forward slip calculation, the fractional 
increase in the speed of the strip exiting the roll bite area, 
dimensionless parameter.

The specific roll force is approximated by the following 
expression, where weighting coefficients1 are employed.

Figure 1. Typical 5-stand tandem cold mill11.
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The hypothesis of the circular arc contact and the 
flattening work roll allows the use of Hitchcock’s formula12 
for a deformed work roll radius, R’.

The forward slip f is approximated by
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The interstand tension is obtained by application of 
the Hookes’s law to a length of strip between successive 
stands, namely

( ) ( )
• ++

+ + +
−∂σ

≡ σ = σ = σ
∂

, 1 ,, 1
, 1 , 1 0, , 1

0
, 0in i out ii i

i i i i i i
E V V

t L 	
(3)

A linear approximation for the mill stretch of the rolling 
stand is used for estimates of output thickness,
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By considering the time delay between adjacent mill 
stands, the input thickness is modeled by
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Taking into account the hypothesis of material continuity 
between adjacent stands and through the roll bite, (7) 
calculates all work roll peripheral speeds and strip input 
speeds on stands, once known the output strip speed of 
rolling mill.
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The dynamic comportment of roll gap and roll speed 
are approximated by first orders relations,
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The set of equations described above are linearized 
and normalized. The linear approximation was performed 
with expansion on Taylor series. For normalization of any 
variable its value in the operating point was used, except in 
the case of the roll gap S, normalized by output thickness in 
operating point, h

out,i0
. The following expression indicates a 

normalization procedure for a generic variable x, that is a 
fractional variation of a referred variable x in relation to its 
value in operating point x

0
.

Figure 2. Schematic diagram for the material deformation in roll bite11.

Table 1. Symbol description.

Symbol Description

P Specific roll force

k Compressive yield stress

σ Tension stress

R Work roll radius

δ Thickness reduction in stand

h Thickness

μ Coefficient of friction

H
a

Strip annealed thickness

E Young’s module of strip

f Forward slip

V Strip speed

L
0

Distance between adjacent 
mill stands

S Roll gap

F Total roll force

W Strip width

M
m

Mill modulus

τ
d

Delay time

V
R

Roll speed

U
S

Roll gap control

U
V

Speed control

τ
S

Roll gap time constant

τ
V

Speed time constant

q,r Auxiliar variables
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The calculation of coefficients in Equations 11 to 16 
and 18 to 21 are detailed in another work13.

The roll force depends on the input and output thickness, 
input and output tension stress, friction, and material plastic 
characteristics. In this work, possibilities of variation in 
friction and material plastic characteristics will not be 
considered. The normalized and linearized variation of the 
specific roll force is,

( )∆ = ∆ + − ∆ + ∆σ + ∆σ, , ,2 1 3 41i in i i in i out ii i i iP e h e S e e 	 (11)

The output thickness depends on the position of 
roll positioner actuator and specific roll force. In these 
conditions, the normalized and linearized variation in output 
thickness is obtained by following expression,
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Similarly to roll force, the forward slip will be 
considered dependent only of the input and output thickness 
and input and output tension stress.

For interstand tension between stand 1 and 2, the 
linearized and normalized equation is
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For interstand tension between stand 2 and 3, the 
linearized and normalized equation is
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For interstand tension between stand 3 and 4, the 
linearized and normalized equation is
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For interstand tension between stand 4 and 5, the 
linearized and normalized equation is

∆σ = ∆σ + ∆σ + ∆ + ∆
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The normalized form for Equations 8 and 9, with X = S, 
for roll gap and X = V for speed, is
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= −

τ τ
iXi i
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dt  

X
i
(0) = 0	 (17)

For simulating the delay time between two successive 
stands in linear form, 4 first order lags in cascade were used. 
The time constant used in each lag is equal to quarter part of 
nominal delay time between referred stands, i.e.,
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The input thickness in stand 2 is described by 
Equation 19, with auxiliary relations shown in Table 2.
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The input thickness in stand 3 is described by 
Equation 20, with auxiliary relations shown in Table 2.
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The Equations 21 and 22 are obtained of similar way13.
The input thickness in stand 4 is described by,
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The input thickness in stand 5 is described by,
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2.2.	 State-Space representation

The obtained linear model was represented in state‑space 
form. This representation followed the format given by 
Equation 23.

Table 2. Auxiliary relations for interstand delay time (first stands).

Auxiliary relations for stand delay 1-2 Auxiliary relations for stand delay 2-3
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The state vector x, the control input u, the disturbance 
vector d and the output vector y must be defined. Based on 
the dynamic linear equations showed in section 2.1, these 
vectors are
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The system then have 30 states, 10 control inputs, 
3  disturbance inputs and 14 outputs. Hence the system 
matrix, A, is 30 × 30, the input matrix, B, is 30 ×10, the 
output matrix, C, is 14 × 30, the input disturbance matrix, 
D

in
, is 30 × 3 and the output disturbance matrix, D

out
 is 14 × 3.

3.	 Subspace Identification
System identification concerns structure and parameters 

determination from experimental data. As far as the 
structure is concerned, there are two possibilities: a) grey 
box: balance relations can be used to obtain the system 
mathematical model, regardless of the data, and b) black 
box: both structure and parameters are obtained from the 
experimental data.

When linear black box models are required, the 
Prediction Error Method (PEM) approaches has difficulty 
with the MIMO case, in the sense that inadequate selection 
of the model structure and parameterization can lead to 
numerical problems, due to poor identifiability14. Besides, 
PEM is based on recursive optimization, hence can converge 
to a local minimum.

An efficient alternative for black box MIMO systems 
identification are the SIM, which are based on the 
realization theory. This approach tackles adequately the 
3 main difficulties arising in the identification of MIMO 
systems: a)  there is no parameterization problem, for the 
model structure is also obtained from the experimental 
data; b) the solution is non-recursive, since it is based on the 
solution of 1 or more SVD (Singular Value Decomposition) 
problems, and c) there is no need for an initial state estimate. 
For some examples of SIM implementations, such as 
CVA15 (Canonical Variate Analysis), N4SID16 (Numerical 
algorithm for Subspace State-Space System Identification) 
and MOESP17 (Multivariable Output-Error State-Space) 
see Qin9.

For performing system identification, consider the state 
space discrete time model with n states, m outputs and 
l inputs, written in the innovation form, i.e.,

+ = + +( 1) ( ) ( ) ( )t t t tx Ax Bu Ke 	 (28)

= + +( ) ( ) ( ) ( )t t t ty Cx Du e 	 (29)

which can also be rewritten in the predictor form as

+ = + +( 1) ( ) ( ) ( )t t t tx Ax Bu Ky 	 (30)

= + +( ) ( ) ( ) ( )t t t ty Cx Du e 	 (31)

For closed loop identification, representation (30)‑(31) is 
convenient, since A  is stable, even if the original dynamic 
matrix A in (28) is unstable. For further details, see Qin9 (2006).

The identification of (30)-(31) via a subspace method, 
in open or closed loop, can be carried out as in reference 
8 and amounts to the estimation of the dimension of the 
state space, namely, the value of n, and all the corresponding 
5 matrices {A,B,K,C,D} in (28)-(29). The matrix K in (30) 
corresponds to the steady state Kalman Filter gain, hence 
the identification method is robust to noise.

4.	 Results and Discussion
The operating point definition is necessary for the 

determination of a linearized model. For the validation of 
this model, three typical operating conditions of 5-stand 
tandem mill were adopted1,2,11. Comparisons of the results 
obtained by these authors with results of this work are 
presented. For each simulated case, a disturbance in input 
thickness of stand 1 was applied and their effects evaluated 
in the output thicknesses, roll forces and interstand tensions.

4.1.	 Operating conditions and characteristics of 
the rolling mill/strip

The operating conditions of rolling mill are defined 
by choice of the operating point. In Table 3a are defined 
the three cases considered and Table  3b also shows the 
characteristics of the mill and strip used in the simulation.

4.2.	 Validation of the Linear Model

The variations in output thicknesses, roll forces and 
interstand tensions were registered after the application of 
a step with amplitude 2 in input thickness of stand 1, which 
means to apply a variation of +2% in its parameter. The 
results were obtained for each operating point and Table 4 
compares the results obtained in this work (Model), with the 
of Bryant, Geddes and Pittner11. The values in Table 4 are 
the average of the results obtained in the 3 operating points.

In general the results were satisfactory, as shown in 
Table 4. For output thickness, in Bryant1, a reference in mill 
control, the results obtained by the linear model shows a 
good consistency relative to the initial stands. With relation 
to roll force, there is consistency in the stand 1 and the 
results of linear model are better in comparison with the 
others authors to stand 5. Some differences were detected 
in output tension stress, fact occurred in all works.

Several facts can be singled out as responsible for the 
differences observed: (a)  the utilization of models with 
algebraic nature and empirical calculation of roll force and 
forward slip1, where simplicity is wished. The Bryant’s 
model is widely used in control systems of industrial mills. 
There are models with better precision for this calculates18. 
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4.3.	 Open loop identification

Since the model has variables with different time and 
amplitude scales, and also large order, the data is bound to 
be badly conditioned. This can be seen in 2 ways: a) the 
singular value analysis indicated a model with lower order 
then the true one, and b) the prediction capability is sensitive 
to the SVD threshold employed for solving the ensuing LS 
problems.

In Figure 3 it is shown the performance for the output 
Y(14), roll force in stand 5, where SIMF is the subspace 

Some effects can be added to the model for improving the 
results, such as the material elasticity in roll bite and strain 
rate; (b) the system linearization: The linear model offers 
a good response when input variations leave the system 
varying around the ±5% of the operating point, which is 
case in this work; (c)  the friction modeling: In Pittner’s 
model8 the friction is dependent on draft-diameter rate in 
work roll, speed roll and frictional characteristics. In this 
work the friction is constant. Finally, (d)  the time delay 
interstand was considered constant and non-dependent of 
output speed of the stand.

Table 3. Operating points and characteristics of the rolling mill and strip.

Parameter Operating point n.o

 1 2 3

h
in1

 (mm) 3.56 2.36 1.78

h
out1

 (mm) 2.95 2.01 1.22

h
out2

 (mm) 2.44 1.52 0.79

h
out3

 (mm) 2.01 1.22 0.56

h
out4

 (mm) 1.68 0.97 0.38

h
out5

 (mm) 1.58 0.91 0.36

σ
in1

 (kN.mm–2) 0.0 0.0 0.0

σ
in2

 (kN.mm–2) 0.080 0.103 0.111

σ
in3

 (kN.mm–2) 0.078 0.126 0.132

σ
in4

 (kN.mm–2) 0.057 0.096 0.132

σ
in5

 (kN.mm–2) 0.055 0.060 0.085

σ
out5

 (kN.mm–2) 0.028 0.028 0.028

(a)

Parameter Value

R (mm) 292

M
m
 (kN.mm–1) 3921

L
0
 (mm) 4318

W (mm) 914

H
a
 / h

in1
1.095

E (kN.mm–2) 207

υ 0.3

μ 0.04

(b)

Table 4. +2% Step change in stand 1 input thickness.

Variable Source Fractional change in variable % (Steady-State)

Stand 1 Stand 2 Stand 3 Stand 4 Stand 5

Output thickness

Bryant 1.8 1.8 1.8 1.8 1.7

Geddes 2.32 2.13 1.90 2.14 2.21

Pittner/Simaan 2.40 2.38 2.39 2.31 2.42

Model 1.702 1.47 1.448 1.132 1.122

Roll force

Bryant 2.0 1.3 0.9 0.5 0.8

Geddes 3.23 2.27 1.30 1.23 1.68

Pittner/Simaan 2.17 1.67 1.35 1.09 1.57

Model 1.702 1.47 1.448 1.132 1.122

Output tension stress

Bryant –trace –trace +trace –trace -

Geddes +trace 1.7 4.6 –2.4 -

Pittner/Simaan 1.2 0.7 0.4 8.8 -

Model –5.15 –5.24 –4.59 –5.14 -
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error, as expected, since the output data was generated with 
low noise content.

5.	 Conclusions
The model deduced here is tailored for control, useful 

for studies and researches on new control strategies applied 
to tandem mill. The obtained results are coherent and 
robust to design parameters. The variations due to the input 
disturbances have small amplitude and the linearized model 
seemed adequate.

The state-space modeling offered the correct treatment 
for a multivariable system, favoring the access to internal 
variables, to state variables, and not only to output variables.

The SIMF showed superior performance when compared 
with N4SID-MatLab, even with data bad-conditioned, since 
the user has control on some key design parameters, which 
cannot be easily automated, mainly when large order MIMO 
systems are considered.

This work has then proposed procedures for modeling 
and identification of rolling mills, which can enable more 
accurate simulation and the development of better control 
strategies. Experimental results, for both identification and 
control, will be presented elsewhere.

identification method employed in this work, by considering 
a black-box model with 10 states.

From Appendix 1it is concluded that the SVD threshold 
selection is critical for performance.

This occurs to all the outputs, as can be seen from 
Appendix 1, where the Theil coefficients are shown.

The ideal value for UC is 1, which means zero prediction 
error, and from the first table in Appendix 1, mainly for 
output 9, the result is far from the ideal one, when the 
tolerance is too small. In the second table, for a larger 
threshold, the results are adequate.

The bad data conditioning makes the automation of 
subspace methods a complicated task, as can be seen in 
Figure 4, where the SIMF is compared with the method 
N4SID-Matlab: even with the selection of CVA method and 
focus on prediction, good result is not obtained.

The dynamic matrices obtained by SIMF are shown in 
Appendix 2.

We now consider the case with 30 states. The result for 
output Y(14) is shown in Figure 5.

Compare the predicted value with those in Figure 3. 
The results for the correct order show very small prediction 

Figure 4. Performance comparison: SIMF and N4SID-Matlab.

Figure 5. Output Y(14): measured and predicted values.Figure  3. Output Y(14), roll force in stand 5: measured and 
predicted, for tol=1e-9 (a) and 1e-6 (b), for 10 states.
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Appendix 2. Identified system matrices.
A=

0.7730 0.2783 0.0282 –0.1456 –0.0053 –0.1389 –0.1414 –0.0279 0.1422 –0.0735

0.2563 0.2699 –0.2303 0.0168 –0.1958 0.1923 –0.0407 –0.1531 –0.3017 0.1775

0.0019 –0.0360 0.7033 –0.1208 0.1569 –0.0102 0.1096 –0.0125 –0.0203 0.1281

–0.0066 –0.0561 –0.0319 0.7530 –0.0318 0.1492 –0.1881 –0.1354 0.0565 –0.0187

–0.0480 –0.1180 –0.0213 –0.0637 0.7215 0.0135 –0.1846 –0.0768 –0.0481 –0.0105

–0.0212 0.0998 0.1033 0.1081 –0.0123 0.6523 0.1224 0.1418 –0.0078 0.0034

0.0036 0.0103 0.0083 –0.0584 0.0020 0.1164 0.7455 –0.0674 0.0223 –0.0763

–0.0783 0.0955 0.0032 –0.2326 0.0831 0.3975 –0.3499 0.5402 0.1911 –0.1892

0.0130 –0.0016 0.0487 0.1821 –0.0900 –0.2038 0.1073 0.1413 0.8050 0.0726

–0.0035 0.0313 0.0251 –0.0522 0.0452 0.1593 –0.1323 –0.1153 0.1018 0.8515

B=

–3.8383 2.3731 –1.1001 7.2072 –3.7129 0.5050 2.2059 0.4906 0.5930 –1.2175

4.4073 –5.8420 4.1902 –7.0818 5.1284 –0.6186 –4.3770 3.1302 –3.6631 –0.0702

–5.4548 11.4234 –9.3562 2.7594 1.1733 0.8048 0.9276 2.5921 –3.5118 1.5182

–3.5584 –0.9888 7.5311 –3.4156 0.0809 2.7017 2.3230 3.2061 0.2691 1.0547

0.6295 –1.7874 3.0458 3.5189 –4.7136 3.3900 –2.7897 0.4308 0.1996 –2.2752

–1.2628 3.4944 –2.0955 5.1996 –5.3869 –0.0071 1.7499 –2.8746 –2.4579 –4.4674

2.3655 –4.6963 –0.0126 5.1324 –3.2961 –0.0172 –0.6176 3.5581 3.2820 –1.7671

1.4910 –4.5668 1.8657 –0.8076 0.4768 –1.3281 –0.1135 3.6240 1.0167 2.0741

–4.5495 1.5083 9.0428 –5.6531 –0.0415 –0.0645 –2.9071 –0.3951 –2.5686 –1.8867

–10.3212 10.2513 –0.1450 –4.2444 3.6312 –1.2112 0.0547 0.2708 3.0145 –0.5151

C=

–0.0008 –0.0024 0.0020 0.0050 0.0092 –0.0010 0.0009 –0.0036 –0.0002 –0.0032

–0.0037 –0.0017 –0.0014 0.0035 –0.0020 0.0036 –0.0027 –0.0005 –0.0050 –0.0002

–0.0034 –0.0003 0.0039 0.0017 –0.0002 –0.0007 0.0011 0.0023 0.0018 –0.0006

–0.0018 –0.0015 –0.0016 –0.0001 0.0016 –0.0001 0.0016 –0.0003 –0.0007 0.0031

–0.0008 –0.0013 0.0008 0.0006 –0.0004 –0.0019 –0.0021 0.0013 –0.0001 –0.0007

0.0143 0.0231 –0.0167 0.0960 –0.0758 0.0516 –0.0236 –0.0349 –0.0572 0.0235

0.0111 0.0013 0.0393 0.0906 –0.1098 –0.0136 0.1359 –0.0130 0.0966 –0.0595

0.0008 –0.0198 –0.0125 –0.0140 –0.0264 –0.0914 0.1537 –0.1337 –0.0597 0.0429

0.0136 –0.0308 –0.0113 0.0335 –0.0662 –0.2301 –0.0914 –0.0968 0.0098 –0.0248

0.0010 0.0038 –0.0032 –0.0130 –0.0146 –0.0000 –0.0009 0.0081 0.0025 0.0051

–0.0024 –0.0031 0.0039 –0.0199 0.0165 –0.0106 0.0013 0.0065 0.0119 0.0003

–0.0015 –0.0002 –0.0105 –0.0105 0.0139 0.0060 –0.0237 0.0019 –0.0137 0.0072

–0.0009 0.0038 0.0079 0.0024 –0.0001 0.0159 –0.0141 0.0169 0.0085 –0.0095

–0.0029 0.0054 –0.0028 –0.0037 0.0079 0.0247 0.0159 0.0012 0.0006 0.0095
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