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In the present study, the tensile strength of ferritic and austenitic functionally graded steels produced
by electroslag remelting has been modeled. To produce functionally graded steels, two slices of plain
carbon steel and austenitic stainless steels were spot welded and used as electroslag remelting electrode.
Functionally graded steel containing graded layers of ferrite and austenite may be fabricated via
diffusion of alloying elements during remelting stage. Vickers microhardness profile of the specimen
has been obtained experimentally and modeled with adaptive network-based fuzzy inference systems
(ANFIS). To build the model for graded ferritic and austenitic steels, training, testing and validation
using respectively 174 and 120 experimental data were conducted. According to the input parameters,
in the ANFIS model, the Vickers microhardness of each layer was predicted. A good fit equation
which correlates the Vickers microhardness of each layer to its corresponding chemical composition
was achieved by the optimized network for both ferritic and austenitic graded steels. Afterwards; the
Vickers microhardness of each layer in functionally graded steels was related to the yield stress of
the corresponding layer and by assuming Holloman relation for stress-strain curve of each layer, they
were acquired. Finally, by applying the rule of mixtures, tensile strength of functionally graded steels
configuration was found through a numerical method. The obtained results from the proposed model
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are in good agreement with those acquired from the experiments.
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1. Introduction

Functionally graded materials (FGM) possess properties
that vary gradually with location within the material'.
An FGM comprises a multi-phase material with volume
fractions of the constituents varying gradually in a pre-
determined (designed) profile, thus yielding a nonuniform
microstructure in the material with continuously graded
properties®. There are not enough studies on the plastic
behavior of FGMs. Among these few works, most of the
researchers have been modeled their work with the aid of
conventional flow theories which are the one of the best tools
that has ever proposed. For example, some of them have
tried to use J, flow theory*” but the empirical investigations
haven’t been linked to the obtained results because of the
difficulty of FGMs fabrication. Okolednik® although has
used J integral concept to model several materials with yield
stress gradient, but his studies was not confirmed by the
experimental results. One of the FGMs with elastic-plastic
behavior is functionally graded steel (FGS) which have
recently been produced from austenitic stainless steel and
carbon steel using electro slag refining (ESR) method”®. In
these composites, by selecting the appropriate arrangement
and thickness of the primary ferritic and austenitic steels as
electrodes, it is possible to obtain composites with several
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layers consist of ferrite, austenite, bainite and martensite.
The resultant composites using two slices of original ferrite
(o)) and original austenite (7,) is as below:

(H

((XOYO )el _R—> (aﬁy)com

where o, B and vy are ferrite, bainite and austenite phase
in the final composite respectively; el is electrode; com is
composite; and R is remelting.

Diffusion of chromium, nickel and carbon atoms
which taking place at the remelting stage in the liquid
phase controls the chemical distribution of chromium,
nickel and carbon atoms in the produced composites. The
transformation characteristics of FGSs have previously
been investigated, in that the diffusion coefficients of
chromium, nickel, and carbon atoms at temperatures just
above the melting point of iron were estimated. Also, the
thicknesses of the emerging bainite and martensite phases
were determined’.

Furthermore it has been shown that the tensile strength
of the FGS composites depends on the composition and
number of layers and those has been modeled based on the
tensile behavior of individual phases®; to do so the yield
stress of each element in the composites was related to the
microhardness value of that element.
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In the previous studies, Chary impact energy of
functionally graded steels in both crack divider®'? and crack
arrester'>!® configurations was experimentally examined
and modeled by different methods. In addition, the ductile
to brittle transition of the specimens was studied in a series
of works'*!8. Fracture toughness of these specimens in
terms of J . in both crack divider'**' and crack arrester*'**
configurations was also investigated. The tensile behavior
of oblique layer functionally graded steels was the other
property which studied in the previous studies*?*. Prediction
Vickers hardness® and tensile strength? of functionally
graded steels by the mechanism-based strain gradient
plasticity theory was the other works done in this area. In
a series of works, Charpy impact energy®* and fracture
toughness®3¢ of functionally graded steels was modeled
based on strain gradient plasticity theory.

Several works have addressed utilizing of computer-aided
prediction of engineering properties including those done by
the authors!*133-4, Adaptive network-based fuzzy inference
systems (ANFIS) is the famous hybrid neuro-fuzzy network
for modeling the complex systems*'. ANFIS incorporates
the human-like reasoning style of fuzzy systems through
the use of fuzzy sets and a linguistic model consisting of a
set of IF-THEN fuzzy rules. The main strength of ANFIS
models is that they are universal approximators*' with the
ability to solicit interpretable [F-THEN rules. Nowadays,
the artificial intelligence-based techniques like ANFIS** have
been successfully applied in the engineering applications.
However, there is a lack of investigations on metallurgical
aspects of materials.

In the present work, microhardness profile of
functionally graded ferritic and austenitic steels has been
modeled by ANFIS and then tensile strength of FGSs has
been modeled analytically by means the ANFIS results.
To build the model for graded ferritic and austenitic steels,
training, testing and validation using respectively 174 and
120 experimental data were conducted. The obtained results
have been compared by experimental ones to evaluate the
software power for predicting the microhardness profile
of functionally graded ferritic and austenitic steels. Two
equations were presented by the ANFIS results which
correlate the Vickers microhardness profile of both ferritic
and austenitic steels to their corresponding chemical
composition profile. Afterwards; by supposing suitable
relationship between Vickers microhardness and the yield
stress of the corresponding layer and by assuming Holloman
relation for stress-strain curve of each layer, they were
obtained. Finally, by applying the rule of mixtures, tensile
strength of FGSs was found. There was a good agreement
between the predicted results and those obtained from the
experiments.

2. Experimental Procedure

To make FGSs, a miniature ESR apparatus was used.
The consumed slag was a mixture of 20% CaO, 20% Al,O,
and 60% CaF,. The original ferritic and austenitic steels
(o, and ,) which used as electrodes were commercial type
AISI 1020 and AISI 316 steels respectively. The chemical
composition of the as-received ferritic and austenitic steels
is given in Table 1.
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Ferritic and austenitic steel slices were spot welded in
form of 2-piece electrode for remelting. The thickness of
each slice in the primary electrode was 150 mm.

Remelting processes were carried out under a constant
power supply of 16 KVA. After remelting, the composite
ingots were hot-pressed down to the thickness of 30 mm.
Forging and rolling operations were carried out at 980 °C
and then specimens were air-cooled.

To investigate the variation of hardness in composites,
Vickers microhardness test was employed using
100 gf weight.

The concentration of chromium, nickel and carbon in
functionally graded steels was determined by data-equipped
linear analyzer.

As the previous work® indicate, a bainite layer is
produced during remelting stage approximately in the
middle of the forged specimen. Therefore, two series of
tensile specimens were produced (one from the ferritic and
the other from the austenitic graded region) in which bainite
layer was not placed in the produced specimens as shown
in Figure 1. Tensile specimens from the FGS specimens
were made. Tensile tests were carried out under extension
rate of 0.1 mm/s. Specimens dimension was in accordance
to the ASTM ES8 standard and it is shown in Figure 2. The
as received rod was annealed at 980 °C and then air-cooled.

Tensile strength of as-received ferritic and austenitic
steels which were annealed at 980 °C and then air-cooled
was also measured.

For metallographic examinations, the plates were
sliced, ground, polished, and etched in a “Kalling” solution
and 1 pct Nital.

3. Experimental Results

Vickers microhardness profile of the ferritic and
austenitic regions of the functionally graded steel is illustrated
in Figure 1. The concentration profile of chromium, nickel
and carbon atoms has been illustrated in Figure 3. All of
the results show a good compatibility with the initial work

Table 1. Chemical composition of original ferritic and austenitic
steels.
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Figure 1. Vickers microhardness profile of the produced FGS.
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done by Aghazadeh and Shahosseinie’. The mechanism of
diffusion of chromium, nickel and carbon atoms has been
discussed in that work’. In addition, metallographic studies
from the cross section of the produced FGS show that the
new stabilized phase (bainite layer) in the FGS produced is
similar to those acquired in the previous works’?¢ as shown
in Figure 4; the thickness of bainite layer is 0.6 mm which
was verified by Vickers microhardness examination as it
is shown in Figure 1. Finally the stress-strain curves of
original ferrite and original austenite specimens have been
illustrated in Figure 5.

Tensile strength of FGSs has been illustrated in Table 2.
For comparison, tensile strength of the specimens’ edge
(Y V,» O, and o, layers) has been shown in Figure 5.
Electron-probe microanalysis studies illustrate that the
chemical composition of the o edge layer is pct C = 0.2,
pet Cr = trace, and pct Ni = trace, and that of the y edge
layer is pct C =0.07, pct Cr = 18.1, and pct Ni=9.1, which
is similar to those of original alpha and gamma steels; this
is in accordance to the previous results’s. Thus, the first
boundary condition may be determined using the predicted
Vickers hardness value and tensile strength of edge layers
(i.e. original austenite, 7, for y region and original ferrite,
o, for o region). To achieve the tensile strength of ¥ and
o, layers, tensile specimens of the same composition
and same mechanical properties to ¥, and 0, layers were
prepared similar to the previous studies’®. Initially, the
average chemical composition of y and o layers was
obtained (Table 3). Afterwards, samples with composition
in accordance to the average chemical composition of y and
o, layers were produced by means of a vacuum induction
furnace. Similar to the primary composites, the hot-pressing
process was carried out at 980 °C, followed by air cooling.
Through trial and error (i.e., conforming the chemical
composition and changing the cooling rate), the sample
with the nearest hardness to y and o layers was selected
to make tensile test specimens. Tensile test results of (Y,
v, @, and o, layers are shown in Figure 5.

Table 2 shows that tensile strength of each FGS
specimen is a value between the tensile strengths of its
boundary layers. As shown in the following section, the
tensile strength of FGS specimens obeys the rule of mixtures
analogous to the previous works® %

4. Architecture of ANFIS

The architecture of an ANFIS model with two input
variables is shown in Figure 6. Suppose that the rule base
of ANFIS contains two fuzzy IF-THEN rules of Takagi and
Sugeno’s type as follows:

Rule 1: IFxisA; andyis B;, THENf, = px + qiy + 1. (2)

Rule2: IF xisA, and y is B,, THEN f, = p,xX + q,y + 1,. (3)

The basic learning rule of ANFIS is the back-propagation
gradient descent, which calculates error signals recursively
from the output layer backward to the input nodes. This
learning rule is exactly the same as the back-propagation
learning rule used in the common feed-forward neural
networks*#. Recently, ANFIS adopted a rapid learning
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method named as hybrid-learning method which utilizes
the gradient descent and the least-squares method to find
a feasible set of antecedent and consequent parameters*#*.
Thus in this paper, the later method is used for constructing
the proposed models.

4.1. ANFIS structure and parameters

The structure of proposed ANFIS networks was
consisted of the chromium concentration at the first of
each layer (fCr), the chromium concentration at the end
of each layer (eCr), the nickel concentration at the first
of each layer (fNi), the nickel concentration at the end of
each layer (eNi), the carbon concentration at the first of
each layer (fC), the carbon concentration at the end of each
layer (eC) and the distance of the middle of each layer from
the specimen edge (D). To achieve a more accurate model,
the concentration of chromium, nickel and carbon atoms in
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Figure 2. Dimension of tensile composite specimen (mm).
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Figure 3. The chemical profile of chromium, nickel and carbon
atoms in FGS formed at remelting stage.
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Figure 4. Microstructure of the produced FGS.



386 Nazari

the first and the end sides of each layer were considered as
inputs of the network to increase the total inputs to seven. It
should be noted that the specimen edge was that side of the
specimens with similar chemical composition to the original
ferritic and austenitic steels respectively for graded ferritic
and graded austenitic steels. The value for output layer was
the average Vickers microhardness of each layer which was
obtained from Equation 4:

a1y, = [ V) g “

l Xit1 X
where: Hv(x) is the Vickers microhardness profile of
functionally graded steels, and x,, —x, represents the
thickness of each layer which was considered equal
to 100 um in this study.

The input space is decomposed by three fuzzy labels.
In this paper, for comparison purposes, two types of
membership functions (MFs) including the triangular
(ANFIS-I) and Gaussian (ANFIS-II) were utilized to
construct the suggested models. To build the models,
the thickness of the ferritic and austenitic regions was
divided into 100 pm thick layers. Therefore, 174 and
120 layers were achieved for ferritic and austenitic regions,
respectively. For graded ferritic region, from 174 collected

1200 - T
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0.0 0.1 0.2 0.3 04
True strain

Figure 5. True stress-strain curves of y,, o, v, and o, layers.
m n

0’

Table 2. Tensile strength (MPa) of the boundary layers and
functionally graded steels.

Specimen studied Experimental Predicted
Original austenite (Y,) 593 -
Original ferrite (o)) 461 -
v,, layer produced from the sample 1188 -
0., layer produced from the sample 857 -
Functionally graded austenitic steel 845 893

Functionally graded ferritic steel 693 738
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data, 122 data (70%) were randomly chosen for training
set, 26 (15%) data for testing set and the other 26 (15%)
data for validation set (ANFIS-I model). For graded
austenitic region, from 120 collected data, 84 data (70%)
were randomly chosen for training set, 18 (15%) data for
testing set and the other 18 (15%) data for validation set
(ANFIS-II model). Moreover, up to 1000 epochs were
specified for training process to assure the gaining of the
minimum error tolerance.

One of the most difficult tasks in ANFIS studies is to
find this optimal network architecture, which is based on the
determination of numbers of optimal results. The assignment
of initial weights and other related parameters may also
influence the performance of the ANFIS to a great extent.
However, there is no well defined rule or procedure to have
an optimal network architecture and parameter settings
where the trial and error method still remains valid. This
process is very time consuming*-8.

In this study the Matlab NN toolbox is used for NN
applications. To overcome optimization difficulty, a program
has been developed in Matlab which handles the trial and
error process automatically*-*®. The program tries various
functions and when the highest RMSE (Root Mean Squared
Error) of the testing set, as the training of the testing set is
achieved, it was reported*>*.

The IF-THEN rules in this study were achieved as
follows. Suppose that the rule base of ANFIS contains
two fuzzy IF-THEN rules of Takagi and Sugeno’s type:

Rule 1: IF fCrisA,, eCris B), fNiis C, eNiis D,
fCisE;, eCisF, and D is G;THEN f; = p,fCr + 5)
q;eCr + 1fNi+seNi+t,fC+u;eC+ Dvy +w;.

Rule 2: IF fCrisA,, eCris B,, fNiis C,, eNiis D,,
fCis E,, eCis Fand D is G,THEN f, = p,fCr + (6)
q,eCr + 1, fNi+s,eNi+t,fC+u,eC+Dv, +w,.

The corresponding equivalent ANFIS architecture is
shown in Figure 7. The functions of each layer are described
as follows*4249:50;

Layer 1 — Every node i in this layer is a square node
with a node function:

Ol =, (fCri=12 )
o' = My, (Cr)i=12 (8)
o' = He (/Ni)i=12 9)
o' = M, (eNDi=1.2 (10)
0}:;15 (fC)i=1,2 (11
o! =y (eO)i=12 (12)
o! =4 (D)i=12 (13)
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Table 3. Chemical composition (wt. (%)) of y and o, layers together with the single phase y, and o  specimens produced from samples.

Specimen studied Pct Cr Pct Ni Pct C Pct Si Pct Mn Pct S Pct P
v,, layer in the specimen 15.8 74 0.13 0.86 1.7 0.03 0.045
v,, layer produced from the sample 15.9 7.3 0.12 0.8 1.8 0.03 0.042
o, layer in the specimen 6.5 3.31 0.18 0.36 0.4 0.042 0.053
o, layer produced from the sample 6.42 3.17 0.20 0.24 0.35 0.038 0.05

A, B is of triangular membership function type

nXpl A

A2
HXy)

Figure 6. The reasoning scheme of ANFIS*.

where fCr, eCr, fNi, eNi, fC, eC and D are inputs to node i,
andA, B, C, D, E, F and G, are the linguistic label (fuzzy
sets: small, large, ..‘.) associated with this node function.

Layer 2 — Every node in this layer is a circle node
labeled IT which multiplies the incoming signals and sends
the product out. For instance,

Wi =, (JCryxpg (eCryxpe (N
Hp, (eNDXpp (fOYX phy, (€, pr (D), i =1,2

(14)

Each node output represents the firing weight of a rule.

Layer 3 — Every node in this layer is a circle node
labeled N. The ith node calculates the ratio of the ith rule’s
firing weight to the sum of all rule’s firing weights:

W, =W, | W, ).i=12 (15)
Layer 4 — Every node in this layer is a square node with
a node function:

O} =, (P, fCr+¢; eCr+r, fNi+
(16)
s;eNi+ 4, fC+u; eC+ v, D+w;)

where Wi is the output of layer 3, and {p, q, r, s, t, u, v,
w.} is the parameter set.

Layer 5 — The signal node in this layer is a circle node
labeled R that computes the overall output as the summation
of all incoming signals, i.e.,

Ofgzzi‘;iﬁ =2w fi 12w (17

4.2. ANFIS results and discussion

In this study, the error arose during the training and
testing in ANFIS-I and ANFIS-II models can be expressed

f] =pX+qy+r,
W, F=w i +wf)/(w +w,)
* =W [ +W,f,

» LEpX+ay+r,
\\%

2

as absolute fraction of variance (R?) which is calculated by
Equation 18"

2~(t.—o-)2J
R2:1* iVi i 18
( >0, (1%)

where t is the target value and o is the output value.

All of the results obtained from experimental studies and
predicted by using the training, testing and validation results
of ANFIS-I and ANFIS-II models are given in Figures 8a
and c; and Figures 9a and c, respectively. The linear least
square fit line, its equation and R? values were shown in
these figures for the training, testing and validation data.
Also, inputs values and experimental results with testing
and validation results obtained from ANFIS-I and ANFIS-
II models were given in Tables 4 and 5, respectively. As it
is visible in Figures 8 and 9, the values obtained from the
training, testing and validation sets in ANFIS-I and ANFIS-
II models are very close to the experimental results. The
results of testing and validation phases in Figures 8 and 9
show that the ANFIS-I and ANFIS-II models are capable
of generalizing between input and output variables with
reasonably good predictions.

The performance of the ANFIS-I and ANFIS-II models
is shown in Figures 8 and 9. The best value of R?is 99.75%
for training set in the ANFIS-I model. The minimum values
of R? are 98.34% for testing set in the ANFIS-II model. All
of R? values show that the proposed ANFIS-I and ANFIS-IT
models are suitable and can predict microhardness profile of
FGSs values very close to the experimental values.

From the optimized network, the best fit equation to
predict Vickers microhardness values by the specific inputs
was obtained. These relationships for ferritic and austenitic
regions are expressed by Equations 19 and 20, respectively:
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Figure 7. Schematic of ANFIS architecture utilized in this work.

HV(a) = 286.14 fCr — 283.58 eCr —

392.44 fNi + 416.27 eNi + 3537.59 fC — (19)
277444 C +3.19D R® = 98.85

HV(y) = —52.65fCr + 58.53 Cr —

271.66 fNi + 272.46 eNi — 1045.14 fC — 20)

686.79 eC+ 4501 D R% = 99.65

where: HV (o) and HV (y) are the Vickers microhardness of
each layer in ferritic and austenitic regions, respectively.
The R? values are between experimental results and those
obtained by Equations 19 and 20 for ferritic and austenitic
regions, respectively.

5. Modeling Tensile Strength

To model tensile strength of functionally graded steels
it has been assumed that the austenitic functionally graded
steel consists of my layers and ferritic functionally graded
steel consists of mo layers. According to the previous
work'?, it has been assumed that tensile strength of each layer
is related to its corresponding stress-strain curve.

Materials Research

fCr eCr fNi eNi fC eC D

1y

fCr eCr fNi eNi fC eC D

AR EERE R

According to the previous works®'? it is assumed that the
yield stress of each element is proportional to the Vickers
microhardness of that element. Therefore, the yield stress of
each layer in o and y regions should also obey the hardness
pattern. The yield stress of each layer may be related to the
Vickers microhardness of that layer as:

(@) o, ()=, (0)
VH(ov,,)—VH(0)
283.58 eCr - 392.44 {Ni +416.27 eNi + 3537.59 {C -
G, (0g).VH (0, ) -0, (0,,).VH(a)
VH(o.,,)—VH(0)

(286.14 fCr -
@n

2774.44 ¢C + 3.19D) +

()= 6,(1,,)~5,(Y,)
YT H(y,,) - VH(y)
271.66 fNi +272.46 eNi - 1045.14 fC - 686.79 ¢C +
6,(Y0)-VH(Y,,)—6,(,) VH(Yo)
VH(Y,,)~VH(Y,)

(-52.65fCr + 58.53 eCr -
(22)

45.01 D)+

where:
* 6(v), 0y, 0(c) and G (0, ) are the yield stress
of y,, v,, &, and o, layers, respectively; and HV(Y,),
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Figure 8. The correlation of the measured and predicted Vickers microhardness values in a) training; b) testing; and c) validation sets
for ANFIS-I model.
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Figure 9. The correlation of the measured and predicted Vickers microhardness values in a) training; b) testing; and c) validation sets
for ANFIS-IT model.
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HV(y ), HV(0,) and HV(0, ) are the yield stress of v,
Y,» &, and o, layers, respectively.
If it is assumed that the stress-strain curve of each layer
obeys the Holloman relation, the imposed stress to each layer
at yield strain of o, and y, layers may be given as;

o]

LN

where: 6" and 6” are the imposed stress to each layer in o and
yregions at yield strain of o and y, layer, respectively; €
and g, are the yield strain of o, and y, layers, respectively;
and n(o) and n(y) are the strain-hardening coefficient of
each element in ¢ and 7y regions, respectively. It is assumed
that the strain hardening coefficient of each element in the
studied

(23)

(24)

(1) lzy[z((%))} ,exp\[;‘; :‘:Y .ln|:’:, ((1::))]} 25)
o L i) o

where n(y,), n(Y,), n(0,) and n(co, ) are the work-hardening
exponent of vy, ¥, o, and and ¢, layers, respectively and
X X Ko and x,,, are the positions of Yo Yoo O and o,
layers, respectively.

€(o) and () in Equations 23 and 24 are defined as the
yield strain of each layer in o and 7y regions, respectively.

By considering the suitable boundary conditions:

6,(01,)~G,(0)

im0 (o) +
e (o)< L| HEm V() N
YT E| 6, (0) VH(a,,) 6, (01,) VH(0)
VH(o,,)—VH(0)
[
e, ()= " ’ 28)

TE| 0,(10)VH(Y,) ~ 6, (1,)-VH(Y,)
VH(Y,)~ VH(Y,)

where: E is the Young modulus.
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