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Numerical Description of Hot Flow Behaviors at Ti-6Al-2Zr-1Mo-1V Alloy By GA-SVR and 
Relative Applications
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Hot compression tests of as-cast Ti-6Al-2Zr-1Mo-1V alloy in a wide temperature range 
of 1073-1323 K and strain rate range of 0.01-10 s-1 were conducted by a servo-hydraulic and 
computer-controlled Gleeble-1500 machine. The hot flow behaviors of Ti-6Al-2Zr-1Mo-1V alloy 
show highly non-linear relationships with strain, strain rate and temperature. In order to accurately 
and effectively characterize the complex flow behaviors, support vector regression (SVR) which 
is a machine learning method was combined with Genetic Algorithm (GA) to characterize the 
flow behaviors, namely, the GA-SVR. The study abilities, generation abilities, and modeling 
efficiencies of the improved Arrhenius-type constitutive model, ANN, and GA-SVR for flow 
behaviors of as-cast Ti-6Al-2Zr-1Mo-1V alloy were detailedly compared. Comparison results 
show that the study ability of the GA-SVR is as strong as the ANN. The generation abilities and 
modeling efficiencies of these models were shown as follows in ascending order: the improved 
Arrhenius-type constitutive model < ANN < GA-SVR. Based on the established GA-SVR, the 
continuously three-dimensional relationships among flow stress, temperature, strain, and strain 
rate were constructed, which improve the simulation accuracy and related research fields where 
stress-strain data play important roles.
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1. Introduction

Ti-6Al-2Zr-1Mo-1V alloy, a typical near-α titanium 
alloy, has the advantages of high temperature strength, 
excellent creep resistance, and good weldability etc., so 
it was widely utilized for key structural parts in aerospace 
industry1. The existing literatures indicate that there are 
close relationships among flow stress, strain, strain rate 
and temperature. It is well known that stress-strain data 
play important roles in many fields, for examples, reverse 
analysis from stress-strain data to speculate WH and DRV2, 
improving processing maps3, and characterizing dynamic 
recrystallization evolution4, etc. An accurate model of flow 
behaviors is critical to improve material characterization 
and numerical simulation precision etc.5. It is important to 
establish a model to accurately construct and further predict 
the highly non-linear flow behaviors. At present, there exist 
four typical materials constitutive models in modeling hot 
flow behaviors of metals, namely, empirical/ semiempirical 
model, analytical model, phenomenological model, and 
intelligence algorithm6-9.

The physical-based analytical model needs explicit 
and thorough investigation of microscopic deformation 

mechanisms such as the mobile dislocation density, grain 
coarsening, DRV, and DRX etc.10. The physical-based 
analytical model should deeply understand many microscopic 
deformation mechanisms and further establish mathematic 
model for them, otherwise, the physical-based analytical 
model cannot accurately characterize the highly non-linear 
flow behaviors11,12. Besides, the analytical models require a 
large amount of precise experiment data to mathematically 
model complicated microscopic deformation mechanisms13,14. 
Thereby, the analytical models have not been extensively 
used in characterizing intricate hot flow behaviors.

The phenomenological models do not need to deeply 
consider complicated microscopic deformation mechanisms, 
and they only need to calculate requisite material constants and 
construct multivariate nonlinear regression models according 
to limited experimental data. Recently, the Arrhenius-type 
equation and their revised forms of phenomenological 
models were utilized to model the hot flow behaviors 
of many materials, such as Ti-6Al-4V15,Ti6016, and pure 
titanium17, etc. Lin et al.18,19 and Quan et al.20 improved the 
initial Arrhenius-type equations by incorporating strain 
and some material parameters (such as structure factor A 
and activation energy of deformation Q) to obtain more 
accurate Arrhenius-type equation. Other phenomenological 
constitutive models involve the typical Johnson-Cook (JC) 
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model and Khan-Huang-Liang (KHL) model etc., however, 
they exhibit large accuracy deviations at different strain rates 
and temperatures21-24. The phenomenological constitutive 
models cannot accurately track the highly non-linear hot flow 
behaviors at different strain rates and temperatures, and lack 
physical models of microscopic deformation mechanisms. 
And the phenomenological models and empirical models 
are mathematically fitted based on limited experimental 
data, showing lower prediction accuracies under unknown 
deformation conditions23,25.

Lately, the artificial neural network (ANN) of intelligence 
algorithm which imitates biological neural systems was 
applied in modelling the flow behaviors26..Zhu et al. and 
Peng et al. respectively constructed ANN models for the flow 
behaviors of as-cast TC21 titanium alloy27 and as-cast Ti60 
titanium alloy16 during hot deformation, and the correlation 
coefficients (R) in their work are about 0.992. The ANN can 
achieve a high-accuracy level, however, it needs to try a 
lot of network topologies and training parameters to obtain 
a higher accuracy, which will consume much time and 
energy. In addition, ANN is instable. For a certain dataset, 
the same network topology and training parameters of an 
ANN will obtain fluctuant accuracies in different attempts, 
which reduce modelling efficiency. Worse still, ANN is easy 
to fall into local extreme value and cannot obtain globally 
optimal solution.

Support vector regression (SVR), as a machine learning 
method based on statistical learning theory and structural 
risk minimization principle, is mainly utilized in regression 
analysis area. SVR has stronger generalization ability and 
complete theoretical basis. Compared with ANN, SVR can 
avoid falling into local extreme value and obtain globally 
optimal solution. A SVR with same training parameters will 
maintain accuracy at a stable level in different attempts. The 
computational process of SVR is robust, which guarantees 
robustness of the prediction model and improves modelling 
efficiency. SVR does not need to try a lot of network 
topologies and parameters to achieve a high accuracy level. 
In this study, SVR was utilized to characterize the hot flow 
behaviors of Ti-6Al-2Zr-1Mo-1V alloy on account of its 
excellent advantages.The complexity, learning ability, and 
generalization ability of SVR depend on the three parameters 
(C, γ , and ζ ), especially the mutual influence among the 
three parameters. SVR needs to adjust the three parameters 
(penalty factor C, the kernel parameter γ , and insensitive 
loss function ζ ) to obtain an accurate and efficient prediction 
model. In parameters selection of SVR, optimizing each 
parameter is unreasonable and time-consuming. The effect 
of the combination of the three parameters (C, γ , and ζ ) 
on the complexity, learning ability, and generalization of 
SVR should be synthetically considered. It is inefficient to 
manually adjust the three parameters one by one to establish 
an accurate SVR in characterizing the hot flow behaviors for 
Ti-6Al-2Zr-1Mo-1V alloy. Therefore, it is very important 

to find a stable and efficient method to realize the optimal 
selection of the three parameters in SVR. A SVR with the 
suitable parameters (C, γ , and ζ ) will accurately learn the 
stress-strain curves and appropriately ignore some singular 
points of stress-strain data to accord with the overall trend 
of the stress-strain curves.

Lou et al. established a SVR combined with particle 
swarm optimization (PSO) to predict flow stress of AZ80 
magnesium alloy where PSO was used to select the parameters 
C, γ , and ζ , and the result shows that the model is more 
accurate than ANN and constitutive equation, besides, the 
sample dependence of the SVR is lower28. Based on SVR, 
Raghuram Karthik Desu et al. established a prediction model 
of flow stress for Austenitic Stainless Steel 304, and they 
found that SVR is more accurate, reliable and efficient than 
the mathematical regression models such as Johnson-Cook 
(JC) model, modified-Arrhenius model, modified Zerrili-
Armstrong (ZA) model, and intelligence algorithm ANN 
model29. The best R-value of Raghuram Karthik Desu et al. 
is 0.9989 at a high accuracy level, however, they just tried 
a few parameters combinations of the three parameters 
(C, γ , and ζ ), and there is still room for improvement in 
accuracy and efficiency respects29. (The evaluation index 
correlation coefficient (R) was utilized to estimate the degree 
of correlation between the experimental flow stresses and 
predicted flow stresses.)

Genetic Algorithm (GA), as a bionic algorithm in solving 
complex global optimization problem, was enlightened 
by the Darwin’s natural selection theory and the genetic 
variation theory. The GA has widely used in self-optimizing 
parameters in various fields on account of the advantages of 
strong robustness, high efficiency, and parallel processing. In 
order to utilize the advantages of GA, a SVR model of the hot 
flow behaviors of Ti-6Al-2Zr-1Mo-1V alloy combined with 
GA was established where GA was used to efficiently search 
the optimal parameters combination of the three parameters 
(C, γ , and ζ ), namely, the GA-SVR. The GA-SVR only 
needs representative training samples from the research, 
and then self-adaptively and dynamically adjust the three 
parameters (C, γ , and ζ ) to obtain the most accurate SVR. 
In this work, the comparisons of study abilities, generation 
abilities and modelling efficiencies among the improved 
Arrhenius-type constitutive model, ANN, and GA-SVR 
were investigated. A standard statistical parameter, average 
absolute relative error (AARE), was applied to estimate the 
prediction performance of these models. Comparisons of the 
results show that the ANN and GA-SVR can sufficiently and 
accurately learn the hot flow behaviors. In the comparisons 
of generation abilities, the GA-SVR has larger R-value and 
lower AARE-value, which indicate that the GA-SVR can 
accurately predict the highly non-linear flow behaviors. 
The generation abilities of these three models were shown 
as follows in ascending order: the improved Arrhenius-type 
constitutive model < ANN < GA-SVR. The GA-SVR self-
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adaptively and dynamically adjusts the three parameters 
(C, γ , and ζ ) to obtain the most accurate SVR, which 
greatly improves the computational efficiency than ANN. 
The modeling efficiencies of these models were shown as 
follows in ascending order: the improved Arrhenius-type 
constitutive model < ANN < GA-SVR.

An accurate and continuous database of stress data will 
improve the related research fields where stress-strain data 
play important roles. In the past, Sun et al. and Zhu et al. just 
predicted unknown stress data at a certain strain and strain 
rate27,30-33. In this work, a continuously three-dimensional 
(3D) prediction map of stress data was constructed to 
represent stress data at any temperature, strain and strain 
rate. The continuous full-scale database of stress data can 
improve the related research fields where stress-strain data 
play important roles.

2. Acquisition of experimental stress-strain 
data

The chemical compositions (wt. %) of the adopted 
Ti-6Al-2Zr-1Mo-1V alloy are as follows: Al-6.30, Zr-1.9, 
V-1.68, Mo-1.32, Fe-0.04, C-0.01, Ni-0.01, Ti (balance). 
The following experimental procedures were according 
to ASTM Standard: E209-00. The homogenized metal 
bar of Ti-6Al-2Zr-1Mo-1V alloy was machined by wire-
electrode cutting to several specimens with a height of 12 
mm and diameter of 10 mm. Figure 1 shows the optical 
microstructure of the as-received Ti-6Al-2Zr-1Mo-1V alloy 
with single α-phase, little β-phase and negligible impurities. 
These specimens were compressed on a servo-hydraulic and 
computer-controlled Gleeble-1500 machine. The graphite 
lubricants were used to coat the contact surfaces of the 
anvils and test samples to reduce the friction and prevent 
bonding. The test samples were heated at a rate of 5 K/s and 
held at a certain temperature for 3 min to assure a uniform 
temperature and reduce material anisotropism. The 24 test 
samples were compressed with a height reduction 60% (true 
strain 0.9163) at the strain rates of 0.01, 0.1, 1, and 10 s-1, 
and the temperatures of 1073 K, 1123 K, 1173 K, 1223 K, 
1273 K and 1323 K, and then these compressed test samples 
were rapidly quenched into water to retain the microstructures 
acquired at high temperatures. During these compressions, 
a personal computer which is equipped with an automatic 
data acquisition system was utilized to continuously record 
the nominal stress and nominal strain, and then the data 
were converted into true strain and true stress based on the 
following formulae: ( )T N ln 1ε ε= −  and ( )T N N1σ σ ε= − , 
where Nε  is the nominal strain; Tε  is the true strain; Tσ  is 
the true stress; and Nσ  is the nominal stress.

Figure 2 shows the experimental true compressive 
stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy at different 
strain rates and temperatures. It can be summarized that 
the flow stress level increases with the increase of strain 

Figure 1: Optical photographs of the as-received Ti-6Al-2Zr-
1Mo-1V alloy.

rate for a certain temperature, and the flow stress level 
decreases signally with the increase of temperature for 
a certain strain rate. The true stress evolution with strain 
can be roughly classified into three stages. At the first 
deformation stage, the stress rapidly increases to a critical 
value with the increase of strain where work hardening 
(WH) dominates this deformation stage, in the meantime, 
the stored energy in grain boundaries increases rapidly to 
the activation energy of dynamic recrystallization (DRX). 
The recrystallization nucleation will occur when a critical 
activation energy is achieved. At the second stage, DRX 
and dynamic recovery (DRV) occur and increase, and the 
increasing rate of flow stress decelerates until a maximum 
stress where the thermal softening on account of DRX and 
DRV are balanced with WH34,35. The flow stress evolution 
exhibits two types at the third stage: the flow stress 
approximately keeps at a stable level which indicates a new 
dynamic balance between hardening due to the dislocation 
accumulation and softening due to dominant DRV and 
slight DRX (1173-1323 K & 0.01-0.1 s-1, and 1223-1323 
K & 1-10 s-1)34,35; the flow stress continuously decreases 
with distinct softening due to dominant DRX and slight 
DRV(1073-1123 K & 0.01-0.1 s-1, and 1073-1173 K & 
1-10 s-1)34,35. The existing literatures indicate that there 
are close relationships among flow stress, strain, strain 
rate and temperature. It is well known that stress-strain 
data play important roles in many fields, for examples, 
reverse analysis from stress-strain data to speculate work 
hardening (WH) and dynamic recovery (DRV)2, improving 
processing maps3, characterizing dynamic recrystallization 
evolution4, etc. Therefore, it is important to establish a 
model to accurately and efficiently characterize the highly 
non-linear flow behaviors.
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Figure 2: True stress-strain curves for Ti-6Al-2Zr-1Mo-1V alloy under different strain rates and temperatures.

3. Development of support vector regression 
(SVR) for the flow behaviors of as-cast Ti-
6Al-2Zr-1Mo-1V

In this investigation, support vector regression (SVR) 
was used to establish the flow behaviors model of Ti-6Al-
2Zr-1Mo-1V alloy on account of the excellent regression 
analysis ability, robustness, and high efficiency of SVR.

3.1. The basic principles of SVR

Support vector machine (SVM) is a machine learning 
method based on statistical learning theory and structural 
risk minimization principle. With the help of kernel function 
in SVM, the linearly inseparable low-dimensional data 
are mapped into linearly separable multidimensional 
data which can be used for classification and regression 
analysis. Thereby, SVM is mainly utilized in classification 
and regression analysis area, which is classified into 
support vector classification (SVC) and support vector 
regression (SVR).

The main advantages of SVR are as follows. Firstly, 
with the help of kernel function, SVR can avoid the curse of 
dimensionality. Secondly, in SVR, the linearly inseparable 
low-dimensional data are mapped into linearly separable 
high-dimensional data, and then SVR constructs the linear 
discriminant function in high dimension space to realize the 
nonlinear discrimination in original space. Thirdly, compared 
with artificial neural network (ANN), the globally optimal 
solution can be obtained by using SVR. The computational 
process of SVR is robust and will avoid falling into local 
extreme value. SVR has strong generalization ability and 

complete theoretical basis, and does not need to try a lot 
of network topologies to obtain a highly accurate model.

For a nonlinear problem, the linearly inseparable 
low-dimensional data are mapped into linearly separable 
multidimensional data by kernel function, and this mapping 
can be briefly expressed as Eq. (1):
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where x  is input variable; ( )xΦ  is mapping function; 
1e , 2e , ... , ne  are constants. For example, a two-dimensional 

data are mapped in a six dimensional space by a second-order 
polynomial, as expressed by Eq. (2).
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In SVR, the mapping is realized by kernel function 
( , ) ( ) ( )i j i jk x x x x= Φ ⋅Φ . The original data can be mapped 

in infinite dimensional feature space by the radial basis 
function (RBF), so the limited data in this feature space 
can be linearly separated. And a SVR equipped with the 
RBF can achieve a higher regression precision. Therefore, 
the RBF expressed as Eq. (3) was used in this investigation. 
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where γ  and 2τ  are variable parameters of the RBF. 
An appropriate parameter 2τ  will avoid under-fitting and 
over-fitting of data in SVR.

The ( )y f x=  in SVR can be expressed as Eq. (4):
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exist severe over-fitting in the following cases: (a) penalty 
factor C-value is set as a certain value and 2 0τ → ; (b) 2τ  
is set as a certain value and C →∞ 36. And there exist severe 
under-fitting in the following cases: (a) C is set as a certain 
value and 2τ →∞ ; (b) C is set as a smaller value and 2 0τ →

; (c) 2τ  is set as a certain value and 0C → 36.
(3) The insensitive loss function ζ .
In SVR, the ζ -value influences the number of support 

vector and further impacts the regression precision of the 
model. 

It can be summarized that the complexity, learning ability, 
and generalization ability of SVR depend on the three parameters 
C, γ , and ζ , especially the mutual influence among the three 
parameters. In parameters selection of SVR, optimizing each 
parameter is unreasonable and time-consuming. The effect 
of the combination of the three parameters (C, γ , and ζ
) on the complexity, learning ability, and generalization of 
SVR should be synthetically considered. It is inefficient to 
manually adjust the three parameters one by one to establish 
an accurate SVR in characterizing the hot flow behaviors for 
Ti-6Al-2Zr-1Mo-1V alloy. Therefore, it is very important 
to find a precise, stable and efficient method to realize the 
optimal selection of the three parameters in SVR. A SVR with 
suitable parameters C, γ , and ζ  will accurately learn the 
stress-strain curves and appropriately ignore some singular 
points of stress-strain data to accord with the overall trend 
of the stress-strain curves.

3.3. The stress prediction model based on SVR 
and Genetic Algorithm (GA)

In this section, Genetic Algorithm (GA) was combined 
with SVR to establish the flow stress prediction model of 
the hot flow behaviors of Ti-6Al-2Zr-1Mo-1V alloy where 
GA was used to efficiently search the optimal parameters 
combination of the three parameters (C, γ , and ζ ), and 
the model was called as GA-SVR in this work.

3.3.1 The basic principles of GA

Genetic Algorithm is a bionic algorithm in solving complex 
global optimization problem, which was enlightened by the 
Darwin’s natural selection theory and the genetic variation 
theory37. GA, as a global optimization algorithm, has widely 
used in various fields on account of the advantages of strong 
robustness, high efficiency, and parallel processing. GA 
seeks the optimal solution in solution space by imitating the 
natural selection process and natural genetic mechanism.

In GA, a population is composed of a certain number 
of individuals which are encoded by gene encoding. After 
generation of initial population, optimal approximate solutions 
are evolved in every generation. The individuals are selected 
by using fitness function in each generation. According to the 
fitness value of each individual, the individual which has a 
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where iξ  and *
iξ  are slack variables which can improve 

regression precision; ω  is a multidimensional column vector; 
C is the penalty factor; ζ  is an insensitive loss parameter 
which greatly impacts regression precision of SVR. In this 
work, the input variables x  of SVR contain strain (ε), strain 
rate (ε ̇) and temperature (T), and the target output ( )f x  is 
flow stress (σ) of Ti-6Al-2Zr-1Mo-1V alloy.

The regression function of this optimal hyperplane in 
SVR can be expressed as Eq. (7):

, ( )f k b 7*
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i

l
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where iα  is Lagrange multiplier; b is a bias term; 
( , )ik x x  is a kernel function.

3.2. The influence of parameters selection on the 
performance of SVR

In SVR, the learning performance and prediction 
performance can be improved by proper parameters settings, 
and such parameters are penalty factor C (expressed by Eq. 
(5)), the kernel parameter γ  (expressed by Eq. (3)), and 
insensitive loss function ζ  (expressed by Eq. (6)).

(1) Penalty factor C
The complexity and robustness of SVR are influenced by 

the penalty factor C-value. A larger C-value in SVR indicates 
that all of data samples are important and each sample in 
optimal hyperplane should be correctly classified, which 
will cause the model to be complex and over-fitting. While 
a smaller C-value in SVR indicates that some singular points 
can be ignored. However, if the penalty factor C-value is too 
small, the SVR will show the phenomenon of under-fitting.

(2) The parameter γ  of basis kernel function (RBF).
The RBF expressed as Eq. (3) was used in this 

investigation. The parameter 2τ  determines data distribution 
in multidimensional feature space and even impacts the 
generalization ability and learning ability of SVR. There 
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higher fitness value is inherited to the next generation with 
greater probability. And the individuals cross and mutate to 
generate new population which represents new solution. The 
subsequent generated populations will adapt to environment 
better than the populations in previous generations. The best 
individual of last population after decoding is outputted as 
an approximate optimal solution.

3.3.2. The establishment of stress prediction 
model GA-SVR

In order to utilize the advantages of GA, it was combined 
with SVR to establish the flow stress prediction model of 
the hot flow behaviors of Ti-6Al-2Zr-1Mo-1V alloy where 
GA was used to efficiently search the optimal parameters 
combination of the three parameters (C, γ , and ζ ), namely, 
the GA-SVR.

In this work, the 24 stress-strain curves were separated into 
two datasets, namely, the training dataset and independent test 
dataset, as shown in Table 1. The 864 input-output pairs were 
selected from the stress-strain curves to train and test the GA-
SVR. The 36 stress points of the testing stress-strain curves at the 
strain range of 0.1-0.9 with a distance of 0.1 were not utilized for 
training but for testing the generation ability of the GA-SVR. The 
820 stress points of the training stress-strain curves at the strain 
range of 0.1-0.9 with a distance of 0.02 were utilized to train 
the GA-SVR. And the 8 stress points of the testing stress-strain 
curves at strain of 0.12 and 0.88 were used to train the GA-SVR.

The cross validation method, an effective method in 
evaluating the accuracy of data mining and machine learning, 
was utilized in this investigation to evaluate the accuracy of 
the established GA-SVR. In cross validation method, the 
original data are divided into N data sets. A separate sample 
is retained as a validation value and the other (N-1) samples 
are used to train the GA-SVR. Each sample of N data sets 
is alternately set as validation data, and the performance 
of the GA-SVR is evaluated by the average number of 
the calculated evaluation index in N validation process. In 
this work, the number N was set as 5. An evaluation index 
mean square error (MSE) between training stress data and 
validation stress data was introduced as Eq. (8).

where ( )if x  are the predicted stress data; 
iy  are the 

experimental stress data. And N is the number of stress-strain 
samples of validation stress dataset.

Besides, other evaluation index correlation coefficient 
(R) expressed as Eq. (9) was utilized to estimate degree 
of correlation between the experimental flow stresses and 
predicted flow stresses38. A larger R-value demonstrates a 
well correlation between the two variables, and vice versa.

Table 1: The partition of training dataset and test dataset of stress-strain curves.

Temperature/K
Strain rate/s-1

0.01 0.1 1 10

1073 Training Training Training Training

1123 Training Training Testing Training

1173 Testing Training Training Training

1223 Training Training Training Training

1273 Training Testing Training Testing 

1323 Training Training Training Training
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where E is the sample of experimental stress-strain 
data; P is the sample of predicted stress-strain data; N is 
the number of samples of testing dataset.

The specific flowchart of the GA-SVR was illustrated 
in Figure 3.

Step 1. Initialize the population of the GA-SVR. The 
parameters of the C, γ , and ζ  were encoded to the 
chromosomes. In this investigation, the binary encoding 
was adopted to express individuals, because the processes 
of encoding and decoding operation, crossover operation, 
and mutation operation in binary encoding are efficient. And 
the binary encoding is easily analyzed by schema theorem. 
Here, the population number was set as 20.

Step 2. The fitness values of the individuals were 
calculated by fitness function expressed by Eq. (8) in GA.

Step 3. The population was updated by the operators of 
selection, crossover, and mutation. According to the fitness 
value of each individual, the individual which has a smaller 
MSE-value was inherited to the next generation with greater 
probability. Crossover probability PC-value is generally set 
in the range of 0.6 to 0.9. A larger PC-value will quickly 
bring new chromosomes to the population, however, it will 
increase the risk of premature convergence and the loss of 
excellent gene structure. While a smaller PC-value will delay 
genetic evolution process. Here, the PC-value was set as 0.7. 
When the searching space of GA adjoins the optimal solution 
by using the crossover operator, the local random search 
ability of the mutation operator can be used to accelerate the 
convergence of the optimal solution, thereby, the mutation 
probability Pm-value should be set as a smaller value. Here, 
Pm-value was set as 0.01. The cross validation method was 
used to evaluate the accuracy of GA-SVR.
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4.1. The existing improved Arrhenius-type 
constitutive model and ANN for as-cast Ti-
6Al-2Zr-1Mo-1V alloy

The original Arrhenius-type constitutive model expressed 
as Eq. (10) does not consider the influence of strain. 
Afterwards, Quan et al. calculated the improved Arrhenius-
type constitutive model for as-cast Ti-6Al-2Zr-1Mo-1V alloy 
in the reference8, which was incorporated with the influence 
of strain, as expressed by Eq. (11).

Figure 3: The specific flowchart of the GA-SVR.

Step 4. Stop criterion. If the iteration times achieves the 
predetermined times, the process of GA-SVR was stopped, 
and then the optimal parameters were used to train the GA-
SVR. Otherwise, the cyclic process as shown in Figure 3 will 
constantly proceed. Here, the iteration times was set as 100.

Figure 4 shows the best fitness value and average fitness 
value corresponding to iteration times of the well trained 
GA-SVR. As shown in Figure 4, it can be observed that the 
convergence speed of the well trained GA-SVR is fast. In the 
first 10 iteration times, the average fitness value is approaching 
to the best fitness value state. After the follow-up micro 
adjustments, the average fitness values eventually achieve 
the best fitness values in 10 to 20 iteration times. The C, γ , 
and ζ  of the best parameters combination (R=0.999850) 
are 99.61, 26.19, and 0.08, respectively.

Figure 4: The relationship between the fitness values and the 
iteration times of the GA-SVR.

4. Comparisons of the improved Arrhenius-
type constitutive model, ANN, and GA-SVR

In this chapter, the study abilities, generation abilities, and 
modelling efficiencies of the existing improved Arrhenius-
type constitutive model, ANN, and GA-SVR for as-cast 
Ti-6Al-2Zr-1Mo-1V alloy were detailedly compared.
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where σ  is flow stress (MPa) for a certain strain; T  
is temperature (K); Q  and A  are the activation energy 
(kJ·mol-1) and structure factor of Ti-6Al-2Zr-1Mo-1V alloy, 
respectively; α  and n  are the material constants of Ti-6Al-
2Zr-1Mo-1V alloy.

where f(ε), g(ε), h(ε), j(ε) are multinomial functions of 
strain for A ,α , n , and Q , respectively, as shown in Eq. (12).
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where B0, B1, … , B6, C0, C1, …, C6, D0, D1, …, D6, and E0, 

E1, …, E6 are the coefficients of the polynomial for Q, n, ln 
A, and α, respectively.

Quan et al. established the ANN for as-cast Ti-6Al-2Zr-
1Mo-1V alloy in the reference8.

4.2. Comparisons of the study abilities of ANN 
and GA-SVR

Figure 5 shows the comparisons between the trained flow 
stresses and testing flow stresses predicted by the GA-SVR at 
different strain rates and temperatures. As shown in Figure 5, 
the training predictions accurately track the trained stress-
strain curves in a wide temperature range, strain range, and 
strain rate range. And the testing predictions also track the 
trends of the untrained stress-strain curves. The correlation 

/ .

/ .
( )ln

exp

expg
f

j T

f
j T

1

8 314

8 314
1

11

h

h

1

2 2
1v

f

f

f f

f

f f
=

+

+

f

f

o

oQ
T

T

Q

Q

Q

Q
Q

Q

Q

QV

V

V
V

V

V

V

Y

Y

V

V# &

Z

[

\

]]]]]]]
]]]]]]]

_

�

a

bbbbbbb
bbbbbbb



Zhang et al.1260 Materials Research

Figure 5: Comparisons between the trained flow stresses and testing flow stresses predicted by the GA-SVR at different strain rates and 
temperatures of (a) 0.01 s-1, 1073-1123 K, (b) 0.1 s-1, 1073-1123 K, (c) 1 s-1, 1073-1123 K and (d) 10 s-1, 1073-1123 K.

between the trained| flow stresses and training predictions 
for the training dataset of the GA-SVR at (a) 0.01 s-1, (b) 
0.1 s-1, (c) 1 s-1, and (d) 10 s-1 were calculated and shown in 
Figure 6. As exhibited in Figure 6, the R-values between the 
training samples and fitted values of the GA-SVR model are 
larger than 0.9999, and there is no singular point. It can be 
concluded that the GA-SVR can accurately learn the highly 
non-linear flow behavior.

In order to further estimate the study abilities of these 
prediction models, average absolute relative error (AARE) 
was introduced. AARE is an average number of the absolute 
value of relative errors (δ-values). Relative error (δ) expressed 
by Eq. (13) is a typical evaluation index to reflect difference 
between training data and predicted data. Compared with 
the δ-value, AARE expressed by Eq. (14) can better reflect 
prediction error, because the positive and negative δ-value 
cannot be offset.

are larger than 0.9999. It can be summarized that both the 
ANN and GA-SVR model can sufficiently and accurately 
learn the hot flow behaviors of Ti-6Al-2Zr-1Mo-1V alloy.

4.3. Comparisons of the generalization abilities 
of the improved Arrhenius-type constitutive 
model, ANN, and GA-SVR

The δ-values between the experimental stress-strain 
data and testing stress-strain data which were predicted 
by the improved Arrhenius-type constitutive model, ANN, 
and GA-SVR were illustrated in Table 3. From Table 3, it 
can be found that the δ-values acquired from the improved 
Arrhenius-type constitutive model, ANN, and GA-SVR 
vary from -17.31% - 25.28%, -10.85% - 8.26%, and 
-6.78% - 5.82%, respectively. It is worth noting that a wider 
fluctuation range of δ-values does not signify poor prediction 
performance, and the distribution and relative frequency of 
δ-values should be further analyzed by Gaussian distribution 
analysis. After Gaussian distribution analysis, the mean 
number of all relative errors and standard deviation (w) can 
be obtained. The -value expressed by Eq. (15) is the mean 
number of all relative errors. The standard deviation (w) 
expressed by Eq. (16), as an evaluation index to measure 
discrete degree of individual in the dataset, was introduced 
to measure the distribution of the relative error (δ). Here, a 
small w indicates that most of δ-values are close to -value, 
and vice versa. And a smaller µ-value indicates that more 
predicted stress data approach the experimental stress data.
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where E is the sample of experimental stress-strain 
data; P is the sample of predicted stress-strain data; N is 
the number of samples of testing dataset.

The R-values and AARE-values between the training 
samples and fitted values of the ANN and GA-SVR were 
listed in Table 2.

As illustrated in Table 2, it can be observed that the 
R-values between the training samples and fitted value of 
the ANN and GA-SVR model at 0.01 s-1, 0.1 s-1, 1 s-1, 10 s-1 

( )AARE N E
E P1 14

i

i i

i

N

1

= -
=

/

( )N
1 15i

i

N

1

n d=
=

/



1261Numerical Description of Hot Flow Behaviors at Ti-6al-2zr-1mo-1v Alloy By Ga-Svr and Relative Applications

Figure 6: Correlation between the trained flow stresses and training predictions for the training dataset of the GA-SVR model of (a) 0.01 
s-1, (b) 0.1 s-1, (c) 1 s-1, and (d) 10 s-1.

Table 2: R-values and AARE-values between the training samples and fitted values of the ANN and GA-SVR at 0.01, 0.1, 1, and 10 s-1.

Strain rate/s-1
R-value AARE-value

ANN GA-SVR GA-SVR

0.01 0.99997 0.999982 0.6942%

0.1 0.99999 0.999978 0.2306%

1 0.99997 0.999983 0.2384%

10 0.99998 0.99991 0.1498%

Average 0.999978 0.999963 0.3282%

( )w N 1
1 16i

i

N
2

1

d n= - -
=Q QV V/

where δ is the sample of relative error; µ is the 
average number of δ-values; N is the number of samples 
of testing dataset.

Figure 7a, b, and c show the histogram of δ-values 
of the improved Arrhenius-type constitutive model, 
ANN, and GA-SVR, respectively, which show the 
relative frequency of each δ-level. The µ-value and 
w-value of the improved Arrhenius-type constitutive 
model, ANN, and GA-SVR are -2.981 & 4.202, -1.754 
& 2.348, and 0.585 & 1.577, respectively. A smaller 
w-value indicates that most of δ-values are close to 
the -value, and a smaller µ-value indicates that more 
predicted stress data approach the experimental stress 
data. It can be summarized that the generation ability of 
improved Arrhenius-type constitutive model is the worst, 
and the generation abilities of the ANN and GA-SVR 
are at higher levels.

Table 4 exhibits the R-values and AARE-values 
of test datasets of Arrhenius-type constitutive model, 

ANN, and GA-SVR. The AARE-values of the improved 
Arrhenius-type constitutive model, ANN, and GA-
SVR are 7.9703%, 4.2163894.2164%, and 2.1033%, 
respectively. It can be summarized that the GA-SVR has 
larger R-value and lower AARE-value, which indicate 
that the GA-SVR can accurately predict the highly non-
linear flow behaviors. The generation abilities of these 
models were shown as follows in ascending order: the 
improved Arrhenius-type constitutive model < ANN < 
GA-SVR. The improved Arrhenius-type constitutive 
model cannot accurately track the hot flow behaviors, 
because the mathematical regression method is difficult 
to describe the complicated non-linear flow behaviors 
which accompanied with phase transformation, WH, DRV, 
and DRX in wide temperature and strain rate intervals. 
Quan et al. established the ANN model for as-cast Ti-
6Al-2Zr-1Mo-1V alloy with high R-value and small 
AARE-value , however, the input variables just contain 
deformation temperature (T) and strain (ε)8. The input 
variables of GA-SVR contain temperature (T), strain 
(ε), and strain rate (ε ̇).
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Table 3: Comparisons between experimental flow stresses and predicted flow stresses for test dataset.

Strain rate /s-1 Temperature /K Strain Experimental 
stress (MPa)

Predicted stress (MPa) Relative error/%

Equation ANN GA-SVR Equation ANN GA-
SVR

0.01 1173 0.1 66.16 82.88 61.88 66.22 25.28 -6.46 0.09

0.2 67.32 82.53 63.42 68.45 22.60 -5.80 1.68

0.3 66.83 80.01 62.67 68.85 19.72 -6.23 3.02

0.4 65.32 76.23 65.51 65.13 16.70 0.29 -0.29

0.5 62.69 72.40 64.61 61.67 15.49 3.06 -1.63

0.6 60.32 68.88 61.37 61.85 14.19 1.75 2.54

0.7 57.88 68.22 57.86 58.36 17.88 -0.02 0.83

0.8 56.81 65.14 55.30 56.47 14.66 -2.65 -0.60

0.9 56.16 62.45 50.07 55.03 11.19 -10.85 -2.01

0.1 1273 0.1 39.36 38.59 41.02 39.29 -1.95 4.23 -0.18

0.2 38.78 39.31 41.64 39.21 1.37 7.38 1.11

0.3 39.55 39.13 41.25 41.85 -1.05 4.31 5.82

0.4 40.87 38.83 39.65 42.29 -5.00 -2.99 3.47

0.5 40.70 38.28 37.40 37.94 -5.95 -8.11 -6.78

0.6 39.34 37.36 35.45 37.71 -5.04 -9.88 -4.14

0.7 37.73 36.29 34.32 36.15 -3.83 -9.06 -4.19

0.8 35.59 34.88 33.96 33.81 -2.01 -4.59 -5.00

0.9 34.84 32.51 34.15 33.42 -6.69 -1.97 -4.08

1 1123 0.1 231.49 228.16 250.62 230.08 -1.44 8.26 -0.61

0.2 254.89 247.53 257.94 259.14 -2.89 1.20 1.67

0.3 258.73 246.78 254.54 261.65 -4.62 -1.62 1.13

0.4 254.81 239.10 249.13 258.42 -6.17 -2.23 1.42

0.5 246.43 228.31 241.47 250.27 -7.35 -2.01 1.56

0.6 236.13 216.03 232.97 239.69 -8.51 -1.34 1.51

0.7 225.99 203.78 225.08 224.72 -9.83 -0.40 -0.56

0.8 216.54 189.80 218.65 211.85 -12.35 0.98 -2.17

0.9 206.25 170.56 213.84 204.12 -17.31 3.68 -1.03

10 1273 0.1 81.00 84.42 83.83 80.74 4.22 3.50 -0.32

0.2 88.18 89.33 83.78 90.54 1.29 -5.00 2.68

0.3 89.84 92.26 88.73 92.85 2.70 -1.24 3.35

0.4 91.30 93.78 90.48 91.89 2.72 -0.90 0.65

0.5 92.27 93.18 89.98 93.83 0.98 -2.48 1.69

0.6 91.31 90.95 88.35 92.18 -0.39 -3.24 0.95

0.7 89.03 88.04 84.48 90.35 -1.11 -5.12 1.48

0.8 83.78 81.74 76.77 82.06 -2.43 -8.36 -2.05

0.9 73.74 66.35 65.92 71.2 -10.02 -10.60 -3.44

4.4. Comparisons of the modelling efficiencies 
among the improved Arrhenius-type 
constitutive model, ANN, and GA-SVR

Table 5 shows the time in modelling an accurate model 
of the improved Arrhenius-type constitutive model, ANN 
and GA-SVR. The improved Arrhenius-type constitutive 
model needs to calculate many material constants and 

construct many multivariate nonlinear regression models 
according to limited experimental data. And these material 
constants and regression models need to be recalculated 
when new stress data are added. This process is complex 
and time-consuming. The GA-SVR does not need to 
establish the complicated mathematical models and the 
transformation mechanisms of micro structures.



1263Numerical Description of Hot Flow Behaviors at Ti-6al-2zr-1mo-1v Alloy By Ga-Svr and Relative Applications

Figure 7: Distribution of relative errors of test data corresponding to the (a) improved Arrhenius-type constitutive model, (b) ANN, and 
(c) GA-SVR.

Table 4: R-values and AARE-values of test dataset of the improved Arrhenius-type constitutive model, ANN, and GA-SVR.

R-value AARE-value

Arrhenius-type ANN GA-SVR Arrhenius-type ANN GA-VR

0.993437 0.998309 0.999676 7.9703% 4.2164% 2.1033%

Table 5: The time in modelling an accurate model of the Arrhenius-type constitutive model, ANN, and GA-SVR.

Model Arrhenius-type ANN GA-SVR

The time in modelling an accurate model. More than 180 min More than 60 min About 15 min

ANN needs to try a lot of network topologies and training 
parameters to obtain an accurate model, which will consume 
much time and energy. In addition, ANN is not very stable. 
To a certain dataset, the same network topology and training 
parameters of an ANN will obtain fluctuant accuracies in different 
attempts, which reduces the modelling efficiency. Based on the 
operators of selection, crossover, and mutation, the GA-SVR can 
self-adaptively and dynamically adjust the processes of selection, 
crossover, and mutation to realize the optimal selection of the 
three parameters, which greatly improves the computational 
efficiency. Compared with ANN, the globally optimal solution 
can be obtained by using GA-SVR, and the computational 
processes of GA-SVR are robust and will avoid falling into local 
extreme value. GA-SVR does not need to try a lot of network 
topologies to obtain a highly accurate model. GA-SVR only 
needs representative training samples from the research, and 
then automatically adjust the three parameters C, γ , and ζ  
to obtain the most accurate prediction model. Compared with 
ANN, GA-SVR greatly improves the modeling efficiency. The 
modeling efficiencies of these models were shown as follows 
in ascending order: the improved Arrhenius-type constitutive 
model < ANN < GA-SVR.

5. Applications of the GA-SVR in material 
computations

5.1. Stress-strain data expansion by the GA-SVR

In this section, the flow stress data at temperatures of 
1098 K, 1148 K, 1198 K, 1248 K, and 1298 K under strain 
rates of 0.01 s-1, 0.1 s-1, 1 s-1 and 10 s-1 were predicted for 
Ti-6Al-2Zr-1Mo-1V alloy by the GA-SVR, as shown in 
Figure 8. The expanded stress-strain data are conducive to 
the accuracy improvement in the following fields.

5.2. Accuracy improvement in Finite Element 
Modeling (FEM)

If finite element software needs to invoke stress-strain 
data which are not preliminarily inputted to the software, 
the software mainly calculates unknown stress-strain data by 
mathematical interpolation means. However, flow behaviors of 
materials at different conditions (such as different temperatures 
and strain rates) are complicated. The interpolation method 
cannot correctly calculate the stress-strain data, and will 
obtain inaccurate simulation results.
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Figure 8: The true stress-strain curves of Ti-6Al-2Zr-1Mo-1V alloy under different temperatures and different strain rates where the solid 
curves are experimental data and the fitted curves by points are predicted data.

In this section, the influences of input stress-strain 
curves on simulation results were analyzed in the isothermal 
compression experiment by a popular FEM software 
DEFORM. The simulation parameters were set according 
to the actual experiment. One half of the specimen was 
simulated on account of geometric symmetry, so as to 
decrease the computing time. In the actual experiments, 
the top and bottom surfaces of specimens were coated with 
graphite lubricants to decrease friction between the specimen 
and anvils, therefore, the friction type between the contact 
surfaces of specimen and dies was set as shear-type in 
DEFORM. And a shear friction coefficient of 0.3 was set to 
simulate the actual graphite lubricant condition between the 
specimens and anvils39. In the FEM simulations, the thermal 
conduction and thermal radiation among compression sample, 
dies, and ambient were ignored to simulate the experimental 
isothermal compression test.

Table 6 shows three simulation schemes which were 
used to analyze the influences of input stress-strain curves 
on final simulation results. The entire initial conditions were 
selfsame except for the different input stress-strain curves. 
The compression tests were simulated at the temperature of 
1173 K and strain rate of 0.01 s-1. The entire experimental 
stress-strain curves were inputted to the FEM software in 
Scheme-A, and there is no interpolation interval in scheme-A. 
The experimental stress-strain curves and the stress-strain 
curves predicted by the GA-SVR were applied to scheme-B. 
The experimental stress-strain curves at temperatures of 
1073 , 1123, 1223, 1273, and 1323 K and strain rate of 0.01 
s-1 were adopted by scheme-C, so the stress-strain curve at 
temperature of 1173 K and strain rate of 0.01 s-1 needs to 
be interpolated, and the interpolation interval was 100 K.

Figure 9b displays the distribution of effective 
strain of scheme-B, which can be roughly divided 
into three districts. The distribution of effective strain 
of scheme-B is similar to scheme-A, and the average 
strain of scheme-B is 0.953 approaching to scheme-A. 
Figure 9c displays the distribution of effective strain 
of scheme-C, which can be similarly divided into three 
districts. However, there are large differences of effective 
strain distributions between scheme-C and scheme-A, 
as well as the maximum effective strain. Besides, the 
shape of the compression sample of scheme-C is not a 
typical drum-type on account of the bad interpolation 
in a wide interpolation interval.

Additionally, as exhibited in Figure 10, the load curves 
corresponding to strokes of the top dies of these schemes 
show that the load curves of top dies of scheme-B and 
scheme-A are very close. The load curves of top dies of 
scheme-B and scheme-A are close to the experimental 
loads. However, there are large differences of top die loads 
between scheme-C and scheme-A. The relative errors of 
the top die loads between scheme-A and scheme-B are 
in the range of -1.3818% - 2.3872%, whereas this errors 
between scheme-A and scheme-C are in the range of 
0.7158% - 34.2327%.

It can be concluded that a large span of interpolation 
or insufficient stress-strain data will lead to inaccurate 
simulation results. In addition, the flow behaviors under 
different temperature ranges of a material are highly non-
linear, thereby, calculating stress data by interpolation method 
in FEM software is inaccurate. There are many fine controls 
in manufacturing industry, which requires accurate and 
sufficient material data. The insufficient material data and 
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Table 6: The three finite element simulation schemes at the strain rate of 0.01 s-1 and temperature of 1173 K.

Temperature (K) Finite element simulation schemes

A B C

1073 Experimental curve Experimental curve Experimental curve

1098 Null Predicted curve by the GA-SVR Null

1123 Experimental curve Experimental curve Experimental curve

1148 Null Predicted curve by the GA-SVR Null

1173 Experimental curve Predicted curve by the GA-SVR Interpolation of FEM software

1198 Null Predicted curve by the GA-SVR Null

1223 Experimental curve Experimental curve Experimental curve

1248 Null Predicted curve by the GA-SVR Null

1273 Experimental curve Experimental curve Experimental curve

1298 Null Predicted curve by the GA-SVR Null

1323 Experimental curve Experimental curve Experimental curve

Figure 9: Distributions of effective strain for (a) scheme-A, (b) scheme-B, and (c) scheme-C, at the strain rate of 0.01s-1, the temperature 
of 1173 K, and the height reduction of 60%.

inaccurate simulation results will result in huge economic 
losses. It can be concluded that the GA-SVR can predict flow 
stress data and reduce the interpolation interval to enhance 
the simulation accuracy.

5.3. Construction of three-dimensional (3D) flow 
stress map

Ji et al., Zhu et al., and Sabokpa et al. just predicted stress 
data at some unknown temperatures, certain strain rates and 
strains27,31,40. Quan et al. just developed inconsecutive 3D 
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Figure 10: The relationship between the stroke and the loads of top 
die for these three schemes and experimental values.

map of stress data corresponding to temperature and strain 
under constant strain rates8. In this work, the stress data 
at temperatures of 1098 K, 1148 K, 1198 K, 1248 K, and 
1298 K under strain rates of 0.01 s-1, 0.1 s-1, 1 s-1 and 10 
s-1 were predicted for Ti-6Al-2Zr-1Mo-1V alloy by the 
well-trained GA-SVR. Based on the existing experimental 
stress data and densely predicted stress data, a novel 3D 
continuous relationships among flow stress, temperature, 
strain, and strain rate were constructed in Matlab, as shown 
in Figure 11. Compared with the traditional 2D stress-strain 
curves, the novel 3D maps of stress data are continuous 
and can show flow stress data at any strain, strain rate 

Figure 11: The (a) three-dimensional stress map and the cross sections at different (b) temperatures, (c) strain rates and (d) strains.

and temperature. As shown in Figure 11, the stress data 
are displayed by different colors. The X-axis, Y-axis and 
Z-axis coordinates represent temperature, strain rate and 
strain, respectively. Figure 11b-d are cross sections of 
Figure 11a in three orientations. Figure 11b shows the 
flow stress data corresponding to any strain and strain 
rate at several fixed temperatures. In can be seen that the 
stress level increases with the increase of strain rate at a 
fixed strain, which cannot be visually demonstrated in the 
traditional 2D stress-strain curves. Figure 11c exhibits the 
stress data corresponding to any strain and temperature 
at several fixed strain rates, and it shows that the stress 
level decreases with increasing temperature at a fixed 
strain. Figure 11d displays the corresponding stress data 
to any strain rate and temperature at several fixed strains.

The above mentioned analysis indicates that the flow 
stress data predicted by the GA-SVR outside of experimental 
conditions exhibit similar discipline with the experimental 
stress-strain curves, which can enrich flow stress data and 
reduce interpolation intervals. And the continuously 3D 
prediction maps can be converted into a database which 
can exhibit flow stress data at any strain, strain rate, and 
temperature. GA-SVR has potential to import into FEM 
software by using programming language, which is possible 
to achieve high accuracy of simulations and improve the 
processing maps, ductile fracture criteria, and the related 
studies without resorting to time-consuming and high-cost 
experiments.
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6. Conclusions

The novel prediction model GA-SVR was established 
to characterize the hot flow behaviors of Ti-6Al-2Zr-1Mo-
1V alloy according to the experimental stress-strain data. 
Following conclusions were concluded from the current study:

(1) The complexity, learning ability, and generalization 
ability of SVR depend on the three parameters C, γ , and ζ , 
especially the mutual influence among the three parameters. 
The SVR with suitable parameters C, γ , and ζ  will 
accurately learn the stress-strain curves and appropriately 
ignore some singular points of stress-strain data to accord 
with the overall trend of the stress-strain curves.

(2) The average R-value & AARE-value between the 
training samples and fitted values of the GA-SVR is 0.999963 
& 0.3282%, which show the GA-SVR model can sufficiently 
and accurately learn the hot flow behaviors which accompany 
with WH, DRX and DRV. Comparison results show that 
the study ability of the GA-SVR is as strong as the ANN.

(3) In the comparisons of generation abilities of these 
models, the GA-SVR has larger R-value and lower AARE-
value, which indicate that the GA-SVR can accurately predict 
the highly non-linear flow behaviors of Ti-6Al-2Zr-1Mo-1V 
alloy. The generation abilities of these models were shown 
as follows in ascending order: the improved Arrhenius-type 
constitutive model < ANN < GA-SVR.

(4) Based on the operators of selection, crossover, and 
mutation, the GA-SVR can self-adaptively and dynamically 
adjust the processes of selection, crossover, and mutation 
to realize the optimal selection of the three parameters, 
which greatly improves the computational efficiency. The 
modeling efficiencies of these models were shown as follows 
in ascending order: the improved Arrhenius-type constitutive 
model < ANN < GA-SVR.

(5) The flow behaviors under different temperature ranges 
of a material are highly non-linear, therefore, calculating 
stress data by interpolation method in FEM software is 
inaccurate. The GA-SVR can predict flow stress data and 
reduce the interpolation interval to enhance the simulation 
accuracy without resorting to time-consuming and high-cost 
experiments. The continuously 3D relationships among flow 
stress, temperature, strain, and strain rate were constructed, 
which can improve the related research fields where stress-
strain data play important roles, such as improving the 
accuracy of finite element simulation result, improving 
processing maps, characterizing dynamic recrystallization 
evolution, etc.
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