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This work presents an efficient approach to quantify uncertainties in composite laminates using 
the interval analysis, anti-optimization technique, and the α-cut procedure. The solutions are compared 
with the traditional and robust Monte Carlo method in 3 cases scenarios: natural frequencies, buckling, 
and strength safe factor. For natural frequencies and buckling loads, the presented Interval based 
methodology showed 2.5% to 4.5% larger error values when compared to the Monte Carlo method 
using the same number of function calls. This implies a larger uncertain area, and hence, a better 
solution. For the strength test using Tsai-Wu failure theory, the error values are even greater: 22% to 
46%. A violation of the failure limit was detected by the proposed Interval based approach, but not 
detected by Monte Carlo method. The solutions show that the presented methodology yields a safer 
and more precise analysis when compared to the traditional Monte Carlo approach.
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1. Introduction
Composite materials are used in all kinds of high-

performance structural applications, such as in aircraft, 
aerospace and the military industry. Over the past few 
decades, numerous advances have been achieved in the 
research field of composite materials. These advances have 
provided designers with powerful tools to more accurately 
predict the behavior of materials, as well as techniques for 
producing highly complex parts. Despite the significant 
advances, there is still a relevant discrepancy between 
apparently identical laminate specimens when performing 
experimental measurements. The uncertainties are often 
pointed as the main cause of the aforementioned divergences 
in experimental data.

The present uncertainty in composite materials can be a 
big issue in the design and manufacture phases of the layers 
that compose the final structure. These uncertainties can be 
inserted into the system in a number of ways, such as through 
temperature sensitivity, hygroscopic phenomena, and the own 
manufacturing process. Even the standardized tests used to 
characterize the elastic properties of the composite material 
have some degree of uncertainty, as explained by1. The lack 
of accurate material properties (required in order to predict 
failure mechanisms, dynamic behavior and deformation) 
may lead to excessively conservative designs2-4. For instance, 
in5, different fiber orientations and orthotropic proprieties 
of composite laminates were tested. The authors showed 
experimentally and analytically that those proprieties affect the 
interlaminar shear strength and flexural properties, and hence, 
the overall mechanical performance, justifying the choice of 
these values as uncertain. An extensive bibliography exists 
in quantifying the uncertainties like these, as is discussed in2

.

According to6, current approaches to uncertainty problems 
are divided into two major groups: possibilistic modeling 
of uncertainty and probabilistic modeling of uncertainty. 
The probabilistic approach requires knowing the probabilistic 
distribution of the uncertainties and the correlation between 
variables, which is not generally known in practice. On the 
other hand, the possibilistic method only requires the range 
of uncertainty possibilities, which is promptly available. 
Rao and Mash hour7 used the possibilistic approach, interval 
arithmetic operations and truncation-based interval analysis 
to perform failure analysis on composite laminates in a fairly 
simple way. The interval analysis used in this work also fits the 
possibilistic approach but uses a more advanced methodology 
than the arithmetic operations aforementioned. In this paper, 
the developed algorithm is based on the α-cut concept and 
convex hull from the quick hull algorithm8, as explained in9.

For the Interval Approach used in the algorithm 
framework of the present work, the measure of confidence 
on the uncertainty level of variables can be associated to an 
α -cut level, Figure 1(b), a single value that varies from 0 to 
1 (where 0 is the maximum uncertainty in the interval limit and 
1 being complete confidence and thus, no uncertainty at all).

Many methods for evaluating uncertainty in composites have 
been developed over the past few decades. Several versions of 
SFEM (Stochastic Finite Element Method) have been proposed 
to approach the uncertainty problem, such as10-14. More recently, 
anti-optimization has emerged as a viable alternative to solve 
uncertainties problems in laminates15-17. The method has shown 
to be well suited in solving such problems, and even in design 
optimization, where the anti-optimization method is nested within 
another optimization, like in18,19. In this approach, while the 
anti-optimization searches for the worst-case scenario using the 
uncertainty, the outer optimization handles the design variables, 
thus leading to a heavy computational load. Chen et al.20 show that *e-mail: pedrobs66@gmail.com
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it is possible to approach the uncertainty in laminates using Taylor 
expansion. Another method that has been used in recent years in 
this area and all kinds of uncertainty problems is the polynomial 
chaos expansion21,22 and other meta-models like the Kriging23.

The aleatory uncertainty in composite materials is also 
treated through three distinct approaches on account of the 
model scale4: micro-scale, meso-scale, and macro-scale. 
Some authors, such as14,24-26, use multiple instances of the 
aforementioned approaches, called multi-scale analysis. Using 
a multi-scale analysis (meso and macro-scale)14,26, the authors 
applied the Representative Volume Element (RVE) method 
coupled with finite element analysis to produce better results 
when compared with Monte Carlo alone. Since the present paper 
uses ply level properties, it fits into the meso-scale category4.

Several simplified methods can be used to evaluate 
the propagation of the uncertainties intervals, such as 
gradient-based methods, arithmetic intervals7, but none of 
them is sufficiently accurate for all levels of uncertainty. 
For this reason, some more elaborated approaches must 
be used, such as the anti-optimization. For the anti-
optimization approach, an optimization algorithm is used 
to find the limits of the output variables that represent 
the system’s behavior based on combinations of the 
uncertain variables. The Monte Carlo approach is also 
useful for this concern, being a robust solution to the 
uncertainty propagation problem. As explained in2, the 
Monte Carlo simulation technique in conjunction with the 
finite element (FE) method is widely used for quantifying 
uncertainties of laminated composite structures, as it is 
done in3,14. The comparison between the Monte Carlo and 
the anti-optimization approach is explored later in this 
work, where it is shown that Monte Carlo is not the best 
choice regarding performance and efficiency.

This paper will be presented in the following order: 
In section 2, the uncertainty propagation and the anti-
optimization method will be discussed; in section 3, the 
formulation for composite materials will be presented; in 
section 4, the examples and the numerical solutions will 
be shown (natural frequencies, buckling load, and strength 
safe factor), as well as some discussion about the results; 
finally, section 5 concludes the work, summarizing the 
obtained results.

2. Uncertainty Propagation and Anti-
Optimization
Assume a system with the input vector 1 2( , , , )m m m m T

nix x x= …X , 
where ni  is the number of input variables, m  means “measured”, 

and an output vector as 
1 2( , , , )m m m m T

noz z z= …Z , where no 

is the number of output variables. Let’s assume a number of 
samples of each one of the input vectors (called realizations)

1
m X , 2

m X ,…, m
ns X  and the corresponding output vectors 

1
mZ , 2

mZ ,…, m
ns Z  , where ns  means the number of samples. 

Furthermore, let’s assume a numerical model of the system 
with the same measured inputs 1 2( , , , )m m m m T

nix x x= …X , 
adjustable model’s parameters vector 1 2( , , , )Tnpθ θ θ= …θ , 
with np  representing the number of parameters and predicted 
vector outputs ( )1 2( , , , ) ,p p p p T m

noz z z f= … =Z X θ . Regarding 
the output vector, it is easy to obtain their upper and lower 
bounds based on the values from all realizations. These output 
intervals vectors may be put together in a two-column vector 
representation as:

( ) ( )
1, , 1, ,

, min maxm m m m
i i

i ns i ns= … = …

   =      
z z z z 	 (1)

Equation (1) represents a measure of the model’s output 
uncertainty or dispersion. The same can be stated for the 
predicted output vector (from the numerical model) and the 
measured input vector:

( ) ( )
1, , 1, ,

,  min maxm m m m
i i

i ns i ns= … = …

 
=   

 
X X X X 	 (2)

( ) ( )
1, , 1, ,

, [ min max
i ns i ns

i i
= … = …

  =  θ θθ θ 	 (3)

( )( ) ( )
1, , 1, ,

, , , ,

min , max ( ,

p p m m

p p
i ii ns i ns

f

= … = …

      = =         
 

       
 

X X

Z Z

θ θ

θ θ θ θ

z z

	 (4)

A very common question is: What are the output 
intervals ,  p p 

  
z z  for a given set of measured input intervals 

,  m m 
  

X X  and parameters intervals ,    θ θ ? This may be 
thought of as finding the variability of the response of the 
system (upper and lower bounds of the output behavior). 
This also can be understood as an uncertainty propagation 
in terms of intervals since the uncertainty of the inputs and 
parameters will be propagated to the outputs. This is as a 

Figure 1. (a) Interval uncertainty propagation. (b) Linear approximation of Gaussian distribution for x by a triangular fuzzy-set, with 
uncertain intervals and α-cuts.
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double optimization (minimization and maximization, also 
known as anti-optimization) in each of the hypervolume 
quadrants (2NO) to find the best input *m X . and parameter 
values *θ  that maximizes (or minimizes) the output norm 

2
p Z  and that colies with the bounded intervals. The final 

output intervals will be the minimum and maximum of 
each variable for all hyper-quadrants. Mathematically, this 
can be stated as:

2Find and ,  at each hyperquadrant,  that  minimizes and maximizes X Zθ* * *

( ) ( )
    

Subject to : , , ,  and ,m m

over all quadrants over all quadrants

min max

   ∈ ∈ =     
 
 
 
  

*X X X

z z

θ θ θ*

* *

 z z

	

(5)

In this case, where a double optimization happens, the 
number of design variables is (ni+np). A block diagram 
can be sketched in this sense, as represented in Figure 1(a).

The Interval upper and lower values form a cloud in the 
hyperspace and, once obtained, a convenient way to visualize 
is to construct a convex hull, which is the smallest convex set 
that contains and encompasses the set of points. This convex 
hull can also be constructed for the random points obtained 
by the simulations if the Monte Carlo method is used.

3. Composite Material
Laminated composite structures can be challenging 

to manufacture accurately according to their exact design 
specifications because of the inherent complexity present 
in such materials. As a result, undesirable and unavoidable 
uncertainties arise in composite manufacturing, such as intra-
laminate voids, incomplete curing of the resin, excess resin 
between plies, porosity, excess matrix voids, variations in ply 
thickness and fiber parameters, all those making the overall 
behavior prediction of such materials difficult2,3. The lack of 
precise tools to evaluate the propagation of these uncertainties 
may lead to overly conservative or unsafe designs4, with a 
more expensive and less effective final product.

In this study, mass density, ply angle orientation and 
Elastic modulus values will be considered with uncertain 
values since those are the most important source of the 
variability described in the literature2.

3.1. Equations for dynamic vibrations of 
laminated plates

The differential equations for a laminated plate can be derived 
from analyzing Figure 2, where a force diagram is depicted 
(comma represents the corresponding partial derivatives).

By the resulting forces in x and y directions, we find

, , 0,x x xy yN N+ = 	 (6)

, , 0y y xy xN N+ = 	 (7)

Considering the inertia force (density   ρ  and height h ) 
and the forces in the z-direction, one finds the equilibrium 
equation

, , , , , ,2 0x x y y x xx xy xy y yy ttQ Q N w N w N w hwρ+ + + + − = 	 (8)

If one neglects the third-order terms, the moment equations 
result in Equation (9) and Equation (10).

, , ,x x xy y xM M Q+ = 	 (9)

, , ,y y xy x yM M Q+ = 	 (10)

and substituting Equations (9) and (10) into Equation 
(8), we find

, , , ,

, , ,

2

2 0
x xx xy yy y yy x xx

xy xy y yy tt

M M M N w

N w N w hwρ

+ + + +

+ − =
	 (11)

Equations (11), (6) and (7) forms a set of three differential 
equations of motion. For a laminated plate, the constitutive 
relations for stress/strains at the local coordinate system 
for laminate k at height z is (assuming First-Order Shear 
Deformation Theory, FSDT):

Figure 2. Force diagram at the middle surface of a laminated plate.
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0
11 12 16

0
12 22 26

016 26 66

xx x

y y y

xy xyk xyk

Q Q Q k
Q Q Q z k
Q Q Q k

εσ
σ ε

τ γ

                   = +        
                    

,	 (12)

and the internal forces evaluated as:

/2

/2
 

x xt
y y

t
xy xy k

N
N dz

N

σ
σ

τ

+

−

   
      =   
   
      

∫ and
/2

/2

x xt
y y

t
xy xy k

M
M zdz

M

σ
σ

τ

+

−

   
      =   
   
      

∫ ,	(13)

and applying Equation (12), one recovers:

0

0

0

xx x

y ij y ij y

xy xyxy

N k
N k

N k

ε

ε

γ

             = +     
     
         

A B
 and	 (14)

0

0

0

xx x

y ij y ij y

xy xyxy

M k
M D k

M k

ε

ε

γ

             = +     
     
         

B

	

The matrices A, B and D  are evaluated as usual, along 
each ply, as indicated by Equations (15), (16) and (17).

( ) ( )11
,

n
ij ij k kkk

Q z zκ −
=

= −∑A 	 (15)

( ) ( )2 2
11

1 ,
2

n
ij ij k kkk

Q z z −
=

= −∑B 	 (16)

( ) ( )3 3
11

1 ,
3

n
ij ij k kkk

Q z z −
=

= −∑D 	 (17)

where 5 / 6κ = . Based on the Classical Laminated Theory, taking 
the strain displacement relationship, one finds Equation (18):

0
,

0
,

0 , ,

x x

y ij y

y xxy

u

v

u v

ε

ε

γ

         = +   
   +     

B and
,

,

,2

xxx

y yy

xy xy

wk
k w

k w

   −
      = −   
   −      

,	  (18)

and finally, the set of the three differential equations, taking 
into consideration Equation (17), results in Equation (19):

( )
( )

( )

( )

11 , 16 , 66 , 16 , 11 66 ,

26 , 11 , 16 , 12 66 , 26 ,

16 , 12 66 , 26 , 66 ,

26 , 22 , 22 ,

11 , 16 , 12 66 , 26

2

3 2 0

2 0

4 2 2 4

xx xy yy xx xy

yy xxx xxy xyy yyy

xx xy yy xx

xy yy yyy

xxxx xxxy xxyy

A u A u A u A v A A v

A v B w B w B B w B w

A u A A u A u A v

A v A v B w

D w D w D D w D

+ + + + + +

− − − + − =

+ + + + +

+ − =

+ + + +

( )
( )

,

22 , 11 , 16 , 12 66 ,

26 , 16 , 12 66 , 26 ,

22 , , , ,

3 2

2 3

0

xyyy

yyyy xxx xxy xyy

yyy xxx xxy xyy

yyy x xy y yy tt

w

D w B u B u B B u

B u B v B B v B v

B v N w N w hwρ

+

− − − +

− − − + − −

+ + + =

	(19)

In the case of symmetrically angle-ply oriented composite 
plates, 16 26 16 26 0ijA A D D B= = = = =  and the previous equations 
simplify. As shown in27, to solve such equation, one can use the 
separability of space and time with Fourier series in the form

( ) ( ) ( ) ( ) ( ), , [ cos sin ]mn mn m nw x y t t t X x Y yα ω β ω= + ,	 (20)

and considering the corresponding boundary conditions, 
results in a system of equations that will give the natural 
frequencies and mode shapes only if a nontrivial solution 
exists. In this case, for a simply supported plate with edges a 
and b, the following equation for natural frequencies results:

( )
4

2 4 2 2 4
, 11 12 66 22[ ( ) 2 2 ( ) ( ) )m n

m m n nD D D D
h a a b b

πω
ρ

 = + + +   
 ,	(21)

where m  and n  are positive integers that should be tried 
to get each of the mode frequencies.

3.2. Equations for buckling of laminated plates
Assuming that the only applied load are those from 

in-plane (no shear forces), we can split the effects in the 
total potential energy ( Π ) into two parts, as shown in 
Equation (22).The first part is the strain energy due to bending 
( bU ), and the second one, the work done by external forces 
( )pU , represented by Equation (22)

b pU UΠ = − 	 (22)

One can evaluate those parts ( bU  and pU ) for an 
assumed field solution that accounts for boundary conditions 
of the form of sine series. The critical buckling load will 
be evaluated for a clamped plate under uniaxial load in the 
second example presented in this work. In this case, it is 
assumed a solution in the form

( ) ( ) ( ),, sin / sin / ,m nw x y w m x a m y bπ π=
 	 (23)

with ,m nw  being the displacement coefficients and m , n, 
positive integers. Substituting this and assuming displacement 
field into the total potential energy, forcing a stationary 

condition ( / mnw∂Π ∂  =0) and solving for λ = /crit xN N  (critical 
to the reference applied load ratio), the buckling loads are 
computed. In fact, the first buckling load is of interest, and 
one should search for the combinations of m  and n that 
gives the lower λ  (first buckling load).In case of simply 
supported composite plates, the solution is in the form

( )4 2 2 2
, 11 12 66

4 4 2 2 2
22

( 2 ( )

2 ( ) / ( )

m n

x y

aD m D D m n
b

a aD n m N n N
b b

λ = − + + +

 + 
 

	 (24)

In case of a clamped plate with uniaxial load, Nx, the 
resulting expression is given by Equations (25) and (26)

( ) ( )1 5 2 4 2
, 1 5 2 4 2 5 32

2 5 3 1 4

( )² 4
( )  / 2m n

G G G G
G G G G G G G

G G G G G
λ

+ −
 = − + − − −  

  1|  n  Nfor m = ∈
 	 (25)
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( )
( )

1 5 2 4
2

2 5 3 1 4
, 1 5 2 4 2

2 5 3

( )² 4

(
2

m n

H H H H

H H H H H
H H H H

H H H
λ

+ −

−
= − + −

 −  
 

{ }  1|  m,  n    Nfor m ≠ ∈
	 (26)

where

( )4 4 2 2 4 2 2
11 12 22 66

1 3 3

3 2 3 4

4

D b D a b D a D a b
G

a b

π + + +
=  	 (27)

( )
( )

2 4 2

2 4 2

3 12

16 4

b n n
G

a n n

π −
= −

− 	  (28)

( )

( )
23 3

3 4 2

8 1

3 4

nb n n
G

a n n

+ − + − 
 =

− 	 (29)

( )2 2 2 2
44 55

4 4

k A a A n b
G

ab

π +
= 	 (30)

( )
( )

2 6 4

5 4 2

4

4 4

b n n
G

a n n

π −
= −

− 	 (31)

( ) ( )
( )

4 2 4 2 2 2
11 124

4 2 2 2
22 66

1 3 3

18 3 3 8 8

16 16 16

32

D b m m D a b m

D a D a b m
H

a b

π

 + + + + + 
 
 + +
 =

 	(32)

( )

6 4 4 2
2

2 4 2 2 2 4 2
2 2 4 2 2 2 4

3 3 3 3 3

3 12 6 4

32 1 2 2 2

m n m m
b

m n m n n m n
H

a n m m n m n

π
 + + − − + 
 − − − = −
− + − − +

	 (33)

( )

( )
13 3

3 2 4 2 2 2 4

8 1

3 1 2 2 2

m nb mn mn
H

a n m m n m n

+ + − + − 
 = −

− + − − +
	 (34)

( )2 2 2 2
44 55

4 4

k A a A n b
H

ab

π +
= 	 (35)

( )
( )

2 2 6 2 4 4 2 4 2 2

5 2 4 2 2 2 4

2 2 2

4 1 2 2 2

b n n m n m n n m n
H

a n m m n m n

π + − + − −
= −

− + − − +
	 (36)

3.3. Equations for strength evaluation in 
composite materials

For strength evaluation in composite materials, this 
paper uses the Tsai-Wu failure criteria28. According to29, 
Tsai-Wu failure theory is based on the total strain energy 

failure theory of Beltrami applied to lamina in a plane stress 
state. The following equation is used to evaluate the failure 
criteria in the lamina. If the equation is violated, the lamina 
is considered to be failed.

2 2 2
1 1 2 2 6 12 11 1 22 2 66 12 12 1 22 1 0H H H H H H Hσ σ τ σ σ τ σ σ+ + + + + + − < 	 (37)

or, in terms of a safety factor, α:

2 2
1 1 2 2 6 12 11 1 22 2

2 2
66 12 12 1 2

( ) (

2 ) 1 0

H H H H H

H H

σ σ τ σ σ

τ σ σ

+ + α + + +

+ α − = ,	 (38)

where 1λ = α −  lower than 0 represents failure.
The components 1 2 6 11 22, , , ,H H H H H  and 66H  can 

be obtained based on the strength limit parameters of the 
material as follows

( ) ( )1
1 1

1 1
T C

ult ult

H
σ σ

= −
	 (39)

( ) ( )11
1 1

1
T C

ult ult

H
σ σ

=
	 (40)

( ) ( )2
2 2

1 1
T C

ult ult

H
σ σ

= − 	 (41)

( ) ( )22
2 2

1
T C

ult ult

H
σ σ

= 	 (42)

6 0H = 	 (43)

( )
66 2

12

1

ult

H
τ

= 	 (44)

( ) ( ) ( ) ( )12
1 1 2 2

1 1
2 T C T C

ult ult ult ult

H
σ σ σ σ

=
	 (45)

Note that 12H  is found using some empirical suggestions, 
where the one presented here is found by Mises-Hencky 
criterion29.

4. Numerical Examples

4.1. Example 1 - Natural frequency of a simply 
supported plate

The following example shows a composite with 
the total length and breadth of the laminated plate with 
orthotropic cross-ply [90°/0°/0°/90°] configuration, 
dimensions a=0.6 m and b=0.6 m and laminate thickness 
of t=1.25×10-4 m. The material properties of the laminate 
are E11=135 GPa, E22=8.8 GPa, G12=4.8 GPa, ν12=0.33 and 
ρ=1380kg/m3 (carbon-epoxy properties29). The boundary 
conditions are simply supported on each side (SSSS). In this 
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example it is assumed an uncertainty interval of ±10%, for 
the worst-case scenario (corresponding to α-cut level 0) in 
E11, ρ, G12 and an uncertainty ±5o for θ(very common range of 
uncertainty found in2). This uncertainty setup is assumed to 
be independent for each layer, so the number of uncertainties 
is 16. The proposed algorithm is tested using the interval 
approach proposed in this paper and compared with simple 
MC (Monte Carlo simulations). For fair comparisons, the 
number of MC simulations equals the number of function 
calls used in the Interval-based proposed algorithm (that 
runs first). The uncertainty in the dynamic behavior is 
sought in this example, so the first four natural frequencies 
are evaluated. The analytical solutions for the deterministic 
situation for this particular case are given by Equation (21). 
The following Figure 3 is obtained for the convex hulls for 
the first 4 natural frequencies (Hz).

Table  1 shows the relative differences between the 
Interval-based Method (using anti-optimization) proposed 
here and the traditional Monte Carlo Method based on the 
Error (E) values defined as the ratio between twice the Interval 
Radius of the uncertain output variables (first 4 natural 
frequencies) for the zero α-cut level and the Interval Center. 
The Interval Radius for an uncertain variable z  is defined 
as ( ) / 2IR = −z z , while the Interval Center is defined as 

( ) / 2IC = +z z , so 2 /E IR IC= .
Analyzing Table  1, one can notice the spread of the 

results obtained with the Interval-based Method when 
compared to the MC method, since E values are greater 
(3.6% on average). This also can be noticed in the graphs of 
Figure 3, where the convex hull and interval limits for the 
Interval-based Method encompass the corresponding values 

Figure 3. Output uncertain intervals and convex hulls for the interval-based procedure and MC Simulation for mode frequencies, where 
if  are the mode frequencies values in Hz.

Table 1. Error-values for interval output variables obtained by the Interval-based Method and the MC method.

Mode Frequency 
(Hz)

Interval-based Method MC Method

Lower bound f Upper bound f E (%) Lower bound f Upper bound f E (%)

f1
22.963510 23.550310 18.22 23.001210 23.468610 14.51

f2
25.702510 26.751810 17.07 25.808310 26.577510 12.51

f3
29.992910 31.214010 19.51 31.008910 31.195410 16.95

f4
31.097010 31.302110 17.26 31.111810 31.274510 13.69
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for the MC method. The numerical evaluations took about 
260 seconds in an i5-3.7 GHz computer with 16 GB RAM.

4.2. Example 2 - Buckling load of a clamped plate
The second example is intended to investigate the 

uncertainty in the first four buckling loads in the case 
of a clamped plate with a one-dimensional compressive 
load Nx. In this case, the mass density is not assumed 
uncertain since it does not collaborate with the buckling 
load. The material properties are the same as the ones 
used in example 1. It is assumed the same uncertainty 
of ±5o for θ at each layer and uncertainty of ±10%, (for 
α-cut level 0) in E11, G11 and ν12. The dimensions for the 

plate are a=0.6 and b=0.6, and the laminate thickness is 
t=2.4×10-2m with orthotropic cross-ply [0°/90°/0/90°]. 
Figure  4 is obtained for the convex hulls for the first 
4 buckling loads, which are dimensionless.

For comparisons purposes, Table 2 shows the differences 
between the Interval and the simple Monte Carlo results in 
terms of the Error values.

Again, Analyzing Table 2, one can notice that the spread 
of the results obtained with the Interval-based Method is 
better when compared to the MC method since E values 
are greater (2.8% on average). The numerical evaluations 
took about 90 seconds in an i9-3.6 GHz computer with 
32 GB RAM.

Table 2. Error-values for interval output variables obtained by the Interval-based Method and the MC method.

Buckling load 
ratio

Interval-based Method MC Method

Lower bound λ Upper bound λ E (%) Lower bound λ Upper bound λ E (%)

1λ 71.673010 72.028710 9.24 71.693910 71.994910 6.28

2λ 71.707710 72.072910 9.34 71.729010 72.040310 6.49

3λ 71.783210 72.168910 9.52 71.809810 72.135510 6.49

4λ 71.814310 72.209910 9.68 71.832810 72.177510 7.15

Figure 4. Output uncertain intervals and convex hulls for the Interval-based procedure and MC Simulation for buckling loads (dimensionless 
buckling load ratio, /crit xN Nλ = ).
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4.3. Example 3 - Strength safety factor using 
Tsai-Wu failure criterion

The third example presented in this paper is the evaluation 
of the Tsai Wu failure criterion. Each laminate thickness is 
t=4.75×10-3m with orthotropic cross-ply [0°/90°/0/90°]. Like 
in example 2, mass density is not assumed uncertain since it 
does not contribute to the Tsai-Wu failure criterion. The material 
properties used are: E11=181 GPa, E22=10.3 GPa, G12=7.17 
GPa, and ν12=0.28. It is assumed the same uncertainty used in 
example 2,±5o for θ at each layer and uncertainty of ±10%, (for 
α-cut level 0) in E11, G11 and ν12. The load configuration used 
is 10000xN =  N/m, 10000yN = −  N/m, 10000xM =  Nm/m, 

10000 yM = − Nm/m. The limit strength parameters of the material 

used (carbon-epoxy29) are ( )1 1.5T
ult

σ = × ( )9
110  Pa, 1.5C

ult
σ =

× ( )9
210  Pa, 4.0T

ult
σ = × ( )7

210  Pa, 2.46C
ult

σ = × 810  Pa,  and 
( )12 6.8ultτ = × 710 Pa .

Convex hulls presented in Figure 5 is obtained for the 
maximum and minimum safety factor, λ , found using the 
Tsai Wu failure criterion. Table 3 shows the differences in the 
Interval based method and Monte Carlo method, as well as 
the Error values. The time consumed in the simulation was 
80 seconds in an i5-3.7 GHz computer with 16 GB RAM.

Note that the convex hull obtained by the method presented 
in this paper shows a violation of the failure criteria 0λ = , 
while Monte Carlo (10740 samples) finds no configuration 
that violates this limit.

Similar to examples 1 and 2, example 3 shows that the 
error found in the Interval based method was 46% and 22% 
higher when compared to the Monte Carlo method. This 
indicates that the Interval-based method found wider limits 
for the uncertain response, or in other words, a safer and 
more precise approach to uncertainty evaluation.

5. Conclusion
It was observed that the convex hulls as the output intervals are 

not well-defined when using traditional Monte Carlo simulation. 
This is attributed to the fact that the worst scenario is a precise 
combination of values of uncertain input variables that simple 
random simulations cannot obtain. Despite the considerable 
amount of simulations, the extreme (worst-case scenario) is only 
correctly defined by the Interval based methodology proposed 
in this paper. In the examples analyzed, mode frequencies and 
buckling loads, the Interval based methodology presented 2,5% 
to 4,5% larger error values when compared to the Monte Carlo 
method, which implies a larger uncertain area. For the Tsai-Wu 
failure theory, the error values are even greater (22% to 46%), 
where the Monte Carlo method did not detect a violation of the 
failure limit, which was found by the Interval based approach 
presented in this paper.

In future studies, one can apply this analysis to more 
complex manufacturing processes such as ply-off laminates 
studied by30, which are quite susceptible to imperfections 
during their manufacture, according to the authors. These 
imperfections are mainly due to the ply orientation uncertainties 
that are already included in the present methodology.
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