
Statistical Fatigue Experiment Design in Medium Density

Fiberboard

Mariano Martínez Espinosaa, Carlito Calil Jr.b

aInstituto de Física de São Carlos, Universidade de São Paulo, São Carlos – SP, Brazil
bEscola de Engenharia de São Carlos, Universidade de São Paulo,

São Carlos – SP, Brazil

Received: March 21, 2000; Revised: July 31, 2000

Medium Density Fiberboard (MDF) is a wood-based composite widely employed in several
industrial applications, in addition to its use in structures subjected to dynamic loads. Its fatigue-re-
lated aspects, however, have been consistently ignored. This work proposes to study fatigue in MDF,
including the following factors: the basic concepts of MDF and fatigue and the statistical design of
fatigue experiments in MDF, with the purpose of obtaining accurate information for analysis by
means of statistical methods. The results of our tests revealed that the statistical model is suitable to
fit the number of cycles in intermediary S and f levels and to determine the levels of the factors that
maximize the total number of cycles to failure. It was also found that the proposed design is of great
practical interest for fatigue strength in the tension in wood and wood derivatives.
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1. Introduction

The properties of wood composites, as well as cost and
manufacturing considerations, suggest that these are the
most suitable materials for several industrial applications
such as furniture, civil construction and other uses. These
products, called composites, are materials composed of
combinations of various elements, mainly wood particles
and glue, having different properties of solid wood1.

One wood-based composite that is widely used in a
variety of industrial applications is Medium Density Fiber-
board (MDF)9. However, the aspects related to fatigue in
this product have generally been ignored11, although most
service failures associated to mechanical causes of the
materials are usually fatigue-related7.

Fatigue studies of MDF are possible due to its general
properties and characteristics8. However, for such pur-
poses, an appropriate statistical experiment design must be
made to obtain accurate information for analysis by means
of statistical methods in order to reach valid and objective
inferences6.

The use of statistical experiment design in the study of
the fatigue in MDF in particular is justified by several
factors such as the reduced number of tests, reduced testing
time and, thus, reduced cost, less variability and greater
reliability of the results, among others. However, the main

reason is to obtain appropriate data that is analyzable using
the appropriate methods and statistical techniques, since
the analysis method and technique depend directly on the
design used15.

Therefore, the objective of this work is to carry out an
experiment plan for the study of the fatigue strength in the
tension in MDF in order to reduce the cost, time and
variability of the results. Another objective is to envision a
possible appropriate statistical model for MDF fatigue data
using the experimental results of the proposed tests.

2. Medium Density Fiberboard (MDF)

Medium Density Fiberboard (MDF) is the generic name
used to define a sheet composed mainly of lignin-cellulosic
fibers combined with a synthetic resin or some other suit-
able adhesive system, glued together by means of pressure
and heat. The introduction of additives during the manu-
facturing process can improve the dimensional stability,
fire resistance and impermeability of MDF17.

MDF is a homogeneous, uniform and stable product
with a flat surface having good workability, machinability
and wide acceptance for coatings with several finishes. It
is widely employed by the furniture industry owing to its
sturdiness and uniformity, which ensure satisfactory results
with conventional techniques (screwing, rabeting, cutting
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to size, gluing, etc.) and its characteristics of mechanical
strength allow for its use even in structural panels9.

MDF can also be used advantageously in the production
of lathe-turned and milled pieces which, until recently, had
been made of solid wood, such as curtain rods, parts for
chairs etc19.

3. MDF Fatigue

Fatigue is a structural failure caused by a material being
subjected to repeated stress or cyclic loading for a consid-
erable period of service time.

The stresses a material can bear under cyclic loading
are much smaller than those bearable under static loading.
In other words, a fatigue-related failure may occur at a
much lesser stress than the limit of the material’s strength.

Three basic factors generally cause fatigue-related fail-
ure10:

1) high maximum tensile stress;
2) great variation or fluctuation of applied stress;
3) a large number of stress application cycles.
A cycle is an interval of time during which a sequence

of stresses is cyclically applied to the specimen in the same
regular order. Stress is the quotient of intensity of a force
by the specimen’s surface area.

The stress waves used in fatigue tests are generally
triangular, square or sinusoidal and the typical cycles of
stress in fatigue are reverse stresses, fluctuating stress and
irregular or random stress10.

The properties of fatigue in wood and wooden products
(e.g., laminated wood) are particularly influenced by the
following factors11:

1) The wood species, place of origin, density, etc.
2) The size and shape of the test specimen.
3) The moisture content.
4) The type of applied load. Experiments normally

consist of tension, compression, bending or shear tests or a
combination of these. Most fatigue experiments are made
with harmonic loads and there are three important factors
in this type of load:

• The R-ratio (the ration between the minimum
and maximum tension).

• The value of the stress.
• The frequency (loading time), which must be

taken in account.
5) Other factors affecting the properties of fatigue in

wood are temperature, chemical treatments, adhesives, glu-
ing, etc.

Although MDF has no specific properties of fatigue, its
properties and general characteristics facilitate the study of
fatigue of this material. Thus, since MDF is a homogeneous
and approximately isotropic material, the stages of rupture
of an isotropic material subject to fatigue can be considered
for its study.

4. Statistical Experiment Design

Statistical experiment design is the process of designing
an experiment to obtain appropriate data that can be ana-
lyzed using statistical methods in order to reach valid and
objective conclusions.

Experiment design is essential in engineering to im-
prove the performance of a manufacturing process. Experi-
ment design is also widely employed in the development
of new processes. The application of experiment design
techniques during the initial phase of process development
can lead to improved process performance, less variability,
shorter development time and, thus, reduced overall cost.

The application of experiment design is simple, al-
though certain requisites must be followed. The two main
requirements in experiment design are to obtain aleatory
and replicable results15.

4.1. Selection of the variable responses, factors and
levels in experiment design

When selecting the dependent response or variable, the
experimentor must be certain that the response that will be
measured actually provides useful information about the
process under study. In experiment design, the average of
the measured characteristic is usually the response vari-
able; therefore, replicates should be made6.

In experiment design, a factor (independent variable) is
a qualitative or quantitative experimental variable, which
is investigated to determine its effect on a response. The
specific values of factors are called levels and can be
determined a priori13. From a statistical standpoint, it is
recommended that two or, at the most, three levels be used
per factor since, if the number of levels increases, the
number of tests will greatly increase.

4.2. Factorial design

In many experimental engineering situations one
knows in advance that some factors produce different re-
sponses. One particular case of this is the study of material
fatigue. When a response is influenced by certain factors,
it can be shown that, in general, factorial design is the most
efficient. Factorial design is the type of design in which all
the possible combinations of factorial levels are investi-
gated in each test15.

A complete factorial design with k factors (variables)
is obtained by choosing n1 levels of factor 1, n2 levels of
factor 2, , nk levels of factor k, and then selecting the n = n1

x n2 x x nk experiments obtained, using every possible
combination of the selected levels. For example, a 3 x 3 x
3 factorial design requires 27 tests, while a 2 x 2 x 2 factorial
design requires 8 tests6.
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4.2.1 Desirable properties of factorial designs15:

• They should direct the investigation, since they are
particularly useful in the exploratory stage of research.

• They should indicate the size of the sample to be
selected.

• They should allow for multiple comparisons, thus
facilitating the creation and critique of models.

• They should provide highly efficient parameter esti-
mators.

However, the most significant argument set forth is that
they should allow for models to be seen in the data in the
specification stage of the model (in the specification of a
functional relationship).

4.2.2. Approximate response functions

Engineering, physics, chemistry, biology and other
fields of research are often interested in a functional rela-
tionship. Such a relationship can be obtained through fac-
torial designing using the following approximations6:

E(y) = η = f (x∗
1
, x∗

2
, ..., x∗

k
) = f (X~∗) (1)

which relates the expected η value of a y response, such as
a number of cycles (or production percentage, purity,
viscosity, etc.) to k quantitative or qualitative variables x1*,
x2*, , xk*, such as stress, frequency, temperature, time,
pressure, concentration, etc.

The f (X~∗) function can assume a great variety of forms:
linear, parabolic, exponential, etc. These forms are impor-
tant because they approximate many real world relation-
ships, in addition to being relatively easy to work with and
interpret5,6. However, because reiterated tests are made for
the same X~∗ conditions, the measurements of the y response
would vary because of measurement and observational
errors and the basic variability of the experimental mate-
rial5.

The variations of y, in practice, are the differences
between the observed y values and the expected η values.
These differences, generally indicated by ε (epsilon, fifth
letter of the Greek alphabet), are called residues and are
aleatory variables with some degree of distribution of prob-
ability around their mean η value6. Therefore, our general
objective is to investigate certain aspects of a functional
relationship affected by an error and expressed as5:

y = f (X~∗) + ε (2)

In many practical problems, however, the form of the
real relationship between the dependent (y) variable and the
independent (X~∗) variables is unknown. Hence, an appro-
priate approximation of the real (y) function and the set of
independent variables must be determined, normally using
first and second order polynomials. The latter is the most
frequently used, since it allows a curve of the response to
be analyzed, which facilitates modeling the relationship

between the response and each factor using a linear or
quadratic function.

Second order models should involve at least three levels
of each factor to allow for an estimate of the model’s
coefficients. There are many factorial designs that could be
used to estimate a second order model. In this study, be-
cause only the effect of two independent variables was
verified, we will use a three-level factorial design (3k).

4.2.3. Three-level factorial designs (3k)

Three-level factorial designs are formed by k factors,
each one having three levels. In a 3k design or in any
factorial design it is more practical not to have to deal with
the actual numerical measurements of the xi* variables,
working, instead, with coded xi

c variables, i.e., coding the
levels of the factors. Codification is done mainly for the
following reasons14:

1) If the independent variables are qualitative, they are
not numeric; thus, their values need to be coded to estimate
a regression model.

2) Although the independent quantitative variables are
numeric, they should also be coded to estimate a regression
model, for the following reasons:

2.1) To estimate the parameters of the model, a matrix
termed (X’*, X*) should be inverted. Considerable round-
ing out errors may occur during the inversion process if the
absolute values of the numbers in the (X’*, X*) matrix vary
significantly, which usually leads to errors in the estimates
of parameters. Coding facilitates the computational inver-
sion of the matrix, reducing calculation errors and allowing
for more accurate parameter estimates.

2.2) A second reason for coding quantitative variables
is the problem of multicolinearity, which is the existence
of an exact or approximately exact linear relationship
among the independent variables. The problem of multi-
colinearity is inevitable in estimates of regression models
(e.g., second-order models), particularly when higher-or-
der terms are estimated. In quadratic models, for instance,
in which the two x1* and x1

2* variables are normally highly
correlated, the probability of rounding out errors in the
coefficients of regression increases in the presence of mul-
ticolinearity. These problems are usually eliminated with
coding.

The coding of the levels of the factors of the most
frequently used 3k design is -1, 0 and 1, which denote the
factor’s low, intermediate and high levels, respectively, as
illustrated in Table 1. This code is obtained theoretically by
the following equation5:

xc
i
=

x∗
i

− x
_

∗
i

S∗
i

(3)

with
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1

− x∗
0
,

where x-1*, x0* and x1* are the values corresponding to the
low, intermediate and high levels, respectively. Thus, (4)
is used instead of (1), where (4) is given by:

E(y) = η = f (xc
1, xc

2, ..., xc
k
) = f (X~ c) + ε (4)

A particularly important aspect in this study is the
design, i.e., two factors each having three levels; our inter-
est in this design lies in determining if the number of cycles
to failure depends on stress and frequency factors.

a) Determining the effects of a 32 design

The effect of the factors on the response is measured by
the change in the average response in two or more combi-
nations of the levels. In this type of factorial design there
are 9 combinations of treatments. Thus, there are eight
degrees of freedom between these combinations. The main
A and B effects each have two degrees of freedom, while
the AB interaction has four degrees of freedom. If there are
(p*) replicates, there is a total of p* 32 - 1 degrees of
freedom, which corresponds to 32 (p* - 1) degrees of
freedom for the error15.

The combinations of treatments are written in standard
order, which means that one factor at a time is introduced
successively, combining each level with the set of the
factors’ levels. The standard order for a 32 design is 00, 10,
20, 01, 11, 21, 02, 12, 2215.

YATES’ algorithm (YATES’ modified algorithm gen-
eralized for the 3k series) can be used to calculate the effects
and the respective square sum of a 32 design. The use of
this algorithm is simple and consists of determining some
columns of data. A simplified calculation procedure is
given below for the specific case of k = 2:

1) Calculate the total response of each (i) test, i.e., the
total of each replicate. This column will be denoted be Y*.

2) Using the Y* column, calculate the Y*1 column. The
Y*1 values are calculated as follows: The first third of the
column consists of the sum of each of the three sets of the
three values of column Y*, i.e., y1* + y2* + y3*; y4* + y5*
+ y6* and y7* + y8* + y9*. The second third is the third
observation minus the first one of each of the three previous
sets, i.e., y3* - y1*; y6* - y4* and y9* - y7*. The last third of
column Y*1 is the result of the sum of the first and third
observations, minus twice the second one, in each set of
three observations, i.e., y1* - 2y2* + y3*; y4* - 2y5* + y6*
and y7* - 2y8* + y9*.

3) Calculate the column denoted by Y*2. The values of
this column are calculated by the same procedure as that
used to determine the Y*1 values, using the elements of the
Y*1 column.

4) Calculate the elements of the divisor column D*
using the expression 2r3tp*, where r is the number of factors
in the effect considered, t is the number of factors in the
experiment minus the number of linear terms (levels 1) in
this effect, and p* is the number of replicates.

1) Calculate the column of effects of the E* factors,
which is obtained by dividing column Y*2 by column D*.

2) Calculate the sums of squares (SQ), which is done
by squaring the elements of column Y*2 and dividing the
result by the corresponding element of the divisor column.
The sum of squares column now contains all the informa-
tion required to construct the table of variance analyses.
However, before the table of variance analyses is built, one
must check if the data residuals have a constant variance
and normal distribution.

One of the tools most commonly used to confirm if the
variance is constant consists of plotting the residuals (êij)
vs. the estimated values (ŷij). This graph should not reveal
any obvious pattern. One of the problems that is occasion-
ally observed in such graphs is nonconstant variance, in
which the residuals graph compared against the estimated
values presents a funnel form; see Fig. 1. Variable variance
also generally occurs in cases where the data does not
follow a normal distribution. The assumption of normality
can be confirmed by plotting a histogram of the residuals,
which should have a symmetrical form. For this kind of
verification, a normal probability graph (NSCORES) can
also be used with the residuals, in which the residuals vs.
the normal n-scores are represented. If the graph presents
an approximately straight line, the distribution is approxi-
mately normal. If the variance is nonconstant and if the

Table 1. Notations used in a factorial design 32, with p* replicates.

Run (i) Response (Y) Factors

A B

1 y11... y1p* -1 -1

2 y21... y2p* 0 -1

3 y31... y3p* 1 -1

4 y41... y4p* -1 0

5 y51... y5p* 0 0

6 y61... y6p* 1 0

7 y71... y7p* -1 1

8 y81... y8p* 0 1

9 y91... y9p* 1 1

Note: y11, ... , y9p in the table 1 they indicate the replicates of the response
y.
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assumption of normality is not followed, then the original
data have to be transformed.

A logarithmic transformation is usually considered in
fatigue data to stabilize their variance and lead to their
normal distribution3.

The êij residuals for the factorial 32 design are calculated
by the following equation6:

êij = yij − ŷij (5)

With ŷij = y
_

ij, where y
_

ij are the averages of the observa-
tions in the ith test. Therefore, (5) can also be expressed as:

êij = yij − y
_

ij (6)

5. Materials and Methods
This section discusses the aspects relating to the mate-

rials used in the development of the work, directed at
obtaining the values of fatigue strength in MDF, consider-
ing the statistical factors in mechanical tests12.

• Material used in this study: MDF in sheets, supplied
by a sawmill in the city of São Carlos, with dimensions of
1,83 m width, 2,75 m length and 15 mm thickness.

• Sampling Method: The specimens were removed
from the fiberboard by the simple aleatory method, with 18
specimens selected at random according to the experiment
designs indicated in the previous section and based on the
ASTM: D1037/96a2 code.

• Dimensioning and preparation of the specimens:
To determine the tensile fatigue strength in MDF, the
specimens used followed the dimensions established by the
ASTM: D1037/96a2 code, as shown in Fig. 2. The T value
indicates the thickness of the specimen, which should not
exceed 254 mm.

• Execution of the tests: The static and dynamic tests
were carried out in the DARTEC M1000/RC universal
testing machine at LaMEM. The data obtained from the
static tests were used to establish the levels of maximum
and minimum tension for the fatigue tests. The static tests
followed the recommendations of the ASTM: D1037/96a2

code and the NBR/7190/9716 code. Reverse stress cycles

of sinusoidal form were used in the dynamic tests, consid-
ering frequencies of 1; 5 and 9 Hz for the specimens and
cyclic loads of 60, 75 and 90 percent of the material’s
strength, estimated in the static tests (on average Fr = 9.94
kN in dry condition). The procedure and results of the static
tests employed are part of the work of MARTÍNEZ and
CALIL on static tensile strength tests parallel to the surface
in MDF12.

• Design: A factorial 32 design was used, in which a
study is made of the total number of cycles to failure per Y
second (response variable), considering two replicates and
using combinations of two factors (stress and frequency),
each tested with three levels. The levels for each factor, as
well as the coding for each level, are given in Table 2, in
which the -1, 0 and 1 codes are obtained by Eq. (3), as
follows:

xc
1 =

x∗
1

− 75

15
, xc

2 =
x∗

2
− 5

4

where,

Figure 1. Plot of residuals vs. fitted values (no constant variance).

Figure 2. Dimensions of the specimens for tension test parallel to surface
(mm).

Table 2. Number of cycles, under three levels of stress and three types of
frequencies.

Coded levels xi
c -1 0 1

Stress (S) in % x1* 60 75 90

Frequency (f) in % x2* 1 5 9
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f ∗
10

=
60 + 75 + 90

3
= 75, f ∗

20
=

1 + 5 + 9
3

= 5, and, S1
* = 75

– 60 = 15 and S2* = 5 – 1 = 4.

6. Results
Table 3 presents the experimental results, considering

the notation given in Table 2.

7. Data Analyses
In agreement with section 4.2.3 (a), the analysis of the

data begins with the graph of the residuals vs. the estimated
values (Figs. 3 and 4).

Figure 3 indicates that the variance is nonconstant, i.e.,
it increases. When this is the case, a logarithmic transfor-
mation of the data (YT = log (y)) is usually carried out to
stabilize the variance.

An analysis of Fig. 4 indicates that the residues are not
distributed, since a comparison of the residue graph against
the normal scores does not follow a straight line. Proceed-
ing with the transformed data construct, the residuals vs.
estimated values are plotted (Fig. 5). Figure 5 indicates a
constant variance, while the behavior shown in Fig. 6 is
approximately linear, indicating that the residuals follow

an almost normal distribution. Hence, the YATES algo-
rithm is used in the transformed data to determine the
effects of the factors.

Table 4 shows that the greatest effects for the number
of cycles, in decreasing order, are stress (SL = -0.97017),
frequency (fL = 0.33887) and stress to the square
(SQ = -0.09234). However, the quadratic effect of S is not
as significant as the individual effects of f and S (main
effects of f and S), respectively.

Table 3. Data of MDF obtained in the factorial design 32.

Run (i) Response (Y) Factors

yi1 yi2 S F

1 6201 9423 -1 -1

2 1831 1447 0 -1

3 91 108 1 -1

4 17158 22885 -1 0

5 4405 5362 0 0

6 214 153 1 0

7 43051 37736 -1 1

8 6263 6597 0 1

9 548 482 1 1

Figure 4. Plot of residuals vs. the normal scores.

Figure 3. Plot of residuals vs. fitted values.

Figure 5. Plot of residuals vs. the fitted values (transformed data).

Figure 6. Plot of residuals vs. the normal scores (transformed data).
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Another way to detect the significant effects is to cal-
culate the normal scores of the effects and plot the effects
vs. the normal scores (Fig. 7). All the effects that are located
approximately under the straight line are insignificant,
while the significant effects are far removed from it. The
effects that are identified in this analysis are the main
effects of f and S, and no significant interaction is observed
among the factors considered.

One can also use variance analysis to confirm the mag-
nitude of the effects. This analysis is summarized in Table
5, which shows that the linear and quadratic components of
stress in the total number of cycles to failure are highly
significant. The SL component is relatively large in com-
parison to the others, while frequency has a linear effect

Table 5. Analysis of the variance for the transformed data.

Source of variation. SS DF MS F Significant

Frequency [f] 1.39 2 0.695 115.83 < 0.1%

(fL) (1.38) (1) 1.380 230.00 (< 0.1%)

(fQ) (0.01) (1) 0.010 1.67

Stress [S] 11.61 2 5.805 967.50 0.1%

(SL) (11.30) (1) 11.300 1883.33 (< 0.1%)

(SQ) (0.31) (1) 0.310 51.67 (< 0.1%)

Interaction [Sf] 0.06 4 0.015 2.50

SfLxL (0.00) (1) 0.000 0.00

SfLxQ (0.01) (1) 0.010 1.67

SfQxL (0.01) (1) 0.010 1.67

SfQxQ (0.04) (1) 0.040 6.67 1%

Residuals 0.05 9 0.006

Total 69.45 17

Table 4. YATES’ algorithm of for the transformed data, of the Table 3.

i Y* Y*1 Y*2 D* E* Combination SQ

1 7.76665 25.5714 60.9134 18 3.38408 00 206.135

2 8.59402 21.4126 4.0664 12 0.33887 (**) 10 (fL ) 1.378

3 9.21074 13.9294 -0.5338 36 -0.01483 20 (fQ ) 0.008

4 6.42316 1.4441 -11.6420 12 -0.97017 (**) 01 (SL ) 11.295

5 7.37327 1.1930 -0.0147 8 -0.00184 11 (SfLxL) 0.000

6 7.61613 1.4294 0.5947 24 0.02478 21 (SfQxL) 0.015

7 3.99247 -0.2106 -3.3243 36 -0.09234 (**) 02 (SQ ) 0.307

8 4.51511 -0.7073 0.4875 24 0.02031 12 (SfLxQ) 0.010



only on the total number of cycles to failure. The SfQxQ

interaction is significant at 1%, i.e., there is a slight inter-
action between the two factors.

Observation 1: Currently there are many commercial
computational programs for data analysis. The MINITAB
V.10 was used in this study owing to several advantages it
offers, such as its easy use, precision, and versatility of the
different statistical techniques, among others.


