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With the increasing demands of power, the security 
problem of power grid is becoming more and more serious. 
Insulator, as the key component of the system, is related 
to the safety of the entire grid. In recent years, polymeric 
insulators have been widely used in power supply and 
distribution systems because of good shatterproof nature, 
light weight, superior mechanical property and low 
maintenance cost1-3. Insulator with hydrophobic surface 
has better electrical flashover characteristics than that with 
hydrophilic surface or glass. However, the hydrophobicity 
of polymeric insulators in service will degrade by many 
factors, such as pollution deposits, surface arcing, and aging. 
Therefore, it is necessary to find an effective method for 
determining the hydrophobic level of insulated material’s 
surface.

According to the guide of IEC62073, three methods are 
given for the measurement of hydrophobicity, i.e. contact 
angle method, surface tension method and spray method4. 
The first two traditional laboratorial methods of measuring 
contact angles and surface tension are not practical in the 
field because requirements of well-defined experimental 
conditions can’t be satisfied, such as fixed illumination, 
optimal view of a single water drop, or small-flat, horizontal 
samples5.

Oppositely, the spray method is widely used because 
of its simple and low requirement of equipments. As a 
pioneer work, the HC (Hydrophobicity Classification) 
method proposed by STRI (Sweden Transmission Research 
Institute) offers a simple procedure for obtaining a collective 

estimate of an insulating surface’s hydrophobicity in the 
field which is regarded as the authoritative standard6-8. In 
this method, six hydrophobic classes from HC1 to HC6 are 
defined, according to the shape of waterdrops and the 
percentage of wet regions on the hydrophobic surface. The 
defined HC1 performs the highest hydrophobic surface, 
where only discrete and extremely circular waterdrops 
are formed. With the increase of HC, the hydrophobicity 
declines gradually. When it approaches to HC4 or HC5, 
the insulator is becoming hydrophilic, which in turn can be 
interpreted as a warning sign.

Traditional HC method has some subjective drawbacks 
which requires skillful technicians and proper experimental 
time. Therefore, some objective measuring methods based 
on image processing and feature extraction are proposed,5,9-22 
such as fractal dimension, circular factor, goniometric 
measurement using Hough transformation, scaled entropy 
and histogram analysis, surface energy, and online 
hydrophobicity measurement methodology. However, 
only one or two characteristic parameters are adopted for 
classification in these methods which can’t describe images 
comprehensively. Furthermore, researchers always focus on 
the improvement of methods, and there is still no research 
on embedded instruments for on-site measurement.

Therefore, an embedded system for measuring 
hydrophobicity named EIMHMS (Embedded Measuring 
System of Insulator Material Hydrophobicity) is designed 
by misjudging-cost in this paper. The methods used in 
EIMHMS are easily implemented, and this establishes 
the foundation for embedded measuring instruments. In 
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1. Introduction
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EIMHMS, a series of processing procedures are proposed 
for better segmenting droplets which are suitable for 
embedded platform. Furthermore, in order to synthesize 
the characteristic parameters mentioned above, four typical 
parameters are proposed to depict the feature of each sample. 
Then a classifier based on MultiBoost decision tree23-27 is 
employed, and the generated “if-else” rules can operate 
without primary algorithm. In the end, promising results 
can be obtained in EIMHMS and all the procedures can be 
applied in embedded platform perfectly.

2. Experimental Procedure
2.1. Equipment

In our experiments, a digital camera with 14 million 
pixels and 25X optical zoom (Sony, W-315), a personal 
computer and a tiltable platform used for fixing samples are 
equipped. Furthermore, insulator specimens with different 
hydrophobic levels are needed, and each sample used in 
experiments is thin circular plate which is made of silicone 
rubber (SIR) with light red color, and has a thickness of 
5mm and a diameter of 190mm. The waterdrop patterns are 
produced by an ordinary spray bottle containing distilled 
water.

2.2. Experiment
For simulating actual conditions in the field, before our 

tests, some principles should be followed (see Figure 1):
1)	All the images should be taken outside,
2)	Each sample should be placed with a suitable height 

Hv and angle α,
3)	There is a horizontal distance of Hh = 2m-3m between 

the camera and sample,

4)	Any auxiliary spotlights are forbidden.
Fo r  ob t a in ing  samples  w i th  va r ious  HC, 

Thomazini et al.16,19,20 artificially change the hydrophobicity 
of specimen with spraying WIA (Water and Isopropyl 
Alcohol) solution at different concentrations (from 0 to 
100%). Although this method can make different levels 
of hydrophobicity with only one or two specimens, the 
images obtained are extremely standard which can’t present 
the actual situations of the insulator’s surface. Therefore, 
we adopt another approach for obtaining samples with 
spraying water on insulators of different HC. First, more 
than 140  insulators with different hydrophobicity (the 
number of specimens with HC1-HC6 is respectively 21, 22, 
25, 28, 21, and 24) are provided by WHVRI (Wuhan High 
Voltage Research Institute). Each specimen is labeled for a 
HC which has been defined by various tests, such as DDT 
(Dynamic Drop Test) and STM (Surface Tension Method), 
and these insulators can be used as the standard specimens. 
The experiment consists of the following steps:

Step1. Place the tiltable platform at the height of 
2m from the ground,

Step2. Fix the sample on the top of the platform and 
make it titled by 30° from the horizontal,

Step3. Spray pre-prepared distilled water on the surface 
of the fixed sample with spray bottle,

Step4. When the camera and droplets approach to the 
steady statue, photograph the spraying image with camera 
at the horizontal distance of 3m,

Step5. Repeat steps above until the images of all the 
samples are obtained.

After getting all the images, image processing and 
classification will be followed. For subsequent analysis, 
images are transferred to a personal computer with USB 

Figure 1. Illustration of equipments.
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(Universal Serial Bus) interface. The main software tool for 
computation is the Matlab v7.11 and its image processing 
toolbox v7.1, which also provides a simple user-friendly 
environment for image analysis and GUI (Graphical 
User Interface) design. PC used for experiments is a Dell 
computer with a 3.0GHz CPU and 4GB ram. Furthermore, 
a DSP platform with TMSDM6446 processer is also set 
up for testing procedures. Most codes in experiments are 
programmed to DSP by CCSLink toolbox (Matlab Link for 
Code Composer Studio).

3. Image Processing Methods
More than 140 images are made during the course 

of experiments. In order to exclude the edge of insulator 
plate, only the central part of each collected image is used, 
i.e. a rectangular region of 200×200 pixels. Before Image 
processing, all the RGB images should be transformed into 
gray images to reduce the amount of calculation. Some 
original images with various HC are shown in Figure 2.

It is difficult to recognize waterdrops from images 
because the color of insulators is various and the background 
of images is much complex. Furthermore, water transparency 
leads to smaller gray difference, and light reflection leads 
to fuzzy boundary. In order to extract intact droplets and 
operate on the DSP platform, simple and appropriate image 
processing methods should be proposed. Here we propose 
an adaptive threshold segmentation method based on 
canny operator (COATS) which can produce better results 
than single method. To reduce elapsed time, we introduce 
the integral image to replace the original image. In the 
end, binary image optimization based on mathematical 
morphology is conducted.

3.1. Adaptive threshold segmentation
An integral image is a tool that can be used whenever we 

have a function from pixels to real numbers f(x,y), and we 
wish to compute the sum of this function over a rectangular 
region of the image26-28. If we need to compute the sum over 
multiple overlapping rectangular windows, we can use an 
integral image and achieve a constant number of operations 
per rectangle with only a linear amount of preprocessing.

 I(x, y) f (x, y) I(x 1, y) I(x, y 1) I(x 1, y 1)= + − + − − − − 	 (1)

Where I(x,y) represents the integral image, f(x,y) represents 
the total pixels of a rectangular region. With the integral 
image, the sum of the function for any rectangle with 
upper left corner (x1,y1), and lower right corner (x2,y2) can 
be computed in constant time using the following equation
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f (x, y) I(x , y ) I(x , y 1) I(x 1, y ) I(x 1, y 1)
=

= − − − − + − −∑ 	 (2)

The main idea in adaptive threshold algorithm is that each 
pixel is compared to an average of its surrounding pixels. 
If the value of the current pixel is t percent lower than the 
average then it is set to black, otherwise it is set to white. 

With the integral image, we compute the average of an 
s×s window of pixels centered around each pixel, and the 
pseudo-code is shown below28.

1: for i = 0 to w do
2:     sum ← 0
3:     for j = 0 to h do
4:        sum ← sum+in[i, j]
5:        if i = 0 then
6:          intImg[i, j] ← sum
7:        else
8:          intImg[i, j] ← intImg[i−1, j]+sum
9:        end if
10:    end for
11: end for
12: for i = 0 to w do
13:    for j = 0 to h do
14:       x1 ← i−s/2 {border checking is not shown}
15:       x2 ← i+s/2
16:       y1 ← j−s/2
17:       y2 ← j+s/2
18:       count ← (x2−x1)×(y2−y1)
19:       sum ← intImg[x2,y2]−intImg[x2,y1−1]−intIm

g[x1−1,y2]+intImg[x1−1,y1−1]
20:       if (in[i, j]×count) <= (sum×(100−t)/100) then
21:          out[i, j] ← 0
22:       else
23:          out[i, j] ← 255
24:       end if
25:   end for
26: end for

3.2. Improved canny operator
Canny edge detection algorithm29 is one of the most 

commonly used image processing algorithms on embedded 
platform with its easy programming, excellent performance 
and the three criteria30. However, when applying Gaussian 
filter, it will cause the loss of edge, and with the influence of 
shadow, it will sometimes provide false results. Therefore, 
an improved canny operator based on droplets is proposed:

1)	Conduct traditional canny operator and obtain the 
edge image E(i,j). Then label all the isolated lines as 
L1, L2,…, Ln. If Li is a closed curve, we consider Li as 
the real edge; otherwise skip to step 2).

2)	For an open curve Lj, we will conduct further 
diagnose. First, label the two endpoints a and b of Lj, 
and select n points between a and b, i.e. d1, d2,…, dn. 
Second, respectively calculate the tangent’s oblique 
angle A1, A2,…, An of each point in Lj. In the end, 
calculate the difference δA between the maximum 
Amax and minimum Amin of Ai. If δA> π, we consider 
Lj is real edge of droplets; otherwise Lj is the false 
edge produced by shadow and should be cast out.

3)	With all the procedures above, results can be obtained, 
and denoted by EE(i,j).

3.3. COATS method
In order to obtain promising results, more details about 

waterdrops and edges should be applied. With results, 
we find that the canny operator is sensitive to noises and 
illumination, and the adaptive threshold method causes 
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Figure 2. Image processing results. a1)-a6) represent the original images from HC1-HC6, b1)-b6) represent the results of the adaptive 
threshold method from HC1-HC6, c1)-c6) represent the results of the COATS method from HC1-HC6, d1)-d6) represent the final results 
of mathematical morphology from HC1-HC6. Average elapsed time is 0.922 seconds on PC and 2.3 seconds on DSP.
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fuzzy periphery of each segmentation region. Therefore, 
we propose a mixed method combining the results of 
two methods. Considering the operational capability and 
programming complexity of DSP, the final results are 
obtained by adding these two images simply which are 
proved to be good enough.

3.4. Binary image optimization based on 
mathematical morphology

In order to remove noises and useless points which 
are still in results, we adopt a series of morphological 
operations31:

1)	Apply erosion and morphological reconstruction 
operations to remove small pixels and keep the 
original shape of the rest pixels,

2)	Apply close operation to fill some narrow breaks in 
the droplets.

3)	Eliminate the rest of small droplets and noises with 
opening operation.

3.5. Results and analysis
All the procedures above are applied on DSP platform, 

and the results in Figure 2 are operated on DSP platform 
and displayed in Matlab window. Furthermore, some results 
on LCD of DSP platform are shot by camera (see Figure 3).

The adaptive threshold method with integral image 
consumes less time than some other methods (tests in our 
other experiments) and performs better for the image with 
uneven illumination. Because of its easy implementation, 
it can operate on the embedded equipment perfectly. As 
shown in Figure 2b, although approximate shapes of droplets 
with different hydrophobicity are segmented, there are still 
some noises, conglutination and small useless droplets. 
Therefore, more information should be applied for further 
extraction, and we conduct an improved canny operator. 
However, although some accurate edges are obtained, there 
are still some redundant pixels (see Figure 2c), and with 
mathematical morphology operations, these pixels will be 
removed completely (see Figure 2d).

As shown in Figure  2d, all the procedures of image 
processing have been completed, and most droplets are 
extracted integrally. For the low hydrophobic images, such 
as HC5 and HC6, in which there is only one or two big water 

film parts, are easy to be segmented because of the strong 
contrast. However, it is difficult to recognize which region 
is wet. As shown in Figure 2b and 2c, there are more noises 
in the unwetted region than that of the wet region, and we 
can distinguish by using this criterion.

As the samples are labeled by experiments and experts, 
the errors due to images are derived from the inaccurate HC 
which may result in misjudgements in the end. However, 
these samples are tested for many methods, and the WHVRI 
has also conducted verification tests, and we consider that 
the errors can be ignored for classification. Furthermore, 
the small quantity of samples can result in inaccurate 
classification model which may reduce the accuracy of 
classifier (the analysis will be elaborated in Sec. 6).

4. Characteristic Parameters Extraction
For classifying different hydrophobic levels, some 

characteristic parameters should be given for depicting 
each image. While there are many attributions proposed 
by experts, such as fractal dimension, circular factor, the 
largest shape factor and so on. To synthesize the advantages 
above, this paper adopts four parameters improved by our 
previous work.

4.1. Characteristic parameters
Let N be the number of droplets recognized, Si, Ci, (xi,yi) 

be area, perimeter and center of bound rectangle of droplet 
i(0 ≤ i ≤ N)32.

1)	Cover: Cover is the ratio of areas covered by water 
to areas not covered by water

N
i

i 1
cover S / LW

=
= ∑  	 (3)

Cover is one of most common parameters used for 
judging hydrophobicity of materials and is an important 
characteristic parameter which represents the overall 
hydrophobicity of material’s surface.

2)	Dis_uni: Dis_uni describes the uniformity of 
distribution in nine equal regions of a spraying image. 
The more evenly the waterdrops distribute, the bigger 
the dis_uni becomes.

Figure 3. Results on LCD of the DSP platform. a)-d) represent the original image, threshold segmentation result, COAT result and final result.
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The computation of Dis_uni is essentially in calculating 

the shannon entropy of water distribution. The whole 
image is divided into nine zones c1, c2,…,ck (k=1, 
2,…, 9), and we separately calculate the probability 
pi = n(row, col)/N of  ck which means the probability of 
droplets falling into ck, and then get its entropy. The bigger 
entropy means evenly distributed droplets and better 
hydrophobicity.

3)	Area_uni: Area_uni describes the uniformity of areas 
covered with water.

 

n N
i i

i 1 i 1
(S S) S

area _ uni , and S
NS N

= =
−

= =
∑ ∑

	 (6)

Area_uni represents the size of droplets from the side, 
and is equivalently to calculate the area deviation of each 
droplet and the mean area. Bigger deviation indicates bigger 
Area‑uni and worse evenness of distribution. To some extent, 
it also tells the difference between droplets and water films 
of some insulators with lower hydrophobic levels. Because 
the area of water film is bigger than uniform droplet a lot, the 
value of Area_uni is bigger when there are some water films.

4)	Round_de: Round_de is the average round degree of 
all droplets.

 
N

i
2

i 1 i

4 S
Cround _ de

N
=

π

=
∑ 	 (7)

24 /I iS Cπ  is the formula of calculating roundness of 
irregular circle. In the equation above, 24 /I iS Cπ  is used 
for calculating the area of standard circle, and the roundness 
can be obtained with dividing by the real area Si. Round_de 
represents the shape of droplets, and it is closer to ideal circle 
when Round_de approaches to 1.

4.2. Tests of geometrical independence
As we know, a good characteristic parameter should 

have the geometrical independence. Therefore, we make 
rotation and scale transformation on spraying images 
with HC1-HC6, and observe the changes of Cover, 
Dis_uni, Area_uni, and Round_de in the case of geometric 
transformation.

1)	Tests of Cover
Make rotation and scale transformation, and observe the 

change of Cover. As shown in Figure 4, 4a is the test of scale 
transformation, and 4b is the test of rotation transformation.

As shown in Figure 4a, Cover has obvious change only 
when the image narrows down to 0.1-0.3 of the original 
image, and Cover is inaccurate when the rate approaches 
0.1. As shown in Figure 4b, Cover almost has no change 
when making the rotation tests. So we can conclude that 
the parameter Cover has good geometrical independence.

2)	Tests of Dis_uni
Make rotation and scale transformation, and observe 

the change of Dis_uni. As shown in Figure  5, 5a is the 
test of scale transformation, and 5b is the test of rotation 
transformation.

As shown in Figure 5a, Dis_uni has obvious change 
only when the image narrows down to 0.1-0.3 of the original 
image, and Dis_uni is inaccurate when the rate approaches 
0.1. As shown in Figure 5b, Dis_uni almost has no change 
when making the rotation tests. So we can conclude that 
the parameter Dis_uni has good geometrical independence.

3)	Tests of Area_uni
Make rotation and scale transformation, and observe 

the change of Area_uni. As shown in Figure 6, 6a is the 
test of scale transformation, and 6b is the test of rotation 
transformation.

As shown in Figure 6a, Area_uni has obvious change 
only when the image narrows down to 0.1-0.3 of the original 
image, and Area_uni is inaccurate when the rate approaches 
0.1. As shown in Figure 6b, Area_uni almost has no change 
when making the rotation tests. So we can conclude that the 
parameter Area_uni has good geometrical independence.

4)	Tests of Round_de
Make rotation and scale transformation, and observe 

the change of Round_de. As shown in Figure 7, 7a is the 
test of scale transformation, and 7b is the test of rotation 
transformation.

As shown in Figure  7a, Round_de of HC5-HC6 has 
obvious increase when the image narrows down to 0.1-0.3 of 
the original image, and Round_de of HC1-HC4 has obvious 
decline when the rate approaches 0.1-0.2. As shown in 
Figure 7b, Round_de almost has no change when making 
the rotation tests. So we can conclude that the parameter 
Round_de has good geometrical independence.

The parameters above are selected from lots of 
attributions of the spraying image. They are all independent 
to the real size and angle of images that is convenient for 
classification. The four parameters of samples are shown in 
Figure 8, and we can find that Dis_uni has poor distinguish 
ability and on the contrary the other three parameters are 
better for classification.

5. Classification Based on MultiBoost 
Decision Tree
After getting attributions of all spraying images with 

different hydrophobic levels, classification will be employed 
in the end. In our experiments, both the PLSR (Partial 
Least‑Square Regression) method33 based on mathematical 
model and the decision tree method based on machine 
learning are carried out. Compared with results, we conclude 
that there is no obvious mathematical relation between the 
characteristic parameters and hydrophobic levels adopted 
in this paper. In order to develop embedded equipment 
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Figure 4. Tests of Cover with various hydrophobic levels. a) Scale transformation, b) Rotationtransformation.

Figure 5. Tests of Dis_uni with Various Hydrophobic Levels. a) Scale Transformation, b) Rotation Transformation.

Figure 6. Tests of Area_uni with Various Hydrophobic Levels. a) Scale Transformation, b) Rotation Transformation.

Figure 7. Tests of Round_de with Various Hydrophobic Levels. a) Scale Transformation; b) Rotation Transformation.
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for measuring hydrophobicity, simple and easy methods 
for classification should be adopted. The “if-else” rules of 
decision tree are fit for running in MCU (Micro Control 
Unit) with low operation speed.

The training and classification steps of decision tree 
induction are simple and fast which can be applied to any 
domain of data distribution. However, simple classifier can’t 
meet the needs of error yet, and the committee learning 
algorithm is proposed for classification. Decision committee 
learning has demonstrated spectacular success in reducing 
classification errors generated by learned classifiers. These 
techniques develop a classifier in the form of a committee 
of subsidiary classifier. The committee members are 
applied to a classification task and their individual outputs 
are combined to create a single classification from the 
committee as a whole. This combination of outputs is often 
performed by majority vote. Examples of these techniques 
include classification ensembles formed by Bagging, 
AdaBoost, and Wagging23,24.

5.1. MultiBoost decision tree
Two decision committee learning approaches, AdaBoost 

and Bagging, have received extensive attention. Both 
AdaBoost and Bagging are generic techniques that can be 
employed with any base classification techniques. They 
operate by resampling selectively from the training data 
to generate derived training sets to which the base learner 
is applied. A number of studies comparing AdaBoost and 
Bagging suggest that AdaBoost and Bagging have quite 
different operational profiles. In general, it appears that 

Bagging is more consistent, and the frequency to increase 
errors of the base learner is less than AdaBoost does. 
However, AdaBoost appears to have greater average effects, 
and has substantially larger error reductions than Bagging 
does on average. It is confirmed that AdaBoost reduces both 
bias and variance while Bagging and Wagging have little 
effect on bias and greater effect on variance25. MultiBoost 
(Combining Boosting and Wagging) is shown to achieve 
most of AdaBoost’s superior bias reduction coupled with 
most of Bagging’s superior variance reduction.

5.2. Result and analysis
Given the theories and experiments above, a MultiBoost 

tree based on C4.5 is adopted for our classification. Results 
of training and testing are provided by DSP platform with 
“if-else” rules, and k-fold cross validation is applied by 
Matlab (see Figure 9).

Firstly, because of the limited number of samples, 
we conduct k-fold cross validation method to verify the 
rules of decision tree, which divides the full data set into 
k subsets. When modeling, only k-1 subsets are used, and 
the remaining subset is used for validation data to verify 
the model. In this case, experiments will be repeated for 
k times, and there will be a predicted value in the end. The 
advantage of this approach is that it repeatedly uses random 
subsets for training and validation at the same time. K-fold 
cross validation is used for training and validation with the 
small data set, and it also can test the stability of model. 
Furthermore, training and testing experiments are also 
employed, which divide the full data set into two subsets, 

Figure 8. The characteristic parameters of samples with various hydrophobic levels.
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i.e. training data and testing data. As shown in Figures 9a 
and c, the error (%) of MultiBoost is less than AdaBoost 
algorithm. Because of small data set, only a few samples 
are applied for testing, and the error (%) is relatively large.

With results, we can conclude that both AdaBoost and 
MultiBoost methods can achieve a higher precision with the 
full data set, and the error of AdaBoost is 0%, which agrees 
with reference26 published in our previous paper. However, 
the precision of AdaBoost is lower than that of MultiBoost 
with k-fold cross validation and testing data, which proofs 
poor robustness and over-fitting with full data set. This 
indicates MultiBoost algorithm is better.

6. Discussion
From the figures above, MultiBoost decision tree 

employed in classification is better than our previous work. 
Because the data set used in experiments is very small, 
we can’t build a set of rules more accurately. Therefore, 
besides training and testing experiments, we also adopt a 
“k-fold cross validation” method to verify the validity of the 
method. It is worth noting that once the rules of decision tree 
are established, we can only use “if-else” rules to test new 
samples which can be implement easily for the embedded 
platforms.

Image processing is an effective method in classifying 
hydrophobic levels of insulators, and there are many image 
processing methods based on spraying images are proposed, 
such as WTH + EQU16 (White Top-Hat + Histogram 
Equalization), image segmentation with multi-threshold,18 
etc. WTH+EQU is proposed by Thomazini et al., and they 
combine white top-hat, histogram equalization and sobel 
operator to obtain edges of droplets. In our experiments, we 
also adopt WTH+EQU method to test their and our samples, 
and we get the same results with their images, but can’t 
obtain satisfying results with our samples. It is because the 
samples are created with spraying solutions produced by 
mixtures of isopropyl alcohol and distilled water, and the 
solution presents a strong gray difference with background 
which is easy for segmentation. Furthermore, we conduct 
simple canny operator with their samples, and also get 

more accurate results which indicates the accuracy relies on 
their standard spraying images. Image segmentation with 
multi-threshold is applied in our previous work, and better 
results of images with uniform illumination can be obtained. 
Because of the transparency of droplets, there is little 
difference between backgrounds and droplets except edges. 
So we conclude that traditional image segmentation is not a 
valid method. Compared with our previous work, methods in 
this paper are more universally applied for uneven lighting 
images, but not for all the images (e.g. dirty insulators) and 
some parameters should be set manually (e.g. the size of 
structure element). Therefore, we will try to search for some 
adaptive methods in the following works. Furthermore, we 
apply other image segmentation methods, such as spectral 
clustering method, region growing algorithm, etc.34,35. But 
we can’t obtain better results.

Four characteristic parameters adopted in this paper 
have specific geometric significance and synthesis some 
frequently-used characteristic parameters, such as circular 
factor, shape factor,9 cover rate, etc which can exclude the 
limitation of single parameter.

In classification, besides supervised and unsupervised 
clustering methods, we also applied mathematical 
regression method, such as PLS (Partial Least Squares), 
PCA (Principal Component Analysis) etc. But there is no 
satisfying nonlinear equation for prediction and we conclude 
that these four parameters have no obvious mathematical 
relation with HC levels.

Although AdaBoost algorithm get 0% error with full 
training data set, it is less accurate than MultiBoost. It 
indicates that AdaBoost is easy to be over trained and 
has lower generalization. Besides, SVM (support vector 
machine) applied in our previous work can also obtain good 
results. In the next following study, we want to search for 
some factors which can be expressed with equation like 
fractal dimension by Thomazini et al.19,20.

7. Conclusion
Measuring the hydrophobicity of insulated material’s 

surface is important to supervise the quality of insulating 

Figure 9. Errors (%) of AdaBoost and MultiBoost algorithm. a) Errors with training subset, b) Errors with testing subset,  
c) Errors with k-fold cross validation method.



Dong et al.136 Materials Research

material’s production, and working insulators outdoors. 
In order to replace manual operation, we adopt image 
processing and pattern recognition method for classification.

We conduct many experiments with various analysis 
methods and finally decide to choose the above-mentioned 
method, “combine the canny operator and adaptive threshold 
using the integral image”. The testing results are essentially 
satisfactory compared with our previous work (AdaBoost 
Decision tree). But the algorithm used for image processing 
is still complex and is only effective for most images, we will 
try to search for simple and more universal approaches and 
make them available on the embedded instrument.

We adopt four characteristic parameters to represent 
various hydrophobic levels which synthesize some merits 
proposed by other scholars. Given our previous work, we 
adopt a novel and simple method, MultiBoost decision tree, 

to improve the performance of classification. MultiBoost 
decision tree can be used to reduce errors by combining 
the advantages of AdaBoost and Bagging. Furthermore, 
when the training process is completed, we can obtain the 
rules of classification. Then we can apply the “if-else” rules 
for testing without primary algorithm which lay a solid 
foundation for embedded implementation.
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