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Theoretical determination of the ground-state geometry of Si clusters is a difficult task. As the
number of local minima grows exponentially with the number of atoms, to find the global mini-
mum is a real challenge. One may start the search procedure from a random distribution of atoms
but it is probably wiser to make use of any available information to restrict the search space. Here,
we introduce a new approach, the Assisted Genetic Optimization (AGO) that couples an Artificial
Neural Network (ANN) to a Genetic Algorithm (GA). Using available information on small Sili-
con clusters, we trained an ANN to predict good starting points (initial population) for the GA.
AGO is applied to Si

10
 and Si

20
 and compared to pure GA. Our results indicate: i) AGO is, at least,

5 times faster than pure GA in our test case; ii) ANN training can be made very fast and success-
fully plays the role of an experienced investigator; iii) AGO can easily be adapted to other optimi-
zation problems.
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1. Introduction

Artificial Neural Networks (ANN) and other artificial
intelligence algorithms have proved to be very useful tools
in theoretical and experimental Chemistry. Recently,
Gasteiger and Zupan1 have compiled some of the most im-
portant applications of ANN in Chemistry. Some interest-
ing examples include automatic identification of groups of
molecular spectrum and the determination of the sequence1

of amino-acids in a protein. Other important applications
are: i) comparison of ANN with quantum mechanical tech-
niques for the prediction of molecular properties for inor-
ganic systems2. ii) predictions, made by Sigman and Rives3,
of atomic ionization potentials using shell model param-
eters as input data for the ANN. These applications encour-
age us to explore the potential of ANN in yet another field:
the prediction of the ground-state geometry of clusters.

Due to the problems in experimental4,5 production and
selection of silicon clusters, traditional methods fail to es-
tablish their ground-state geometry. Therefore, one must
infer the structure of these clusters, either from indirect evi-
dence or from theoretical calculations. On the other hand,

theoretical calculation of the geometry of the ground-state
of a large collection of atoms is an extremely complicated
task due to the following reasons: i) most of these problems
requires quantum mechanical methods to produce a realis-
tic total energy. These calculations are very demanding of
computer resources6, and ii) the energy hyper-surface de-
pends on a large number of variables and has countless lo-
cal minima. For instance, a cluster composed of ~150 no-
ble-gas atoms7 has an estimated number of 1060 minima!
An even larger number of local minima is expected for cova-
lent materials. Obviously to select the global minimum
among so many local minima is a very difficult task.

ANN atractive features make them useful for model-
ling, simulation, control and prediction8-10 in many fields of
sciences. In most of these applications, ANN are trained
with data collected during operations or experiments. After
training, ANN are able to deliver the desired predictions
thanks to their natural generalization capability.

Traditionally, practical problems in Chemistry and Phys-
ics are transformed into optimization problems. Many al-
gorithms exist to solve these problems and they may be split
in two groups: i) gradient based methods11,12. For instance,
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the conjugate gradient12 method is a procedure based on the
use of derivatives. These methods are not designed to avoid
being trapped by local minima. Thus, it must be repeated
several times starting from different initial points. The best
result of a series of iteractive procedures is assumed as the
sought solution; and ii) methods that do not use derivatives13.
Genetic algorithms14-16 and simulated annealing13,17 are op-
timization methods that do not depend on the calculation of
gradients. They imitate natural processes and they are able
to overcome barriers to avoid local minima. No matter which
optimization method, the choice of efficient starting point
(or points) is of vital importance for a successful search.

Recently, Cundari and Moody18 used ANN to predict
molecular properties of a series of diatomic molecules. They
showed that, after proper training, ANN can predict chemi-
cal quantities such as vibration frequency, binding energy
and equilibrium distance as accurately as “ab-initio” calcu-
lations.

Here, we want to associate ANN to a quantum chemis-
try method to search for the geometry of the ground-state
of silicon clusters. We used ANN to select good starting
points for an iterative optimization method. Specifically, an
ANN will provide candidate structures for the genetic algo-
rithm. Differently from ref. 18 that used ANN to compare
with first-principles calculations, we used the ANN to ac-
celerate the quantum chemistry calculation instead of re-
placing it. We chose to test the method under stringent con-
ditions. The miniaturization of devices stimulates the inter-
est in the properties of Silicon clusters19 because silicon re-
mains as the most important element for the development
of electronic devices. Therefore, the search for structural
models of silicon cluster is technologically motivated be-
cause structure determines, in good part, the electrical and
mechanical properties of the material20.

Previous works tried to predict three-dimensional ge-
ometry of silicon clusters. First-Principle calculations21-23

are limited to few atoms. Only small clusters (up to ~ 10 at-
oms) can be completely investigated21. For larger clusters,
first-principle calculations are not feasable. For clusters with
more than 10 atoms, searches are artificially restricted to
models24,25.Previous attempts were limited to high
symmetries or were based on the geometry of the crystal26,
or yet, on the reconstruction surfaces of Silicon27.

In this work, we used ANN to distinguish the affinity
among different atomic layers. Starting with information
obtained from small clusters whose energies were previ-
ously calculated, we wanted ANN to identify which layers
tend to attract each other more strongly. Avoiding sequences
of layers that ANN predicts as unfavorable we can keep the
search algorithm from wasting valuable time. In this case,
ANN learning power plays the role of an experienced in-
vestigator.

A small set of training data is used to train the ANN.
Obviously. one should not expect that an ANN trained with
such information could accurately predict energy values for
new clusters. However, it is able to select structures effi-
ciently for the subsequent global optimization algorithm.
In our test case, we used the genetic algorithm . Our results
show that the ANN significantly increase the efficiency of
the algorithm optimization.

Next, we will present how we transformed the chemical
problem into a classification problem. Then we discuss, the
architecture of the ANN and the results obtained by the com-
bination of the classifier–ANN with the genetic algorithm.

2. Artificial Neural Network Coupled
to Genetic Algorithm

In order to insert geometric information into ANN, we
have described the structure of a cluster as a piling up of
plane layers of atoms. Such treatment resembles the one
presented by Grossman and Mitas24. They suggested a geo-
metric description of the silicon clusters as a stacking of
triangular elements, with some atoms in the ends, accord-
ing to Fig. 1.

Figure 1 shows three-dimensional structures described
as a series of layers, each one containing three atoms. Here,
we described each cluster as a piling up of planar polyatomic
layers with up to five atoms. This choice restricts the number
of different descriptions of a cluster with N atoms.

We selected a group of possible structures for the de-
scription of the layers. (Fig. 2).

As an example, Fig. 3 shows Si
6
 cluster represented by

5 different descriptions, based on the elements of Fig. 1. It
is important to point out that the geometric elements used
in each description and its associated energy will be used as
input data for ANN.

The neural classifier was built to filter the configura-
tions that would be supplied to the genetic algorithm as
possible candidates. ANN distinguishes which piling up of
atomic layers would probably have high binding energy,
i.e., the more stable structures. It also should be possible to

Figure 1. Si
14

 cluster. a) global view of the cluster; b) one can see
the sequence of atomic layers.
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train it with a quite restricted number of elements in the
training group. We divided its preparation in three steps:
generation of input data; b) training and; c) prediction.

The first step consists of obtaining information and the
necessary elements to the description and characterization
of the system. We supplied, as input data for the ANN, the
binding energy of 110 clusters. The training group com-
prises structures of clusters with 9 or less atoms. It is im-
portant to point out that the application of the neural classi-
fier is combined to a method of total energy calculation.
Any method that we chose would be equally convenient. In
this work, we used a Tight Binding (TB) semi-empirical
method whose detailed description can be found in the ref-
erences28-30.

Next we trained the ANN, adopting as input data the
110 structures and as output data their respective energies.
This is an extremely important step because it will deter-
mine the quality of the predictions to be accomplished by

the ANN. We used the training method known as back-
propagation31. We have trained ANN to discern the struc-
tures appropriate for global minimization from the inad-
equate ones. Thus, based on the previous knowledge of
smaller clusters, ANN distinguishes high binding energy
structures and send them to the Genetic Algorithm (GA).
Table 1 shows that the binding energy per atom for Si6 is
larger than 3 eV. It is expected that binding energy per atom
increases with the number of atoms, we chose 2,8 eV as a
reference value. This choice takes into consideration that
ANN was trained with very few input data and therefore, it
is not expected that ANN predictions should be of quantita-
tive quality. It is fast and simple to expand the training set
to use the same approach to other clusters. Training does
not need to be very long to yield reliable results, even fast
training improves the performance of the Genetic Algorithm.
We’ll make it clear in the results section.

Finally, the ANN make their predictions. Select the size
of the cluster SiN (N > 9) whose ground-state geometry we
want to predict. From every possible combination of lay-
ers, the preditor selects those classified as appropriate and
it eliminates the others. The “good” structures are sent to
the GA in two ways: (i) a certain number of them is used as
the GA’s initial population; (ii) the remaining ones are in-
troduced in the population of the algorithm through muta-
tions. In other words, every n generations a new structure is
introduced into the population. Cluster’s binding energy are
calculated by the TB approach and this is the quantity that
is maximized by the genetic algorithm. In order to test the
method just presented, we chose to determine the ground-
state geometry of the Si10 cluster. This an interesting test
because this system possesses many local minima and its
energy can be calculated rather quickly in the TB approach.

3. Application and Results

We defined the architecture of our 3 ANN in the follow-
ing way: an input layer with 11 elements, an intermediate
layer and an output layer with 2 elements. In the intermedi-
ate layer, we used 12 (ANN12), 6 (ANN6) and 3 (ANN3)
neurons respectively, whose results will be presented in this
section. We have tested sigmoid, hyperbolic tangent and

Figure 2. Layers that are piled up to form the clusters. Notice that
each corner corresponds to the position of an atom.

Figure 3. Configurations of Si
6
, with their respective description.

Table 1. It shows the structure and the corresponding TB energy,
for three of the 110 cases used. The first example describes the
structure shown in Fig 3. The second example describes the struc-
ture shown in Fig 2.

Structures binding energy per atom (eV)

3 - 2 - 3 3.0710
4 - 9 3.2670
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gaussian activation functions. Results were not very sensi-
tive to the activation function chosen. The Figs. 4 - 7 corre-
spond to the gaussian activation function.

A fast training is capable of identifying a high percent-
age of inadequate structures. We decided to stop the train-
ing procedure when 60% of the structures of all possible
geometries were recognized as inadequate.

The following procedure was performed for each one
of the nets. i) the ANN indicates a group of n

p
 = 10 struc-

tures chosen randomly to generate the initial population for
a genetic algorithm calculation; ii) cross-over is performed
as described in reference 16; iii) every n

m
 = 10 generations,

two new structures, chosen among those considered appro-
priate by the ANN, replace the “less-fit” elements of the
population. This is a special kind of mutation.

Genetic Algorithm, pre-conditioned by each one of the
ANN, was executed for 3000 generations and their results
compared to those of Pure GA. We represented a N-atom
silicon cluster by a list of 3N atomic cartesian coordinates,
that is, a chromosome constituted by N genes, each one
composed by three coordinates, representing the position
of an atom. We use this codification because a bit string, as
commonly used, is not very efficient to optimize the geom-
etry of atomic clusters32. Crossover probability was defined
according to rank selection. Greedy overselection is a pro-
cedure designed to improve the population used in GA.
Unfortunately, it can only be used if the number of indi-
viduals in the population is rather large (> 1000). Since in
our case, no more than 10 elements form the initial popula-
tion greedy overselection cannot help us.

Since genetic algorithm uses random numbers, 10 dif-
ferent calculations for each ANN was considered. We be-
lieve that the average of the 10 calculations reliably demon-
strates the characteristics of this new procedure. Figures 4,
5 and 6 show a comparison between the best calculation
and their average, with a pure genetic algorithm, i.e., ge-
netic algorithm without ANN. Notice that these graphs
present the evolution of the opposite of the binding energy
per atom as function of the number of generations. Thus,
the most stable structures corresponds to the smallest val-
ues of energy.

Figure 4 shows the performance of GA coupled to
ANN

12
. One notices that while the pure genetic calculation

takes about 4500 generations to find structures with bind-
ing energy per atom larger than 3 eV, ANN

12
 best calcula-

tion reached the same mark with only 500 generations! The
average of 10 runs, reached 3 eV after just 1600 genera-
tions.

Figure 5 shows the performance of GA coupled to ANN
6
.

One notices that while the pure genetic calculation takes
about 4500 generations to find structures with binding en-
ergy per atom larger than 3 eV, ANN

6
 best calculation

reached the same mark with only 300 generations! The av-
Figure 6. The comparative evolution for hidden layer with 3 neu-
rons.

Figure 5. The comparative evolution for hidden layer with 6 neu-
rons.

Figure 4. The comparative evolution for hidden layer with 12 neu-
rons.
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Figure 7. Structures appropriate x Structures considered inappro-
priate.

reach our goal, i.e., to find the global minimum. Another
interesting observation is that ANN

3
 faces more difficulties

to get satisfactory results then ANN
6
 , ANN

12 
. It means that

too small an ANN may not be efficient to perform generali-
zation. On the other hand, as ANN

6
 and ANN

12
 present com-

parable performances, it means that one does not need a
large ANN to make our approach to work properly.

As a further test we decided to analyze the performance
of a GA that used the combined result of the three ANN
presented. Only those structures that were simultaneously
considered appropriate by all ANN were used to generate
the population for the GA. Another calculation was per-
formed using only those structures considered inappropri-
ate by all ANN. These results are shown in Fig. 7.

Figure 8a shows the best geometry obtained after ap-
plying AGO for 3000 generations. Figure 8b shows the best
geometry obtained by pure GA after the same number of
generations. One can easily notice that GA’s “predict” struc-
ture still has a long way to go before finding the ground
state geometry.

Next, we used ANN6 to select reasonable candidate
geometries for Si

20
. Figure 9 compares AGO with pure GA’s

performances. One notices that it takes more than 100 gen-
erations of pure GA to reach the starting value of AGO!

4. Conclusions

We used total energy information for small silicon
(Si

n
, n ≤ 9) clusters to train ANN. The training followed

standard back-propagation procedure and our only concern
was to keep it fast. Next, we took advantage of ANN natu-
ral ability to recognize affinity between layers of silicon

Figure 8. The structure Si
10

 with AGO a) and without AGO b).

erage of 10 runs, reached 3 eV after just 300 generations.
Figure 6 shows the performance of GA coupled to ANN

3
.

One notices that while the pure genetic calculation takes
about 4500 generations to find structures with binding en-
ergy per atom larger than 3 eV, ANN

3
 best calculation

reached the same mark with only 800 generations! The av-
erage of 10 runs, reached 3 eV after about 2000 genera-
tions.

Figures 4-6 show that ANN dramatically reduce the to-
tal number of generations that a genetic algorithm needs to
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atoms. Thus, it yields candidates solutions to the Genetic
Algorithm. This kept the search algorithm from wasting
time.

Our results showed that artificial neural networks can
be trained to incorporate information from quantum me-
chanics and to accelerate total energy calculations of
polyatomic systems. All three different ANN (ANN3,
ANN6, ANN12) could improve GA’s performance if com-
pared to Pure GA. After a fast training procedure, ANN’s
select efficient starting points for methods of global optimi-
zation. If one generation is taken as time unit (tu), training
takes about 70 tu. Thus AGO saves at least 2000 tu to reach
the ground state geometry for Si

10
! We consider this method

very promising to be adapted for larger cluster (Si
n
 n> 10)

because each generation would take more time but the train-
ing time would remain the same.

Finally, our algorithm can be easily adapted for other
materials, for other methods of total energy calculation and
yet for other optimization problems.
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