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This works presents free vibration analysis of laminated composite beam problems using Timoshenko 
beam finite elements formulated in strain gradient notation. The formulation in physically interpretable 
notation identifies precisely the one parasitic shear term present in the in-plane, two-node, six-degree-
of-freedom Timoshenko beam element. The spurious term can be eliminated a-priori of implementation 
and analysis. An assessment of the deleterious effects of parasitic shear in the computation of natural 
frequencies and mode shapes of laminated composite beams is performed via convergence studies. 
Beams with different boundary conditions and lamination schemes are analyzed. Results from models 
containing parasitic shear and from models corrected for it are compared. It is seen that parasitic shear 
affects significantly the convergence characteristics of the model as it retards convergence. It is also 
observed that parasitic shear affects the shapes of vibration modes. After elimination of parasitic shear, 
convergence of natural frequencies is attained quite rapidly. Such result is most pronounced when 
computing the fundamental frequency. Further, convergent results are compared to results presented 
in the literature for accuracy assessment, and very good agreement is found.

Keywords: Free vibration, Laminated composites, Timoshenko beam, Finite element method, 
Strain gradient notation, Parasitic shear.

1. Introduction
Laminated composite structures are largely employed 

in engineering practice mostly where high strength- and 
stiffness-to-weight ratios are key design factors. Such 
applications involve, for instance, the aerospace, the 
aeronautical and the automotive structures among others. In 
most of these applications, dynamic loads are predominant, 
and, thus, dynamic responses must be accurately evaluated 
for successful design and safety of these structures. As 
analytical solutions are difficult to obtain and sometimes are 
limited and only applicable to simple structures with specific 
laminae stacking sequence, engineers resort to numerical 
methods such that more complex and general structures 
can be analyzed. Therefore, researchers constantly seek 
for numerical methods that can provide accurate and stable 
dynamic responses of laminated composite structures with 
the lowest computational effort possible. Finite element 
methods are among the most widely used numerical methods 
for dynamic analyses of laminated composite structures. 
The first step in establishing a finite element method as 
suitable for dynamic analysis is to determine its accuracy 
in computing natural frequencies and modes of vibration, 
which provide the vibration characteristics of a structure. They 

are obtained by the solution of the free vibration problem 
cast in eigen form. As in Rao1, free vibration occurs when 
an elastic system oscillates harmonically after an initial 
disturbance is applied to it in the absence of external forces. 
This work investigates on the free vibration of laminated 
composite beam problems modeled by Timoshenko beam 
elements formulated using strain gradient notation2. As shear 
occurs between laminae of a laminate, Timoshenko beam 
theory3 is suitably employed. Therefore, first-order shear 
deformation theory (FSDT) is the theory employed here 
to model laminated composites. Strain gradient notation is 
a physically interpretable notation which explicitly relates 
physical quantities such as displacements and strains to the 
kinematic quantities of the continuum that can be represented 
by a given model. It also allows for modeling capabilities and 
deficiencies to be clearly identified. The Timoshenko beam 
element model employed here has been formulated earlier 
for static analysis of laminated composites by the senior 
author and co-workers4. Here, its formulation is extended to 
allow also for free vibration analysis. The new routines are 
implemented into the in-house code LAMFEM developed 
in FORTRAN language.

One of the modeling deficiencies that can plague finite 
elements is parasitic shear. Such error occurs in shear 
strain polynomials of given finite elements as a result of *e-mail: tuliophd@gmail.com
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the displacement assumptions made during formulation. 
Parasitic shear causes the well documented phenomenon of 
shear locking. Mostly, shear locking is associated to retarding 
convergence, i.e., a quantitative error. In laminated composites, 
it has been shown that parasitic shear also causes qualitative 
errors when deformation modes couplings are present4,5. The 
two-node Timoshenko beam element possesses one parasitic 
shear term in its transverse shear strain expression. Such term 
can be precisely identified and eliminated via strain gradient 
notation, as it will be reviewed here. Deleterious effects 
of parasitic shear in the convergence characteristics of the 
model in computing natural frequencies and mode shapes 
are shown in this work. Accurate computation is achieved 
after elimination of parasitic shear. Natural frequencies 
values computed with the proposed model are compared to 
other results available in the literature.

2. Literature Review
This section presents a brief literature review on the 

free vibration analysis of beams, most specifically focused 
on laminated composites, but also considering works 
associated to free vibration of isotropic Timoshenko beams 
considered relevant. In the classical book Vibration Problems 
in Engineering, Timoshenko et al.3 describe the inclusion 
of rotary inertia and transverse shear deformation in the 
vibration of beams. The resultant beam theory is referred to 
in the literature as Timoshenko beam theory (TBT). In the 
mechanics of laminated composites, TBT corresponds to first-
order shear deformation theory (FSDT), which appears to be 
the simplest theory that is adequate for modeling laminated 
composites, considering that the classical lamination theory 
(CLT) does not include transverse shear deformation. Many 
researchers have evaluated the TBT in vibration analysis. In 
1949, Krusziewski6 considered the effects of transverse shear 
and rotary inertia on the natural frequencies of uniform beam 
problems, showing that either effect causes the decline of 
natural frequency values. Kapur7 reached the same conclusion 
when applying the finite element method for vibration 
analysis of Timoshenko beam problems. Other earlier work8-14 
focused on isotropic materials and concerned themselves 
with formulating finite elements using different strategies 
to improve results, and also with investigating the effects of 
transverse shear and rotary inertia on the dynamic response. 
Han et al.15 compared four analytical beam formulations, 
and broad conclusions are that transverse shear is more 
relevant to dynamic response than rotary inertia, and that 
the Timoshenko model must be employed for short beams.

Along the last four decades, there has been extensive 
research on free vibration analysis of laminated composite 
beams, and important experimental, analytical and numerical 
work has been produced. Much has been summarized in a paper 
by Sayyad and Ghugal16 where a rather extensive review on 
bending, buckling and free vibration of laminated composite 
and sandwich beams is presented. The review performed in 
the present work shows that mostly analytical and numerical 
work on free vibration of laminated composite beams include 
transverse shear deformation effect and sometimes also 
rotary inertia effect (Teoh and Huang17, Teh and Huang18, 
Chen and Yang19, Chandrashekhara et al.20, Abramovich21, 
Nabi and Ganesan22). Besides the consideration of transverse 

shear and rotary inertia, Chandrashekhara and Bangera23 also 
included the effects of Poisson’s ratio in the determination 
of natural frequencies of laminated composite cantilever 
beams via a finite element beam model with a concentrated 
mass at the free end.

Research has demonstrated that fiber orientation has 
effects on the free vibration characteristics of laminated 
composite beams (Abarcar and Cunniff24, Teoh and Huang17, 
Teh and Huang18, Chandrashekhara et al.20, Abramovich21). 
For instance, analytical studies of symmetrically laminated 
composite beams made of Graphite-Epoxy20 reveal that the 
value of the fundamental frequency of a beam decays when 
the angle of fiber orientation increases.

The aforementioned works considered laminated composite 
beams according to first-order shear deformation theory. 
Naturally, the evolution of analysis led to the employment 
of more refined theories and/or more sophisticated numerical 
models for evaluating the free vibration characteristics of that 
type of structure. Khdeir and Reddy25 developed analytical 
solutions for free vibration analysis of cross-ply laminated 
composite beams with arbitrary boundary conditions using 
refined theories along with the state space approach. Marur 
and Kant26 proposed higher-order analytical models for free 
vibration analysis of thick sandwich and laminated composite 
beams. Kameswara et al.27 developed an analytical method 
based on higher-order mixed theory. Chen et al.28 employed a 
semi-analytical method called state-space-based differential 
quadrature for free vibration analysis of generally laminated 
composite beams. Krishnaswamy et al.29 developed analytical 
solutions for free vibration of nonsymmetric laminated 
composite beams via a constrained variational statement 
where the constraints are imposed by Lagrange multipliers. 
Chandrashekhara and Bangera30 developed a finite element 
model based on a high- order shear deformation theory, 
including Poisson’s effect. Ramtekkar et al.31 employed plane 
stress mixed finite element models where transverse stresses 
are included as degrees-of-freedom using displacement-stress 
elastic relations. Subramanian32 employed two higher-order 
shear deformation theory and associated finite elements for 
free vibration analysis of laminated composite beams. Both 
theories assume quintic and quartic variation of in-plane and 
transverse displacements in the thickness direction, respectively, 
and assume zero strain/stress conditions at the top and bottom 
surfaces. Aydogdu33 employed the Ritz method for the free 
vibration analysis of angle-ply laminated beams subjected 
to different sets of boundary conditions. Marur and Kant34 
studied free vibrations of angle ply laminated beams using 
an isoparametric finite element model which embeds a high-
order theory. Carrera’s Unified Formulation (CUF) allows for 
formulating refined beam models. A generic kinematic field, 
i.e, a displacement function of an arbitrary order N can give 
way to the formulation of high-order displacement-based 
beam theories from which Euler-Bernoulli and Timoshenko 
beam theories can be achieved as particular cases. Higher-
order beam models account for transverse shear without the 
need for adopting shear correction factors. Further, torsion 
mechanics and Poisson’s effect deformation coupling can 
be well described, and in- and out-of-plane warping of 
the cross-section representations do not require special 
functions35. CUF also allows for adopting arbitrary cross-
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section geometries and boundary conditions36. Giunta et al.37 
employed hierarchical models, derived using Carrera’s Unified 
Formulation (CUF), to perform free vibration analyses of 
cross-ply laminated, simply-supported beams. The formulation 
accounts for transverse shear deformation, rotary inertia and 
warping. Euler-Bernoulli and Timoshenko beam theories are 
obtained as particular cases. Flexural, torsional, axial and 
shear natural frequencies are considered. Carrera  et  al.38 
perform free vibration analysis of laminated, sandwich 
and thin-walled box beams using refined one-dimensional 
models which are derived form CUF. In those models, 
displacement components are defined by using different 
types of expansions. It is interesting to observe the higher 
frequency modal shapes that are represented by the theories, 
mostly the complex shell-like modes of a thin-walled box 
structure. Tornabene et al.39 presented a higher-order shear 
deformation theory for the free vibration analysis of laminated 
composite beams, arches and ring structures. Several orders of 
kinematic expansion are employed and results are compared. 
Qu et al.40 derived a general high-order shear deformation 
theory for free vibration and transient analysis of arbitrary 
laminated composite beams using a modified variational 
principle combined with a multi-segment partition technique.

Further, it is appropriate to mention that researchers have 
used other numerical procedures for free vibration analysis 
of Timoahenko beams. For instance, Lee and Schultz41 
perform free vibration analysis of Timoshenko beams using 
a procedure based on the Chebyshev pseudospectral method. 
Xu and Wang42 use discrete singular convolution. Ferreira and 
Fasshauer43 applied radial basis functions in a pseudospectral 
framework to analyze Timoshenko beams and Mindlin plates. 
Lee and Park44 employ the isogeometric approach, and Shang45 
employs enriched finite element methods. Lastly, more 
recent works are worth mentioning. Georgantzinos et al.46 
use the finite element method to evaluate the vibrational 
characteristics of carbon fiber-graphene-reinforced hybrid 
composites aiming at determining the effect of graphene 
inclusions in the natural frequencies. Shams et al.47 study 
free vibration analysis of laminated composite beam with 

delamination employing Euler-Bernoulli beam model and 
dynamic stiffness matrix method. Pradhan at al.48. consider 
the free vibration of hybrid composite beam under thermal 
gradient loading and different boundary conditions.

As the work reviewed in this section, the present work 
discusses free vibration analysis of laminated composite 
beams. One of the interests here is to study how parasitic 
shear can affect negatively the behavior of the Timoshenko 
beam element in vibration analysis. Our review shows that 
researchers have not paid much attention to this issue, and 
it is very likely that it has been disregarded in general. 
Obviously, acceptable accuracy can only be attained after 
elimination of parasitic shear, and, in that sense, strain 
gradient notation is a convenient notation as parasitic shear 
terms can be precisely identified and then removed with ease. 
Many of the works reviewed in this section present more 
sophisticated formulations (for instance, Carrera’s Unified 
Formulation), which are capable of representing different 
aspects of the beam mechanics such as torsion, warping, and 
Poisson’s effects. Although the present model is a simple, 
in-plane model, and the aforementioned effects cannot be 
depicted, this is the first work that employs strain gradient 
notation finite elements in free vibration analysis of laminated 
structures, and interesting results are produced. Extension 
to vibration analysis of more complex beam models is the 
following step.

3. Timoshenko Beam Model
Laminated composites are suitably modeled by the first-

order shear deformation theory because of shear stresses that 
develop between laminae as well as transverse shear stresses 
which contribute to initiate delamination. The first-order 
deformation theory for beams is known as Timoshenko 
beam theory. This section briefly describes the Timoshenko 
beam mathematical model and presents the formulation 
of the Timoshenko beam finite element employed here. 
(Figure 1) represents the geometry of a laminated composite 
beam where details of fiber directions (angle θ) and laminae 

Figure 1. Geometry of a laminated composite beam.
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stacking are shown. The axial and transverse displacements 
of a Timoshenko beam are given by:

( ) ( ) ( )0, , , , u x z t u x t zq x t= −  	 (1)

( ) ( )0, , w x t w x t=  	 (2)

where 0u , 0w , and q  are the mid-surface in-plane displacement, 
transverse displacement, and rotation about the y-axis, 
respectively, x is the longitudinal axis and t is time.

The longitudinal and transverse shear strains are given by:

0, ,xx xu zq xε = −  	 (3)

0,xz xw qγ = −  	 (4)

where the derivatives of the mid-surface displacements and 
rotation with respect to x are indicated by the comma sign.

A two-node, six-degree-of-freedom beam finite element, 
as depicted by (Figure 2), is employed here for the free 
vibration analysis of laminated composite beams. Mass and 
stiffness matrices must be formulated.

The stiffness matrix is formulated using strain gradient 
notation. The formulation has been originally presented by the 
senior author and co-workers in3, and it is reviewed here. The 
beam’s displacement field in terms of arbitrary coefficients 
is defined according to the Timoshenko beam theory and to 
the element model defined in Figure 2 as follows:

( )0 0 1u x a a x= +  	 (5)

( )0 0 1w x b b x= +  	 (6)

( ) 0 1q x c c x= +  	 (7)

as ( )0u x , ( )0w x  and ( )q x  are mutually independent fields. In 
strain gradient notation, the arbitrary coefficients are physically 
determined, and the expressions above a re-written as:

( )0 0 0xu x u xε= +        	 (8)

( )0 0
02

xzw x w q xγ = + −    
 

 	 (9)

( ) , 002
xz

x zq x q xγ ε   = − − +    
 	 (10)

and, consequently, the longitudinal displacement ( )u ,x z  results 
in expression below:

( ) ( ) ,0 0 00
, z

2
xz

x x zu x z u x q xγε ε
    = + − − − +             

 	 (11)

Note that these expressions are written disregarding their 
dependence on time as stiffness is assumed to be time-

dependent. These equations reveal the kinematic quantities 
that the model is capable of representing. They are the rigid 
body displacements 0u   , 

0 w    and 0q   , the constant 
normal and transverse shear strains 0xε   , 

0xzγ   , and the 
flexural strain , 0x zε   . These strain states are called strain 
gradients here.

The nodal degrees-of freedom are related to the strain 
gradients through the following:

{ } { }= Φ   sgd ε  	 (12)

where Φ   is explicitly written:

1

1 1

1

2

2 2

2

1 0 0 0 0
0 1 0 / 2 0
0 0 1 0 1/ 2

 
1 0 0 0 0
0 1 0 / 2 0
0 0 1 0 1/ 2

 
 − 
 − − −

Φ =    
 
 − 

− − −  

x
x x

x
x

x x
x

 	 (13)

According to Figura 2, the element’s origin is defined at 
its mid-length. Thus, in matrix Φ   , 1 / 2x L= −  and 2 / 2x L= . 
Further, the strain field, which is defined by the derivatives 
of the displacements, is:

,0 0x x x z zε ε ε = +      	 (14)

,0 0
 xz xz x z xγ γ ε = +      	 (15)

This is a key point in the formulation as an interesting 
feature is revealed. The reader should observe that both 
sides of Equation 14 are physically coherent. That is, normal 
strain is defined as a sum of terms which are associated to 
that normal strain. However, the same does not occur with 
the transverse shear strain expression (Equation 15). It is 
seen that the second term on the right-hand side is a normal 
strain gradient , 0x zε   , which represents bending. That term 
is erroneous in the transverse shear expression in the sense that 
bending does not contribute to shear strain. On the contrary, 
that term is responsible for an undue increase in shear strain 
energy since there is no coupling between transverse shear 
and flexural strains. That is, it is responsible for the modeling 
error of shear locking. For this reason, such term is called 
parasitic shear. As a result of this precise identification of 
the parasitic shear term, it can be immediately eliminated 
a-priori rendering the corrected shear strain expression 
given below:

0  xz xzγ γ=     	 (16)

The relation between strain and strain gradients is written 
via the transformation matrix sgT 

  :

{ } { }sg sgTε ε =    	 (17)

After insertion of Equation 12 and Equation 17 into the 
strain energy expression and proper manipulation, the strain 
energy matrix results:

1

U
k

n
T

M sg sg kkk kV
k

T Q T dV
=

    =       ∑∫  	 (18)
Figure 2. Two-node beam finite element.
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where the summation sign results from the fact that the strain 
energy of the laminate is the sum of strain energies of the n 
comprising laminae, and k

Q    is the constitutive matrix of 
a typical lamina k. The strain energy matrix allows for the 
formation of the stiffness matrix of the finite element in the 
strain gradient notation as:

1T
Mk U− −= Φ Φ                	 (19)

Specifically for a laminated composite beam, the 
following stiffness definitions are present in the element’s 
stiffness matrix:

( ) ( )11 11 11

n
k kkk

A Q z z −
=

= −∑  	 (20)

( ) 3 3
55 55 1 1 21

5 4 1
4 3

n
k k k kkk

A Q h h h h
h

− −=

 
= − − − 

 ∑  	 (21)

( ) ( )3 3
11 11 11

1
3

n
k kkk

D Q z z −=
= −∑  	 (22)

( ) ( )2 2
11 11 11

1
2

n
k kkk

B Q z z −
=

= −∑  	 (23)

In order to study the effects of parasitic shear in the 
model’s response, the element must be implemented in 
both versions with and without parasitic shear. When 
parasitic shear is retained, it appears in the stiffness matrix 

as 
3

55 12
bLA

 
 
 
 

. The stiffness matrix can be obtained explicitly 

after performing closed-form integrations of its terms. The 
result is not shown here, and the reader is referred to3. The 
mass matrix of the element is defined as below:

 T

V

m N N dVρ=              ∫  	 (24)

where N    contains the Timoshenko beam element shape 
functions and     contains the mass densities of the 
laminated composite.

4. Natural Frequencies and Vibration Modes
The free vibration characteristics of a structure consist of 

its natural frequencies of vibration and associated mode shapes. 
Such set of data informs the analyst how the structure will 
vibrate when subjected to a given dynamic loading. Natural 
frequencies and vibration mode shapes are determined via 
the solution of the free vibration equation of motion cast in 
the eigenvalue form shown below:

( ){ } { }2 0K M Dω− =        	 (25)

where K    and M    are the stiffness and mass matrices 
of the structural model, ω  is natural frequency, and { }D  
is vibration mode shape. If the model discretization has n 
degrees-of-freedom, Equation 25 will produce n values for 
ω  and corresponding eigenvectors { }D .

5. Numerical Analyses
This section presents the free vibration solutions 

of laminated composite beams with different boundary 
conditions using models composed of the strain gradient 
notation beam finite element developed earlier. The beams 
considered are clamped-free (CF), clamped–clamped (CC), 
and clamped-supported (CS). The length-to-width ratio 
(L/b) adopted for the beams is 15. All laminae are made 
of graphite-epoxy (AS/3501) material whose mechanical 
properties29 are given in Table 1:

The laminates are comprised of four laminae with a 
symmetric stacking sequence. In some of the analyses, 
fibers direction angle θ  changes from 0 to 90 degrees in 
intervals of 15 degrees. The objective of these numerical 
analyses is twofold; namely, (i) assess the accuracy and 
convergence characteristics of the proposed Timoshenko 
beam element in computing natural frequencies, and (ii) 
assess the deleterious effects of parasitic shear in free 
vibration analysis of Timoshenko beam models. Further, 
it is observed how natural frequencies vary as the fibers 
direction angle increases. Each of the beam problems cited 
above are modeled by uniform meshes of 1, 2, 4, 8, 16, 
32, 64 and 128 elements. For each mesh, two models are 
employed; namely, containing parasitic shear, and corrected 
for parasitic shear. Comparison of the two models allows for 
assessing how the spurious term affects the accuracy of the 
computed natural frequencies and delays their convergence. 
The model corrected for parasitic shear allows for assessing 
the accuracy and convergence characteristics of the proposed 
Timoshenko beam element in free vibration analysis. 
Non-dimensional natural frequencies, which are defined 
by 2 2

1/L E hω ω ρ= , are plotted against the different fiber 
orientations. After investigating natural frequencies, a brief 
analysis of the quality of mode shapes is also performed.

5.1. Clamped-Free (CF) beam problem
The first problem analyzed is the clamped-free beam, 

which is represented in Figure 3.
The first three natural frequencies which are associated 

to transverse displacement mode shapes are computed for 
different values of fibers direction angles as explained before. 
Results are depicted in Figures 4, 5 and 6. In Figure 4, which 
depicts the first frequency results, also contains the plots of the 
analytic solution for reference purpose. It is first observed that 
parasitic shear retards convergence, which is very notorious 
for the first frequency results. Figure 4a shows that a great 
deal of refinement is necessary to attain convergence when 

Table 1. Material properties of graphite-epoxy (AS/3501).

E1 E2 G12 G13 G23
ρ υ

Material [GPa] [GPa] [GPa] [GPa] [GPa] [kg/m3]
AS4/3501-6 144.8 9.65 4.14 4.14 3.45 1389.2 0.33
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the model contains parasitic shear. However, as shown by 
Figure 4b, convergence occurs very early in the refinement 
process when parasitic shear has been eliminated a-priori. 
Table  2 shows first natural frequency error values with 
respect to the analytic solution for both the models with and 
without parasitic shear to reinforce the behavior depicted by 
Figures 4a and 4b. These results are associated to the fiber 
direction angle of 45°. It is seen that the deleterious effect 

of parasitic shear is very important for the coarser models. 
Refinement starts to overcome such effects effectively only 
at the 32-element model. On the other hand, the 8-element 
mesh of the model corrected a priori is already quite accurate.

The next two figures, Figures 5 and 6, show that parasitic 
shear still plays an important role in the convergence 
characteristics of the model when computing the second 
and third natural frequencies associated to transverse 

Figure 3. Clamped-Free (CF) laminated composite beam problem model.

Figure 4. (a) First frequency for different ply fiber directions for the clamped-free (CF) beam computed using the parasitic shear finite 
element model; (b) First frequency for different ply fiber directions for the clamped-free (CF) beam computed using the corrected finite 
element model.

Figure 5. (a) Second frequency for different ply fiber directions for the clamped-free (CF) beam computed using the parasitic shear finite 
element model; (b) Second frequency for different ply fiber directions for the clamped-free (CF) beam computed using the corrected 
finite element model.
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Figure 6. (a) Third frequency for different ply fiber directions for the clamped-free (CF) beam computed using the parasitic shear finite 
element model; (b) Third frequency for different ply fiber directions for the clamped-free (CF) beam computed using the corrected finite 
element model.

displacement mode shapes, although its effects are not so 
strong as in the first frequency values. In general, it is seen 
that the Timoshenko beam model converges well to natural 
frequency values when properly refined, but convergence is 
faster after removal of parasitic shear. Further, it is seen that 
natural frequency values decrease as fibers direction angle 
increases from 0 to 90 degrees. This is common behavior 

for all three frequencies, and, as seen for the first frequency, 
it matches analytic solution behavior.

Next, a clamped-free (CF) symmetric laminated composite 
beam with stacking sequence (0/90/90/0) is analyzed for its 
first eight natural frequencies. This specific beam has been 
chosen by these authors because results obtained by other 
researchers are available in the literature20,23,26,31,34,39 and are 
used for comparison. Table 3 and Table 4 contain the results 

Table 2. Error values in the first natural frequency (CF).

1 2 4 8 16 32 64 128
Without parasitic shear 4,7% 2,8% 1,3% 0,8% 0,65% 0,6% 0,6% 0,6%

With parasitic shear 250,5% 33,3% 18,6% 8,5% 3,2% 1,3% 0,8% 0,7%

Table 3. Natural frequencies (nondimensional values) for CF beam - Laminated composite with (0/90/90/0) lamination scheme. Model 
corrected for parasitic shear.

Element Nel Present solution: mode number
1 2 3 4 5 6 7 8

1 0,919 77,094 - - - - - -
2 0,948 7,122 78,91 86,156 - - - -
4 0,935 5,468 14,457 25,298 88,152 97,645 - -
8 0,93 5,028 12,163 20,796 30,62 41,139 51,176 58,389
16 0,928 4,921 11,576 18,7 27,164 35,509 44,153 49,311
32 0,928 4,894 11,431 18,7 26,285 33,933 41,614 49,311
64 0,928 4,887 11,395 18,597 26,067 33,542 40,982 48,359
128 0,928 4,8865 11,391 18,585 26,042 33,498 40,909 48,250

Ref26 ƚ 0,923 4,941 11,656 19,18 27,038 - - -
Ref20 0,924 4,893 11,44 18,697 26,212 - - -
Ref23 0,923 4,888 11,433 18,689 26,203 - - -
Ref26 0,924 4,985 11,832 19,573 27,72 - - -
Ref31 0,925 4,996 11,879 19,737 28,174 37,079 46,632 56,405
Ref34 0,921 4,888 11,433 18,689 26,203 - - -
Ref39 0,924 4,882 11,403 18,622 26,091 33,548 40,943 48,257
Note

Ref26 ƚ Timoshenko Theory (1996)
Ref20 Analytic Solution - First Order shear Deformation (1990)
Ref23 Laminated Plate Theory - Mass at free End (1993)
Ref26 High Order Theory (1996)
Ref31 Mixed finite element modelling (2002)
Ref34 High Order Theory (2007)
Ref39 Generalized Differential Quadrature (2019)
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provided by strain gradient models corrected for parasitic 
shear and containing parasitic shear, respectively. The same 
uniform meshes of 1, 2, 4, 8, 16, 32, 64 and 128 elements 
used previously are employed here.

Comparison of the tables is done to show once again the 
effects of parasitic shear on the natural frequency results. 
The deleterious effect is greater on coarser meshes and 
also on the fundamental frequency value. Considering this 
frequency, the percent differences between the two sets of 
values are calculated. Results are 120%, 46.5%, 14.22%, 
3.76%, 1.08%, 0.32%, 0.11%, which indicate that refinement 
is capable of reducing drastically the effects of parasitic 
shear. It is safe to state that the 64-element mesh would 
be necessary. However, and most importantly, if parasitic 
shear is eliminated a-priori of the computations, results 
within very good accuracy are already obtained with the 
16-element mesh. Comparison of the strain gradient model 
results with other researchers’ results, which are provided 
at the table bottoms, shows that there is good agreement in 
general. Only two other references31,39 present results for all 
eight frequencies. It is seen that the strain gradient model 
results are closer to the results in reference39, which have 
been obtained via the generalized differential quadrature 
method. For instance, the difference in the fundamental 
frequency is only 0.43%. It is worth observing also that results 
presented in reference31, which have employed a mixed finite 
element formulation, appear to be poorer than the others. All 
frequency values are higher, and, except for the fundamental 
frequency, results are between the ones provided by 8- and 
16-element meshes of the strain gradient model containing 

parasitic shear. According to the point being made in this 
work, those results are not sufficiently accurate.

5.2. Clamped-Clamped (CC) beam problem
The second problem analyzed is the clamped-clamped 

beam, which is represented in Figure 7.
Here, only the first natural frequency, which is associated 

to the first transverse displacement mode shape is computed. 
As opposed to the previous problem, results for other 
frequencies are not shown. Figure 8a shows values of the 
first natural frequency for different values of fibers direction 
angles computed using the model containing parasitic shear. 
Figure 8b shows the corresponding results provided by the 
corrected model. Comparison of the two figures clearly shows 
that parasitic shear delays convergence as results provided 
by coarser meshes are very far from the analytic solution 
results. Again, it is seen that a great deal of refinement is 
necessary for reaching convergence when parasitic shear 
is present. However, as shown by Figure 8b, convergence 
occurs very early in the refinement process when the model 
corrected for parasitic shear is employed. Table 5 shows first 
natural frequency error values with respect to the analytic 
solution for both the models with and without parasitic shear 
which are associated to the fiber direction angle of 45°. It is 
seen that errors contained in model with parasitic shear are 
much higher, and, again, it appears that refinement starts to 
attenuate the effects of parasitic shear effectively only for 
the 32-element mesh on.

In the following, a clamped-clamped (CC) symmetric 
laminated composite beam with stacking sequence (0/90/90/0) 

Table 4. Natural frequencies (nondimensional values) for CF beam Laminated composite with (0/90/90/0) lamination scheme. Model 
containing parasitic shear.

Element Nel
Present solution: mode number

1 2 3 4 5 6 7 8
1 2,024 88,325 - - - - - -
2 1,389 8,296 88,429 105,490 - - - -
4 1,068 5,951 15,156 25,746 88,712 102,375 - -
8 0,965 5,161 12,385 21,046 30,855 41,324 51,298 58,436
16 0,938 4,955 11,634 19,184 27,234 35,576 44,213 53,154
32 0,931 4,902 11,446 18,717 26,303 33,951 41,630 49,327
64 0,929 4,889 11,399 18,601 26,071 33,547 40,986 48,363
128 0,929 4,887 11,390 18,579 26,026 33,469 40,861 48,177

Ref26 ƚ 0,923 4,941 11,656 19,18 27,038 - - -
Ref20 0,924 4,893 11,44 18,697 26,212 - - -
Ref23 0,923 4,888 11,433 18,689 26,203 - - -
Ref26 0,924 4,985 11,832 19,573 27,72 - - -
Ref31 0,925 4,996 11,879 19,737 28,174 37,079 46,632 56,405
Ref34 0,921 4,888 11,433 18,689 26,203 - - -
Ref39 0,924 4,882 11,403 18,622 26,091 33,548 40,943 48,257
Note

Ref26 ƚ Timoshenko Theory (1996)
Ref20 Analytic Solution - First Order shear Deformation (1990)
Ref23 Laminated Plate Theory - Mass at free End (1993)
Ref26 High Order Theory (1996)
Ref31 Mixed finite element modelling (2002)
Ref34 High Order Theory (2007)
Ref39 Generalized Differential Quadrature (2019)
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is analyzed for its first eight natural frequencies using strain 
gradient elements with and without parasitic shear. Results 
obtained by other researchers20,31,39,49 are used for comparison. 
Table 6 and Table 7 contain the results provided by strain 
gradient models corrected for parasitic shear and containing 
parasitic shear, respectively. Seven uniformly refined meshes 
(from 2 to 128 elements) have been employed.

Again, comparison of the tables is done to show the 
effects of parasitic shear on the natural frequency results. 
A close look shows that results in Table 7 are higher than 
results in Table 6. However, it is seen that differences are 
not very significant. That is, parasitic shear does not play a 
very important role in this specific problem, a finding which 
is opposed to that in the previous problem. It is interesting 
to note that the fundamental frequency values for the 
2-element mesh are nearly equal. The difference occurs only 
on the sixth decimal number, not registered on the tables for 
obvious reason. One of the greatest the percent differences 
registered is on the values of the second natural frequency 
of the 2-element models. Result provided by the parasitic 
shear model is 12,6% greater. In general, as it has been 
shown in this work, parasitic shear causes very significant 
errors. What the present problem might be showing is that 
the importance of parasitic shear effects might depend on the 
laminate being examined, and also perhaps on the boundary 
conditions nature.

Comparison of the strain gradient model results with 
reference results given at the table bottoms shows good 
agreement up to the fifth natural frequency. Discrepancies 
are found in the sixth, seventh and eighth natural frequencies. 
Results provided by the most refined strain gradient model are 
between 11% and 18% higher than values from references39,49. 
At this stage, these authors cannot assess which solutions 
are more accurate.

5.3. Clamped-Supported (CS) beam problem
The third problem analyzed is the clamped-supported 

beam, which is represented in Figure 9.
In these analyses, only the first natural frequency is 

computed. Figure  10a shows values of the first natural 
frequency for different values of fibers direction angles 
computed using the model containing parasitic shear, whereas 
Figure 10b shows the corresponding results provided by the 
corrected model. Once again it is observed that parasitic shear 
delays convergence as results provided by coarser meshes 
are very far from the analytic solution results. Further, it is 
seen that a great deal of refinement is necessary to attain 
convergence when parasitic shear is present. However, 
Figure  10b indicates that the rate of convergence of the 
model corrected for parasitic shear increases rapidly from 
the 8-element mesh on. These observations are confirmed 

Figure 7. Clamped-Clamped (CC) laminated composite beam problem model.

Figure 8. (a) First frequency for different ply fiber directions for the clamped-free (CC) beam computed using the parasitic shear finite 
element model; (b) First frequency for different ply fiber directions for the clamped-free (CC) beam computed using the corrected finite 
element model.
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by the first natural frequency error values with respect to the 
analytic solution contained in Table 8. These results refer to 
the 45° fiber direction angle. It is seen here also that refinement 
only attenuates the effects of parasitic shear effectively for 
the 32-element mesh on. Table 9 and Table 10 contain the 
results provided by strain gradient models corrected for 
parasitic shear and containing parasitic shear, respectively. 

Eight uniform refinement meshes of 1 to 128 elements are 
employed in the analyses. Comparison of the Tables 9 and 10 
show the effects of parasitic shear on the natural frequency 
results of this specific laminate and boundary conditions.

Finally, a brief analysis of the quality of mode shapes 
is done. Only transverse displacement mode shapes of the 
cantilever beam (CF) are investigated. Further, only mode 

Table 5. Error values in the first natural frequency (CC).

1 2 4 8 16 32 64 128
Without parasitic shear - 62,5% 18,4% 4,3% 1,2% 0,5% 0,3% 0,3%

With parasitic shear - 138,9% 47,3% 13,2% 3,6% 1,1% 0,5% 0,4%

Table 6. Natural frequencies (nondimensional values) for CC beam - Laminated composite with (0/90/90/0) lamination scheme. Model 
corrected for parasitic shear.

Element Present solution: mode number
Nel 1 2 3 4 5 6 7 8
1 - - - - - - - -
2 7,609 83,491 - - - - - -
4 5,179 13,138 23,796 90,95 - - - -
8 4,728 10,923 18,726 27,825 38,01 48,52 57,287 -
16 4,624 10,41 17,316 24,841 32,824 41,181 49,922 59,062
32 4,598 10,285 16,974 24,11 31,486 38,978 46,557 54,219
64 4,592 10,254 16,89 23,929 31,156 38,434 45,722 53,006
128 4,591 10,248 16,873 23,894 31,092 38,328 45,561 52,772

Ref20 4,594 10,291 16,966 24,041 31,287 - - -
Ref31 4,725 10,754 17,907 25,596 33,613 - - -
Ref49 4,594 10,291 16,966 24,041 31,288 34,518 - -
Ref39 4,581 10,251 16,891 23,925 31,126 34,51 38,355 45,568
Note
Ref20 Analytic Solution - First Order shear Deformation (1990)
Ref31 Mixed finite element modelling (2002)
Ref49 First-Order shear Deformation (1995)
Ref39 Generalized Differential Quadrature (2019)

Table 7. Natural frequencies (nondimensional values) for CC beam - Laminated composite with (0/90/90/0) lamination scheme. Model 
containing parasitic shear.

Element Nel
Present solution: mode number

1 2 3 4 5 6 7 8
1 - - - - - - - -
2 7,609 93,977 - - - - -
4 5,512 13,438 23,932 93,131 - - - -
8 4,83 11,067 18,892 27,982 38,13 48,588 57,307 -
16 4,65 10,45 17,366 24,895 32,876 41,229 49,964 59,097
32 4,605 10,296 16,987 24,124 31,501 38,991 46,57 54,231
64 4,594 10,257 16,893 23,932 31,16 38,437 45,726 53,009
128 4,591 10,249 16,874 23,895 31,094 38,33 45,563 52,773

Ref20 4,594 10,291 16,966 24,041 31,287 - - -
Ref31 4,725 10,754 17,907 25,596 33,613 - - -
Ref49 4,594 10,291 16,966 24,041 31,288 34,518 - -
Ref39 4,581 10,251 16,891 23,925 31,126 34,51 38,355 45,568
Note
Ref20 Analytic Solution - First Order shear Deformation (1990)
Ref31 Mixed finite element modelling (2002)
Ref49 First-Order shear Deformation (1995)
Ref39 Generalized Differential Quadrature (2019)
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Figure 9. Clamped-Supported (CS) laminated composite beam problem model.

Figure 10. (a) First frequency for different ply fiber directions for the clamped-free (CS) beam computed using the parasitic shear finite 
element model; (b) First frequency for different ply fiber directions for the clamped-free (CS) beam computed using the corrected finite 
element model.

Table 8. Error values in the first natural frequency (CS).

1 2 4 8 16 32 64 128
Without parasitic shear - 76,2% 13,4% 3,4% 1,1% 0,6% 0,4% 0,4%
With parasitic shear - 158,9% 48,9% 13,4% 3,7% 1,2% 0,6% 0,5%

Table 9. Natural frequencies (nondimensional values) for CS beam - Laminated composite with (0/90/90/0) lamination scheme. Model 
corrected for parasitic shear.

Element Present solution: mode number
Nel 1 2 3 4 5 6 7 8
1 77,006 - - - - - - -
2 5,427 78,832 - - - - - -
4 3,904 11,997 23,319 - - - - -
8 3,617 10,008 18,108 27,479 - - - -
16 3,55 9,558 16,735 24,492 32,957 - - -
32 3,534 9,448 16,404 23,765 31,275 38,849 46,474 54,168
64 3,53 9,421 16,322 23,586 30,945 38,304 45,639 52,952
128 3,529 9,416 16,306 23,551 30,881 38,199 45,477 52,718

Ref20 3,525 9,442 16,384 23,685 31,066 - - -
Ref31 3,83 9,829 16,940 23,960 26,376 - - -
Ref49 3,525 9,442 16,384 17,259 23,685 31,066 - -
Ref39 3,519 9,412 16,317 23,575 30,909 38,219 45,478 51,765
Note
Ref20 Analytic Solution - First Order shear Deformation (1990)
Ref31 Mixed finite element modelling (2002)
Ref49 First Order shear Deformation (1995)
Ref39 Generalized Differential Quadrature (2019)
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Table 10. Natural frequencies (nondimensional values) for CS beam - Laminated composite with (0/90/90/0) lamination scheme. Model 
containing parasitic shear.

Element Nel
Present solution: mode number

1 2 3 4 5 6 7 8
1 88,260 - - - - - - -
2 6,233 88,045 - - - - - -
4 4,270 12,519 23,6 - - - - -
8 3,718 10,188 18,317 27,668 - - - -
16 3,576 9,605 16,794 24,553 32,957 - - -
32 3,540 9,460 16,419 23,781 31,291 38,863 46,488 54,180
64 3,531 9,424 16,325 23,59 30,949 38,308 45,642 52,955
128 3,529 9,417 16,307 23,553 30,883 38,200 45,479 52,719

Ref20 3,525 9,442 16,384 23,685 31,066 - - -
Ref31 3,83 9,829 16,94 23,96 26,376 - - -
Ref49 3,525 9,442 16,384 17,259 23,685 31,066 - -
Ref39 3,519 9,412 16,317 23,575 30,909 38,219 45,478 51,765
Note
Ref20 Analytic Solution - First Order shear Deformation (1990)
Ref31 Mixed finite element modelling (2002)
Ref49 First Order shear Deformation (1995)
Ref39 Generalized Differential Quadrature (2019)

Figure 11. First five transversal mode shapes of the clamped-free (CF) beam computed using the corrected finite element model.

shape vectors extracted from the finer mesh (128 elements) 
are considered. Figure  11 shows the first five transverse 
displacement mode shapes computed using the models 
corrected for parasitic shear. They correspond to the usual 
shapes of vibration modes for a cantilever beam found in 
the literature. Figure 12 shows the same mode shapes when 
computed using the models containing parasitic shear. The 
reader may observe the qualitative differences that are present 
when comparing the mode shapes. Apparently, there is no 
qualitative difference in the first mode shape. However, there 
are significant differences in all the other mode shapes. It is 
observed that there is no mode in the parasitic shear model 

which is similar to the correct second mode. This is as if 
parasitic shear has suppressed second mode. In fact, parasitic 
shear second mode is similar to the correct third mode. 
Further, in that line of thought, third to fifth parasitic shear 
modes are more complex than their correct counterparts. 
The presence of spurious terms in the model’s stiffness 
matrix is the cause of such erroneous numerical results, 
which leads to the conclusion that parasitic shear might 
also affect free vibration analysis of laminated composites 
qualitatively, i.e., computing eigenvectors wrongly. This 
emphasizes the requirement that parasitic shear be eliminated 
if sound dynamic results are to be obtained. Inspection of 
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transverse displacement mode shapes of the beam with the 
other boundary conditions have also been inspected, but no 
qualitative error has been detected.

6. Conclusions
This paper has presented an investigation on the free 

vibration analysis of laminated composite beams using the 
finite element method. Timoshenko beam models formulated 
via strain gradient notation have been employed for that 
purpose. The formulation of the model has been reviewed 
as well as the procedure for identification and elimination of 
the parasitic shear term present for completeness. This work 
aimed at showing that the strain gradient model is capable of 
computing natural frequencies and mode shapes accurately. 
Also, it aimed at showing how deleterious parasitic shear 
can be in laminated composites free vibration modeling. 
Different angle-ply laminated composite beams subjected 
to different boundary conditions, namely, clamped-free 
(CF), clamped-clamped (CC), and clamped-supported 
(CS) have been analyzed. Natural frequency results have 
been compared to results provided by different authors for 
validation purposes. It has been found that results provided 
by strain gradient models corrected for parasitic shear agrees 
with many of other researchers’ results. In particular, they 
are very similar to results provided in reference39 where the 
generalized differential quadrature method has been employed. 
Further, it has been demonstrated that parasitic shear slows 
convergence of computed natural frequencies, which requires 
higher degree of mesh refinement and, consequently, more 
computational effort. However, it was observed that parasitic 
shear affected more significantly the CF beam than the CC 
and CS beams, which indicates that boundary conditions have 
an influence on the parasitic shear role. Finally, it has been 
demonstrated here that parasitic shear also causes errors in 

vibration mode shapes. The nature of the error is qualitative 
in the sense that mode shapes might be misrepresented by 
the model containing parasitic shear. In general, it can be 
concluded that parasitic shear is a menace in free vibration 
analysis of laminated composites and that measures to 
eliminate it or at least reduce its effects must be taken. In 
that sense, strain gradient notation is efficient as it allows for 
the clear identification and accurate elimination of parasitic 
shear terms. Furthermore, it can be stated that strain gradient 
notation finite element models are competitive alternatives 
for free vibration analysis of laminated composite beams.
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