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A composite of natural rubber (NR) with polyaniline (PANI) was obtained by mixing an 
aqueous dispersion of dodecylbenzenesulfonic acid (DBSA)-doped PANI with NR latex in different 
concentrations. Films were obtained by the casting method and characterized by ultraviolet visible 
near-infrared (UV-Vis-NIR) spectroscopy, thermogravimetry/differential thermogravimetry (TG/
DTG), stress-strain testing, differential scanning calorimetry (DSC), and DC electrical conductivity 
measurements. The UV-vis-NIR spectrum showed that PANI remained doped in the composite, and 
this improved the mechanical and electrical proprieties of NR films and afforded them good thermal 
stability up to ~200°C. The percolation threshold did not follow the universal critical exponent, and 
in this case, conduction preferentially occurs by hopping and tunneling.
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1.	 Introduction
Among currently available intrinsically conducting 

polymers (ICP), polyaniline (PANI) has emerged as one 
of the most promising ones for technological applications 
owing to its good electrical properties, environmental 
stability, low production cost, and ease of synthesis1,2. As a 
result, PANI is considered a strong candidate for applications 
such as sensors, electromagnetic shielding (EMI), corrosion 
protection, and actuators1-3. However, PANI’s applications 
are limited by its poor infusibility, low solubility in 
organic solvents, and poor mechanical properties2. PANI’s 
solubility can be improved by using organic acids such as 
dodecylbenzenesulfonic acid (DBSA) and p-toluenesulfonic 
acid (PTSA) that not only improve the compatibility of 
PANI with the host matrix but also acts as dopants, thus 
increasing the electrical conductivity of the material4. PANI’s 
mechanical properties can be improved by mixing it with 
a polymeric host matrix to form composites or blends3-25. 
Many polymeric materials can be used as supports for 
PANI, such as cellulose nanofiber5, epoxy resin7, polyvinyl 
chloride (PVC)4, polyurethane8, poly(methyl methacrylate) 
(PMMA)9 , and rubbers10-25 . Among polymeric matrixes, 
natural rubber (NR) has been increasingly used for forming 
composites owing to its unique mechanical properties. NR 
is extensively used in various products that require superior 
properties such as elasticity, flexibility, and resilience.

NR/PANI blends and composites have already been 
obtained using different methods such as mill mixing14 , 
solution/dispersion mixing11,12,16,22 , and electrochemical17  
and chemical polymerization10  of aniline in the presence of 
a host matrix. However, few studies have focused on NR/
PANI composites obtained by a mixture of PANI dissolved 
in an organic solvent with NR latex10-12.

In this study, NR/PANI-DBSA composites were obtained 
by mixing NR latex and an aqueous dispersion of DBSA-
doped PANI in different concentrations. These composites 
were characterized by ultraviolet visible near-infrared 
(UV-Vis-NIR) spectroscopy, thermogravimetric/differential 
thermogravimetric (TG/DTG) analysis, differential scanning 
calorimetry (DSC), stress-strain measurements, and DC 
electrical conductivity measurements. It was found that 
PANI-DBSA improved the mechanical proprieties of NR 
and that the composite showed low electrical percolation 
threshold.

2.	 Material and Methods

2.1.	 Material

Analytical grade aniline was purchased from Sigma-
Aldrich, distilled under vacuum, and stored in a refrigerator 
before being polymerized. Ammonium peroxydisulfate 
(APS) and DBSA (70 wt% in 2-propanol) were purchased 
from Sigma-Aldrich and used as received. NR latex was 
collected from Hevea brasiliensis trees (Clone RRIM 600) 
planted in the Experimental Farm of the University of São 
Paulo State (UNESP), campus of Ilha Solteira, Brazil, and 
stabilized in a commercial solution of ammonium hydroxide 
to avoid coagulation. The dry rubber content was determined 
by standard methods13 .

2.2.	 Synthesis of PANI-DBSA

An aqueous dispersion of PANI-DBSA complex was 
prepared by the oxidative polymerization of aniline in the 
presence of DBSA in aqueous media. In a typical procedure, 
1.0 mL of aniline and 7.6 mL of DBSA were mixed in 
500 mL of deionized water under constant stirring. After *e-mail: mal@dfq.feis.unesp.br
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1 h, 10 mL of an aqueous solution containing 0.61 g of 
APS was added to the mixture. The medium was kept at 
5°C under magnetic stirring and after 12 h of reaction, the 
PANI-DBSA complex was separated from the medium by 
centrifugation. PANI-DBSA was re-dispersed in water and 
centrifuged again. This procedure was repeated three times, 
and the final content was either re-dispersed in water in the 
desirable concentration (e.g., for characterization) or kept 
at high concentration.

2.3.	 Preparation of NR/PANI-DBSA composite

The NR/PANI-DBSA composite was obtained by the 
mixture of PANI-DBSA aqueous solution (5.2 w/v) in 
NR latex (pH = 7.0, 41.0 w/v of NR) at concentrations of 
3-10 wt%. The mixture was kept under constant stirring for 
2 h at ambient temperature, following which it was cast on 
a glass substrate and dried in a conventional oven at 60°C 
for 12 h to obtain ~200-µm-thick films.

2.4.	 Methods

UV-Vis-NIR absorption spectra of NR/PANI-DBSA 
films were obtained using a Cary 50 spectrophotometer 
(Varian). Spectra were recorded from 300-1000 nm. 
Thermogravimetric analysis was carried out in the 
temperature range of 25-600°C at a heating rate of 10°C/min 
in nitrogen atmosphere with a flow rate of 60 mL/min using 
a Q500 (TA Instruments). Approximately 10 mg were used 
for each sample. The glass transition temperature (T

g
) of 

the samples (10.0 mg) was measured using a MDSC 292 
(TA Instruments) with a scan rate of 10°C/min within 
the temperature range of –100 to 150°C under nitrogen 
atmosphere.

Mechanical tests were conducted in accordance with 
ASTM D882 using an Instron tensometer at a crosshead 
speed of 500 mm/min and a 100-N load cell. Electrical 
conductivity measurements of the samples were carried 
out using a two-probe method. Gold electrodes were 
evaporated onto both faces of the film for electrical contact. 
A power source that provides a constant voltage and 
measures the current (Model 247, Keithley Instruments) 
was used to measure the current through the sample. The 
electrical conductivity σ (S/cm) was calculated according 
to Equation 1:

.
.

eI A
V d

σ = 	 (1)

where d (cm) is the thickness of the film; I (A), the current 
driven through the sample; A

e
 (cm2), the electrode area; and 

V (V), the applied voltage.

3.	 Results and Discussion
UV-Vis-NIR absorption spectra of DBSA-doped PANI 

and the NR/PANI-DBSA composite are shown in Figure 1. 
Three bands are observed in the PANI-DBSA spectrum, 
indicating that the polymer is in its emeraldine salt form. The 
band at 340 nm is assigned to the π-π* transition of benzene 
rings and those at ~800 nm and ~420 nm, to polaron bands 
related to the doping process and conductivity of PANI5,10,19. 

Figure 1. UV-Vis-NIR spectra of PANI-DBSA and the NR/PANI-
DBSA composite.

Figure 2. (a) TG and (b) DTG curves of neat NR, PANI-DBSA, and NR/PANI-DBSA composite.
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The same bands are observed in the UV-VIS-NIR spectra 
of NR/PANI-DBSA composites, indicating that the high 
pH of natural latex did not lead to the dedoping of PANI.

Figure 2 shows typical TG/DTG curves obtained for the 
neat NR, PANI-DBSA, and NR/PANI-DBSA composite 
with 10 wt% of PANI-DBSA. The TG curve of DBSA-PANI 
shows three main weight loss stages. The first weight loss 
occurred before 100°C owing to the loss of water and other 
volatiles; the second, in a temperature range of 200-350°C 
owing to the evaporation and degradation of DBSA and 
the oxidation of the PANI structure20,21; and the third, in 

a relatively wide temperature range of 400-500°C owing 
to the degradation of the bound PANI-DBSA and the 
decomposition of PANI20,21.

The TG/DTG curves of the neat NR and composite 
basically show the same decomposition mechanism. 
The NR TG profile shows remarkable weight loss in the 
temperature range of 300-450°C corresponding to the 
structural decomposition of rubber in nitrogen atmosphere26.  
The NR/PANI-DBSA composite also showed a peak 
at ~370°C (major peak) that was mainly attributed to 
rubber decomposition and two discrete weight loss steps 
in the temperature ranges of 60-100°C and 400-500°C, 
corresponding to the loss of water and the degradation of 
PANI and DBSA bounded in the composite, respectively.

The effect of the addition of PANI-DBSA on the T
g
 of 

NR was investigated by DSC, and the results did not show 
a significant change in the T

g
 of NR with addition of up 

to 10 wt% of PANI-DBSA, as shown in Figure 3. In both 
samples, the T

g
 was around – 63°C.

Stress-strain tests were performed under uniaxial 
extension; Table  1 shows the analytical results of the 
mechanical properties and Figure  4, the tensile curves. 
The addition of PANI-DBSA improved the mechanical 
properties of the composites. Both Young’s modulus 
(determined from the initial slope of the tensile curves) and 
tensile strength significantly increased with the addition of 
PANI-DBSA to rubber.

This effect is attributed to the rigidity of PANI. 
Increasing the PANI-DBSA content in the composite to 
10 wt% led to no significant change in the tensile profile 
compared to a proportion of 5 wt%. This behavior can be 
related to the amount of water uptake in the composite owing 
to the hygroscopic characteristics of DBSA-doped PANI27 .

Figure  5 shows the electrical conductivity of the 
composite films as a function of the PANI-DBSA content. 
The conductivity increased with an increase in the PANI-
DBSA content in the NR matrix, reaching a value of 
10–6 S/cm for 10 wt% of PANI-DBSA. The percolation 
threshold was found to be ~3.1 wt%.

By percolation theory, when a conducting continuous 
network is formed in the composite through connections 

Figure 3. DSC curves of the neat NR sample and NR/PANI-DBSA 
composite.

Figure 4. Stress-strain curves of the samples of the NR/PANI-DBSA 
composite films with proportions of 95/05 and 90/10 and neat NR.

Figure 5. Electrical conductivity of NR/PANI-DBSA composites 
as a function of PANI-DBSA content.

Table 1. Young’s modulus (E), tensile strength (σ
r
), and elongation 

(ε
r
) at the break of the neat NR and NR/PANI-DBSA composite 

films with proportions of 95/05 and 90/10.

Samples E (MPa) σr (MPa) εr (%)

NR 0.68 ± 0.05 1.36 ± 0.04 766 ± 9

NR/PANI-DBSA-95/05 1.00 ± 0.30 2.10 ± 0.20 699 ± 2

NR/PANI-DBSA-90/10 1.50 ± 0.20 2.20 ± 0.10 695 ± 7
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between adjacent conducting particles, the electrical 
conductivity behavior can be calculated using a typical 
power-law28,29:

( )tck p pσ = − 	 (2)

where  p
c
  is the critical concentration or percolation 

threshold; p, the concentration of the conductive phase; k, 
a constant; and  t, the conductivity critical exponent. The 
data from Figure 5 were fitted to a plot of log (σ) versus log 
(p-p

c
) according to Equation 2, as illustrated in Figure 6, to 

estimate the values of the critical exponent (t) and constant 
(k). The values t and k were estimated by fitting the data 
shown in Figure 6, in which the values were t = 3.3 and 
k = 3.7 × 10–9.

In polymeric composites filled with a low proportion of 
conducting particles, the mean distance between particles or 
clusters is sufficiently large and the conductivity is restricted 
by the presence of the polymeric matrix. However, by 

increasing the conducting phase content at the percolation 
threshold, a physical path is formed. The t value obtained 
is larger than that obtained by the universal percolation 
theory. The behavior of the nonuniversal critical exponent 
of conductivity in polymer composites has been reported in 
literature30,31; it is attributed to the formation of an electrical 
percolation network in which the particles are not in direct 
physical contact32 . In this case, the conduction process 
in the composite preferentially occurs via hopping and 
tunneling of charge carriers between neighboring particles 
or particles clusters32 .

Above the percolation threshold, the electrical 
conductivity of the composite increased by seven orders of 
magnitude compared to that of neat NR (10–14 S/cm).

4.	 Conclusion
An NR/PANI-DBSA composite was obtained by 

incorporating an aqueous dispersion of DBSA-doped PANI 
into NR latex, and films of the composite were obtained by 
casting methods. The mechanical and electrical proprieties 
of the NR films were improved by the incorporation of 
PANI-DBSA with good thermal stability up to ~200°C. 
The percolation threshold (p

c
) and critical exponent values 

were p
c
 = 3.1 and t = 3.3, respectively. The behavior of the 

nonuniversal critical exponent was attributed to electrical 
percolation. For a composite with 10% of PANI-DBSA 
content, an electrical conductivity of ~10–6 S/cm was 
attained, which is seven orders of magnitude higher than 
that of neat NR.
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Figure 6. Double-logarithmic plot according to Equation 1.
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