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A formal kinetic approach was applied to the spread of isothermal martensite over the neighboring austenite 
grains in a Fe-23.2 wt. (%) Ni-2.8 wt. (%) Mn alloy. The number of grains in a spread event changed with parent 
austenite grain size. However, isothermal martensite spread formed from fine-grained parent austenite and 
athermal martensite from a Fe-31 wt. (%) Ni-0.02 wt. (%) C alloy studied in a previous work followed the same 
microstructural path. The number of grains per spread- event found in the present study was shown to be consistent 
with the number of neighbors of the grain originating the spread event by means of a simple geometrical model 
of the parent austenite grain network. The study of the kinetics of isothermal martensite spread showed that the 
nucleation rate of the spread-event in isothermal martensite remained constant during the transformation. This 
result parallels the constant nucleation rate of the spread-event also found using the same methodology in athermal 
martensite formed in a Fe-31 wt. (%) Ni-0.02 wt. (%) C alloy studied in a previous work.
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1. Introduction

Martensite is a displacive phase transformation with significant 
transformation strains which prompts microstructural heterogeneity, 
influences plate’s shape, and can lead to diversity in kinetics. Usually, 
the martensite reaction does not start simultaneously in all austenite 
grains. In bulk polycrystals, the first nucleation event in a single grain 
may induce transformation in neighboring grains, resulting in a cluster of 
partially transformed grains. This cluster of partially transformed grains 
is normally designated as a ‘spread event’. The collection of these single 
spread events can be defined as the ‘spread’ or ‘martensite spread’. The 
martensite reaction then proceeds by nucleation of additional martensite 
units within the partially transformed grains, in what is normally called 
the ‘fillin-in’. Martensite nucleation events may take place in a number 
of grains leading to a certain number of clusters or spreads. In athermal 
martensite this nucleation takes place very fast at a certain temperature, 
as a consequence spread and fill-in are completed almost instantaneously. 
By contrast, in isothermal martensite, nucleation of new martensite plates 
in untransformed grains and the consequent spread event takes place as 
a function of reaction time. As a consequence, in isothermal martensite, 
martensite spread can be followed as function of time.

The microstructure of the martensitic spread is described by the 
volume fraction of material in grains partially transformed, V

v
g (not 

the martensite volume fraction) and by the area of interface between 
a cluster of partially transformed grains and the untransformed par-
ent matrix, per unit volume of material, S

v
g. All symbols used in this 

paper are defined in Table 1 for convenience. The martensite burst 
is the classical example of autocatalytic spread of martensite over a 
large number of neighboring austenite grains in a single event. An 
optical photomicrograph of a Fe-31 wt. (%) Ni-0.01 wt. (%) C alloy 
partially transformed by cooling to its burst temperature, M

B
 ≈ 220 K, 

is shown in Figure 1. Clusters of partially transformed grains in a 
matrix of untransformed grains are conspicuous.

The martensitic spread in materials that isothermally transform to 
plate martensite at sub-zero temperatures is the topic of this communica-
tion. The current analysis is based on plate martensite formation in alloys 

of high Ni and high Ni plus Mn contents with sub-zero transformation 
temperatures. The present analysis does not apply to lath martensite 
formation in Fe-C alloys or steels with high M

s
 temperatures. 

 In a recent paper1, the present authors have shown that the 
methodology of formal kinetics was useful to deal with spread in 
athermal martensite. The basis of formal kinetic modeling is the early 
work of Johnson-Mehl2, Avrami3 and Kolmogorov4 (JMAK ), which 
used only a single microstructural descriptor, V

V
. JMAK’s work was 

subsequently extended by DeHoff and Gokhale’s microstructural path 
method (MPM)5-8, who proposed the use of an additional microstruc-
tural descriptor, S

V
, and the associated concept of microstructural 

path. Vandermeer and coworkers9 extended DeHoff’s microstructural 
path concept and crystallized it in an all round theoretical treatment 
covering variable nucleation and growth rates as well as non-spherical 
regions: the microstructural path method (MPM). 

The microstructural path method was originally developed to deal 
with recrystallization and later applied also to diffusional transforma-
tions and grain growth but it is in fact quite general and can in principle 
be used to model any heterogeneous transformation. 

In this work, the evolution of spread during isothermal marten-
site transformation is modeled with the help of the formal kinetics 
methodology. The theoretical results will be checked with experi-
mental data obtained from Fe-23.2 wt. (%) Ni-2.8 wt. (%) Mn10,11 
isothermally transformed. 

Martensite reaction is nucleation-controlled. Preferred nucleation 
sites are postulated to exist dormant in the material and propagate the 
pioneer nucleation event in untransformed grains under the available 
chemical driving force. Their potency, however, is not uniformly 
distributed. The reaction inherits this heterogeneity and it is firstly 
observed only in a few austenite grains12. Nonetheless, the pioneer 
nucleation in a grain has influence over a certain spread volume, v

sp
, 

comprising a number γ of austenite grains. 

v
sp

 = q ⋅ γ  (1)
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Table 1. List of symbols used in this paper and their definitions.

Symbol Definition

M
s

Martensite start temperature;

V
v

Martensite volume fraction;

 V
v
g Volume fraction of material in grains partially transformed grains, that is, volume fraction of all grains in all 

clusters of martensite spread;

 S
v
g Area of interface per unit volume of material between the clusters of partially transformed grains and the  

untransformed parent matrix, that is, area of interface per unit volume of martensite spread;

V
v,ext

, V
v
g
,ext 

, S
v
g
,ext 

The subscript ext added to these quantities mean that they are extended quantities, that is, that they are calculated 
ignoring impingement among growing regions.

v
sp

Volume of a single cluster of austenite grains partially transformed to martensite comprising a number γ of 
austenite grains, that is, volume of a single spread event;

s
sp

Surface area between a single cluster of austenite grains partially transformed to martensite and the untransformed 
matrix grains, that is, surface area of a single spread event; 

k Shape factor related to a single spread event or cluster of partially transformed austenite grains;

γ Number of grains in a cluster of partially transformed austenite grains that constitute a spread event;

a Coefficient obtained from microstructural path, a = 2γ–1/3 ;

 N
v
m Number of austenite grains per unit volume in the parent austenite matrix; 

q Average austenitic grain volume, N
V
m = 1/q;

d Grain diameter, d = (6q/π)1/3

 S
v
m Grain boundary area per unit volume of parent austenite matrix grains;

λ Mean intercept length of parent austenite matrix intercept, S
v
m = 2/λ;

 n
v

Total number per unit volume of active nuclei at a certain temperature;

 n
v
i,T Initial density of pre-existent, dormant sites at a certain temperature;

 n
v
Ms Value of n

v
 at M

s 
temperature;

 n
v
∆T Number of pre-existent nucleation sites at ∆t =M

s
-T, where T is the transformation temperature;

 I
v Nucleation rate,  ;

t
0
 Incubation time;

m Volume fraction of martensite in a single grain resulting from the first martensite plate to form;

α, β, R
Parameters of linear regression:  ,α is the intercept and β is the slope of the straight 

line, R is the correlation coefficient;

100 m

Figure 1. Optical micrograph of a Fe-31 wt. (%) Ni-0.01 wt. (%) C alloy 
transformed at M

s
 (220 K). The martensitic ‘spread’ can be clearly seen against 

the background of austenite grains. 

where q is the average austenitic grain volume
,
 q = 1/ N

v
m where  N

v
m 

is the number of austenite grains per unit volume. The transformation 
continues by subsequent “spread events” that spread the reaction to 
the untransformed grains. 

2. Experimental Data

The data used here were obtained by quantitative metallographic 
techniques to determine volume fraction and interface area per unit 
of volume from planar sections. The highly pure FeNiC and FeNiMn 
alloys were reacted under strict control as described in the referenced 
papers. The authors10,11 have described and discussed their experimen-
tal conditions at length and that will not be repeated here for brevity. 
However, for the present work, the data were compiled by scanning 
and digitizing their graphs with relevant metallographic quantities. 
Non-conspicuous data points were dismissed. These data were con-
solidated by reiteration to average out small variations. In the follow-
ing, FeNiC refers to Fe-31 wt. (%) Ni-0.02 wt. (%) C and FeNiMn 
refers to  Fe-28 wt. (%) Ni-3 wt. (%) Mn. S

v
m was obtained from the 

mean intercept length with the well-known13 stereological relation-



Vol. 11, No. 1, 2008 Formal Analysis of Isothermal Martensite Spread 105

ship S
v
m  = 2/λ. The values of q were calculated from λ assuming that 

parent austenite grains can be approximated by tetrakaihedra13 (See 
Figure 4 and discussion in Section 5.): q = 2.34 λ3 ; d, the diameter 
of a sphere with a volume equal to the grain volume, can be found by 
d = (6 q/π)1/3. The values of λ, S

v
m,q and d are listed in Table 2 for the 

FeNiMn alloy. In his original work, Ghosh10,11 gives the mean intercept 
length, λ, for each alloy.

3. Microstructural Path Analysis

The MPM describes the transformation in extended space. The 
extended quantities are transformed into real measurable quantities 
by means of the fundamental relationships

V
v
g = –exp(–V

v
g
,ext

) (2)

 (3)

where S
v
g
,ext

  and V
v
g
,ext 

are extended quantities. 
Rios and Guimarães1 have derived an expression for the micro-

structural path of the athermal martensite spread. They assumed a 
relationship between the volume and surface area of the individual 
spread, v

sp
 and s

sp
, respectively. This relationship is9

S
sp

 = kv
s
2/

p
3 (4)

where k is a shape factor. For a tetrakaihedron shape13 one obtains 
k ≅ 5.31 whereas for a sphere: k ≅ 4.8. In extended space,  n

v 
is 

defined as the total number per unit volume of nuclei which have 
become active during cooling to the temperature of interest. Using 
n

v
, the extended quantities are given by V

v
g
,ext

 = v
sp

 n
v
 and S

v
g
,ext

 = s
sp

 n
v
. 

Inserting these into Equation 4 results in

 (5)

Equation 5 is the microstructural path in extended space. It can 
be converted to the microstructural path in real space with the help 
of Equations 2 and 3

 (6)

where S
v
m, the total area of austenite grain boundaries per unit of volume 

of material. The constant   can be simplified assuming 
that the parent austenite grains can be approximated by tetrakaihedra13 

S = 
v
m 2.6 (N

v
m) 1/3 and remembering that V

sp
 = γ(N

v
m)–1.

The parameter a in Equation 6 depends only on γ, which on its 
turn depend on the parameter k. The parameter k is a function of the 
shape of the spread volume. One possible assumption, adopted in 
our earlier paper was that the spread volume had a tetrakaidecahedral 
shape, thus leading to

a = 2 γ–1/3 (7)

Another possibility would be to assume a spherical shape and 
in this case 

 (8)

where the subscript ‘s’ in γ
s
 is meant to emphasize that it was obtained 

from the assumption of a spherical shape. A relationship between γ
s
 

and γ can be easily found: γ
s
 ≅ 0.73 γ. We will use γ throughout this 

paper for consistency with previous work but for comparison purposes 
it is also interesting to have γ

s
.

It is worthy of note that the derivation of Equation 6 did not make 
any specific kinetic assumptions concerning athermal martensite but 
only assumptions regarding the spread volume, Equation 1. There-
fore, Equation 6 should also be applicable for isothermal martensite 
and possibly to mechanically induced martensite as well. Figure 2 
confirms that the experimental data can be well described by the 
microstructural path, Equation 6. 

Both isothermal sets of data plotted after Equation 6 can be 
described by a best-fit straight line passing through the origin with 
a slope a equal to 0.49 for d = 0.031 mm and a equal to 0.75 for 
d = 0.079 mm, with a high correlation coefficient, R = 0.98 and 0.99, 
respectively. The values of γ, calculated using Equation 7, were equal 
to 68 (γ

S
 ≈ 50) for the fine-grained austenite and 19 (γ

S
 ≈ 14) for the 

coarse-grained austenite and are listed in Table 2. Previous analysis 
of athermal martensite in Fe-31 wt. (%) Ni-0.02%C showed that the 
parameter a was also equal to 0.49 and consequently γ was also equal 
to 68 and independent of grain size. By contrast, in the isothermal 
transformation analyzed here the values of γ depended on the grain 
size. The reason for this is discussed in section 5 below. For the 
fine-grained matrix, d = 0.031 mm, the values of a = 0.49 and γ = 68 
obtained by MPM were identical to those obtained for the athermal 
martensite in Fe-31 wt. (%) Ni-0.02%C1. The data corresponding to 
the athermal martensite of Fe-31 wt. (%) Ni-0.02%C1,14,15 are also 
included in Figure 2. Notice that the theoretical MPM line is common 
to both fine-grained isothermal and athermal martensite data since 
their values of a were identical as already mentioned. Therefore, 
it is evident from Figure 2 that the fine-grained isothermal and the 
athermal martensite spreads follow the same microstructural path 

Table 2. Fe-28 wt. (%) Ni-3 wt. (%) Mn for Ghosh10,11 - isothermally 
transformed at 153 K -  γ, γ

s
, Ι

v
 and t

0,lower
 obtained from the analysis of 

experimental data.

λ S
v
m d q γ γ

s
I

v
t
0,lower

mm mm–1 mm mm3 mm–3/s (s)

0.019 105.0 0.031 1.6 10–5 68 50 0.5 1412

0.048 41.7 0.079 2.6 10–4 19 14 1.7 417

0.0

0.00 0.39 0.63 0.78 0.86 0.92
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v
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d = 0.080 mm
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d = 0.079 mm
a = 0.49 R = 0.98

a = 0.75 R = 0.99

Figure 2. Microstructural path of isothermal martensite spread. The theoretical 
result, Equation 6, is compared with experimental data from a Fe-23.4 wt. (%) 
Ni-2.8 wt. (%) Mn alloy obtained by Ghosh10,11. The correlation coefficient, 
R, is also shown. The fine-grained isothermal martensite and the athermal 
martensite follow the same microstructural path.
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regardless of their significant differences in kinetics particularly 
with regard to the number of martensite units per grain in a spread 
event10,16. This result is remarkable and indicates a basic formal 
similarity between the special aspects of martensite spreads in such 
apparently different reactions.

4. Formal Analysis of Spread Kinetics

Whereas pioneer isothermal martensite nucleation takes place at 
the most potent pre-existent nucleation sites, autocatalytic nucleation 
promoted by the martensite plate in its vicinity has a clear effect on 
filling-in with martensite units the partially transformed grains and 
also on poking the reaction into a next grain. In extended space, the 
number per unit volume of pre-existent nucleation sites which have 
become active as a function of time at temperature of interest,n

v
, is 

given by 

dn
v 
(t) = I

v
 (t) dt (9)

or

 (10)

where  I
v
is rate of that process. It is important to stress that no as-

sumptions are made here concerning the specific time dependence 
of either n

v
or I

v
.

However, one must consider that there is an incubation time, t
0
, at 

which a pioneer nucleation event takes place at one of the pre-existent 
nucleation sites. The initial density of these pre-existent, dormant 

sites is . Thereafter, follows Eqution 10. Therefore Equation 10 
can be rewritten as

 (11)

Here, γ is considered to remain constant independent of transfor-
mation temperature, time or fraction transformed but may depend on 
grain size. The spread event originated by a pioneer nucleation event 
propagates until it reaches a volume, v

sp
, Equation 1. As a result, v

sp
, is 

assumed to remain constant throughout the transformation. Therefore, 
the extended volume of spread can be calculated by 

 (12)

defining

 (13)

and inserting Equation 13 into Equation 12 gives

 (14)

introducing equation 14 into equation 2 obtains

 (15)

Eqution 15 can be rearranged and be put in a form more convenient 
for comparison with experimental data, see below,

 (16)

Figure 3 shows that plotting the left hand side of Equation 16 as a 
function of time results in straight lines of the form

 (17)

In these plots, the values of γ used, were obtained from MPM analy-
sis, see Table 2.

From these straight lines, β can be immediately recognized to be 
equal to the nucleation rate, I

v
 . Unfortunately, one cannot extract the 

values of n
v
i,T and t

0
 from this regression. This problem can be better 

understood rewriting the right hand side of Equation 16, using, I
v
 = β 

and comparing it with Equation 11

α = n
v
i,T – I

v
t
0
 (18)

It can be seen from Equation 18 that there are two unknowns: 
n

v
i,T and t

0
 and only one experimental parameter, α. Under these cir-

cumstances, one may obtain only a lower bound for the incubation 
time, t

0,lower
 , by setting the volume fraction of partially transformed 

grains equal to zero

 (19)

The actual t
0
 will be larger than t

0,lower  
because n

v
i,T > 0. The calcu-

lated values of t
0,lower 

are given in Table 2. In diffusional reactions, a 
nucleation event generates a very small volume of the product phase 
which then grows relatively slowly. However, in martensitic reactions, 
once a nucleus is activated a plate grows nearly instantaneously to its 
final size. As a consequence, a finite volume fraction of martensite 
and also of partially transformed grains become instantaneously 
greater than zero at t ≥ t

0
 whereas the volume fraction of martensite 

is equal to zero for t < t
0
.

5. Discussion

As early as 1887, Thomson (Lord Kelvin)17 proposed that the 
truncated octahedron or tetrakaidecahedron network would provide 
a space-filling arrangement of similar cells of equal volume with a 
minimal interface area. This problem is still of interest to this day18. 
In Metallurgy one often adopts Kelvin’s network as an approximation 
for the polycrystalline structure. We will use such an approximation 
here to offer a geometric interpretation of the values of γ found from 
the above analysis. 
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Figure 3. Isothermal martensite experimental data from a Fe-23. wt. (%) 
Ni-2.8 wt. (%) Mn alloy obtained by Ghosh10,11 plotted after Equation 17. 
The correlation coefficients, R, are also shown.
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The basic unit of Kelvin’s network is the truncated octahedron that 
is depicted in Figure 4. It is a polyhedron possessing fourteen faces, 
eight hexagonal faces and six square faces. In order to fill space they 
must be packed in a body centered cubic structure. The BCC unit cell 
with nine truncated octahedra is shown in Figure 5. The polyhedron 
located at the center of the BCC cell shares a hexagonal face with 
each polyhedra located at the vertices. A full cluster consisting of 15 
truncated octahedral is shown in Figure 6. The other six polyhedral are 

attached in such a way that they share a square face with the polyhedron 
located at the center of the BCC cell. These six polyhedra occupy the 
center of adjacent BCC cells. If all polyhedra on these adjacent cells 
were counted one would have a cluster with 39 polyhedra. If one went 
further and completed a cube consisting of twenty seven BCC cells, 
the number of polyhedra in the cluster would raise to 91. 

These numbers are quite close to the values of γ obtained experi-
mentally by means of the MPM methodology. For the isothermal 
martensite with large grain size, γ was about 14-19, suggesting that 
the spread was essentially limited to the grains in direct contact 
with the grain in which nucleation started. On the other hand, for 
fine grained isothermal martensite and also to athermal martensite γ 
was about 50-68, indicating that the spread went beyond the nearest 
neighbors grains. In this case, plates forming in grains adjacent to the 
grain containing the pioneer plate might also have been able to induce 
nucleation on their first neighbors thus increasing the number of grains 
of the spread. Therefore, the experimental result and its geometrical 
interpretation are quite consistent. Based on this one might suggest 
that the number of grains in the spread should be somewhere between 
the cluster formed by the first neighbors with 15 grains and the cluster 
formed by the cube of 27 BCC cells with 91 grains. 

In order to explain the different microstructural path of coarse-
grained isothermal martensite when compared to the fine-grained 
isothermal and athermal martensite, consideration must be given to the 
fact that plates that outright run across and transform a larger volume 
fraction of a grain have a more significant effect on its surroundings, 
as it is observed with the “bursting” FeNiC alloy15. This is seen in 
Figure 7 where the number of grains comprising a spread event, γ, is 
plotted against the grain volume fraction transformed by the first plate 
to form, m = v/q, where v is the volume of a grain’s pioneer plate. This 
is in apparent contempt with the fact that in isothermally transformed 
FeNiMn, a coarser grain size has an adverse effect on m16, hence on γ, 
Table 2. However, when plate and grain size are tuned, such as promoted 
in FeNiMn by a finer grained condition, the values of γ in the “isother-
mal spread” become similar to FeNiC’s “athermal spread” as shown in 
Figure 2. This also supports the view that plate impingement on grain 
boundaries has a key role in the spread of the martensite reaction16.

In spite of the obvious differences between athermal and isother-
mal martensite, the former transforms as a function of temperature and 

Figure 4. Truncated octahedron or tetrakaidecahedron, the basic unit for a 
space-filling network, proposed by Thomson17. This polyhedron has 14 faces: 
8 hexagons and 6 squares. 

Figure 5. Body centered cubic arrangement of truncated octahedra or tetrakai-
decahedra. Space-filling is achieved through BCC packing. The polyhedron 
located at the center of the BCC cell shares a hexagonal face with each one 
of the eight polyhedra located at the vertices.

Figure 6. Cluster of 15 truncated octahedra or tetrakaidecahedra, the central 
polyhedron is surrounded by 14 nearest neighbors. The 9 polyhedra depicted 
in Figure 5 are joined by 6 polyhedra, which are attached in such a way that 
they share a square face with the polyhedron located at the center of the BCC 
cell. Other grains joining this cluster will not have contact with the central 
grain, which contains the pioneer plate.
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Figure 7. γ, i. e., the number of grains of the spread event or cluster of partially 
transformed grains of the parent matrix plotted against m, the ratio of the volume 
of a pioneer plate, v, to the grain volume, q16. Values of γ for Fe-23.4 wt. (%) Ni-
2.8 wt. (%) Mn, isothermal martensite, were obtained from Table 2. For Fe-31 wt. 
(%) Ni-0.02 wt. (%) C, athermal martensite, γ was taken from previous work1. 
The solid line depicted in the figure is just a guideline, not a theoretical result.
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latter as a function of time, the present formalism revealed interesting 
similarities with regard to the martensitic spread in both cases. 

The first similarity concerns the microstructural path of both reac-
tions. Both follow Equation 6, moreover, fine-grained isothermal and 
the athermal martensite spreads followed the same microstructural 
path, a remarkable result, considering their very different kinetics 
particularly with regard to the number of martensite units per grain 
in a spread event. This suggests a basic geometric likeness between 
the martensitic spread in both reactions. 

The second similarity pertains to the kinetics of spread. In a 
previous work, we analyzed the spread kinetics with a formalism 
identical to that used in section 4 and obtained a relationship that 
closely resembles Equation 16

 (20)

Where now n
v
Ms  pertains to the martensite start temperature, and 

n
v
∆T represents the number of pre-existent nucleation sites that become 

available as the transformation temperature decreased from M
s
 to T. 

Notice that athermal martensite starts with a burst at M
s
. Therefore 

M
s
, that is normally known, is our ‘incubation temperature’, which 

eliminates the issue of incubation time. When Equation 20 was 
plotted against temperature, straight lines like Equation 17 with 
temperature substituted for time where obtained (See Figure 2 of 
Rios and Guimarães)1. 

 (21)

From Equation 21 Γ
v 
 could be identified as a constant nucleation 

temperature rate of the athermal spread event (increase in number of 
nuclei or pioneer plates per unit of volume per unit of temperature ). 
The meaning of both athermal and isothermal spread events having 
a constant nucleation rate requires further investigation. 

6. Summary and Conclusions

The formalism proposed here was able to account for the micro-
structural path and the evolution of the volume fraction of partially 
transformed grains, V

v
g, as a function of time for the isothermal 

martensite transformation in the Fe-23.4 wt. (%) Ni-2.8 wt. (%) Mn 
alloy10,11 analyzed here. 

From the microstructural path itself, Equation 6 and Figure 2, it 
could be shown that the number of grains of the spread event or cluster 
of partially transformed grains of the parent matrix, γ, depends on the 
grain size of the parent austenite. However, as shown in Figure 2, the 
spread of isothermal martensite of the Fe-23.4 wt. (%) Ni-2.8 wt. (%) 
Mn alloy from fine-grained austenite and the spread of athermal 
martensite transformation in a Fe-31 wt. (%) Ni-0.02 wt.  (%) C 
alloy followed the same microstructural path. This indicated a basic 
geometric similarity of the spread in both reactions.

The analysis of the evolution of the volume fraction of partially 
transformed grains, V

v
g, as a function of time, has shown that the 

rate of nucleation of pioneer plates per unit of volume, I
v
, remained 

constant during isothermal transformation. Such constant nucleation 
rate was also observed in athermal martensite analyzed by an identical 
formalism in a previous work1.

A geometrical interpretation was provided for the values of the 
number of grains of the spread event or cluster of partially transformed 
grains of the parent matrix, γ, showing that the numbers obtained in 
the analysis are consistent with the number of neighbor grains present 
in the parent matrix.

In summary, the formalism used here, likewise previous analysis 
conducted for athermal martensite transformation1, was able to de-
scribe quite well the isothermal martensite spread. Striking similari-
ties between athermal and isothermal martensite with regard to the 
microstructural path and nucleation rate of the spread event in both 
reactions were revealed.
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