Materials Research, Vol. 4, No. 2, 71-76, 2001.

A Comparison between the Warren-Averbach Method and
Alternate Methods for X-Ray Diffraction Microstructure Analysis

of Polycrystalline Specimens

Bojan Marinkovica*, Roberto Ribeiro de Avillez" *, Alvaro Saavedrab,
Fernando Cosme Rizzo Assuncio®

“Departamento de Ciéncia dos Materiais e Metalurgia, Pontificia Universidade
Catdlica do Rio de Janeiro, 22453-900-Rio de Janeiro - RJ, Brazil
bDepartamento de Quimica, Centro de Pesquisa da Petrobras,

Rio de Janeiro - RJ, Brazil

Received: November 11, 2000; Revised: April 18, 2001

The fundamental parameters approach is used to simulate the instrument contribution to the
X-Ray diffraction profile. This procedure eliminates the need to experimentally prepare a reference
sample of the studied crystalline material when using the Warren-Averbach method to investigate
microstrutural parameters. The Warren-Averbach method is also compared to the Balzar and Enzo
methods, two other popular methods of size-strain analysis. The analysis was carried out using
bohmite powder having two different nominal average crystallite sizes, 80 A and 200 A. A 50%-50%
mixture of these materials was used as a third sample. The proposed simulation procedure provides
good results and is much faster to implement than the usual procedure that includes the preparation
of a reference. For larger crystallite sizes, the results calculated from the Warren-Averbach method
for the volume-weighted average crystallite size differs significantly from the ones obtained from
the Balzar and Enzo methods. The limitations of the Balzar and Enzo methods are also discussed.

Keywords: X-ray diffraction, Warren-Averbach method, convolution profile fitting meth-

ods, size-strain analysis, bohmite

1. Introduction

In the last five decades, defect structure analysis of
polycrystalline materials by X-ray powder diffraction tech-
nique has been able to cover a number of lattice imperfec-
tions. They are often called size-strain analyses and usually
include the evaluation of average crystallite sizes, crystal-
lite size distributions, microstrains, dislocation densities
and stacking fault probabilities. They are generally based
on two different approaches! and have been incorporating
an impressively high number of modifications and nuances
that is to hard too mention all of them*'°. Both approaches
require a twofold task: the determination of the intrinsic
(pure) physical diffraction line profile of the sample and,
then, the extraction of the lattice imperfection parameters.

The first highly elaborated approach of size/strain
analysis is Warren-Averbach method (known also as a
Warren-Averbach-Bertaut method'!) which employs the
deconvolution Fourier-transform method (known also as
the Stokes method) for the determination of the intrinsic
physical line profile, followed by the Fourier method for
evaluation of lattice imperfections'. This method states that
the Fourier coefficients for intrinsic physical line profile
are the product of two terms: the size and the strain coeffi-
cient. The coefficients are numerically calculated. The
method was initially proposed for application in the field
of metals and alloys'>"!3, but rapidly was extend to the area
of ceramic'® and also polymer materials'’.

The second approach was outlined by Balzar® and
Enzo® among other authors and is based on the convolution

e-mail: *bojan@rdc.puc-rio.br, **avillez@dcmm.puc-rio.br

Trabalho apresentado no 14° CBECIMAT, Aguas de Sao Pedro, Dezembro 2000.



72 Marinkovic et al.

profile-fitting method as a tool for the extraction of the
intrinsic physical diffraction line profile. The intrinsic line
parameters extract in this manner, such as 20 diffraction
line positions, full width at a half maximum (FWHM),
integral breadths and others, that define diffraction line
shapes, are further used to calculate the Fourier transforms
of intrinsic diffraction lines.

Balzar’s method uses the Voigt function and its Fourier
transform to describe the intrinsic line profile, which is used
to calculate both the size and strain coefficients proposed
by Warren and Averbach. The advantages of Balzar’s
method are that the Voigt function Fourier transform has
an analytical form and the convolution of two Voigt func-
tions is also a Voigt function, so size and strain coefficients
could be analytically determined.

Enzo’s method uses a pseudo-Voigt function and its
Fourier transform for the description of the intrinsic line
profile. The size and strain coefficients are afterwards
numerically determined following Warren-Averbach
method.

The acceptance of the convolution profile-fitting meth-
ods in the materials science community is very high due to
the much less consuming time than the Warren-Averbach
method, giving, nonetheless, trustful results. There are
numbers of publications on lattice imperfection analyses
using the second approach'®?}. However, the Warren-
Averbach method is still considered as the less biased one,
because it does not assume any shape for the diffraction
lines. At the other side, the second approach uses some
analytical functions to describe the diffraction line shapes.
Experimentally it has been showed that in the most cases
satisfactory representation of diffraction lines is done by
Voigt function, or by some of it approximations, pseudo-
Voigt and Pearson VII. Nevertheless, excellent discussion
on advantages and disadvantages of these two main direc-
tions in size/strain analysis is given in the literature'->*?.

The principal aim in this publication is to use the
fundamental parameters>® profile fitting to simulate the
instrument contribution and, therefore, reduce the time
employed in the Warren-Averbach method. It will be com-
pared with two different modifications of the second ap-
proach described in the works of Balzar> and Enzo et al.®
Further, it was briefly discussed the reliability of the sur-
face-weighted and volume-weighted distribution functions
to recognize eventual bimodal crystal size distribution in
the polycrystalline specimens.

The bohmite, a material with orthorhombic structure,
very important catalyst in the petroleum industry is used to
demonstrate the method.

2. Theoretical Background

The dynamical diffraction theory of perfect crystal pre-
dicts existence of very sharp diffraction lines with some
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small inherent breadth, which results of the uncertainty
principle?’. Each diffraction line is also broadened, un-
avoidably, by spectral dispersion and instrumental factors.
However, every polycrystalline material with microstruc-
ture consisting of grains less than 1 wm and some lattice
imperfections (any type of point, line or planar defects) will
show some additional broadening effect. The part of the
diffraction line that is the consequence of the sample mi-
crostructure is called, most frequently, physical diffraction
line. Therefore, the shape and breadth of the experimental
diffraction line are the mixture of different effects.

For the evaluation of microstructural (defect structure)
parameters of interest in materials science and metallurgy,
such as, average crystallite sizes, crystallite size distribu-
tions, microstrains and some others, it is necessary to deal
only with physical part of diffraction line.

The procedure of separation of the physical diffraction
line from the experimental one, that is developed in this
publication, is based on the simulation of spectral disper-
sion and instrumental effects utilising the fundamental
parameters (FP) approach?®. It is a convolution adjusting
of the experimental diffraction lines, obtained from some
kind of standard material, with functions related to the
dimensions of the diffractometer, the physical variables of
the specimen and the X-rays emission profile. The main
instrumental parameters used for simulation are receiving-
slit width, receiving-slit length, radius of the diffractome-
ter, flat-specimen error function, X-ray target width, source
length, sample size, primary and secondary soller slit an-
gles, as proposed by Cheary and Coelho®®. The advantage
of the fundamental parameters is the fact that they are
nominally known for each X-ray diffraction equipment,
i.e., they are identifiable and measurable terms. Nonethe-
less, they should be verified by profile fitting of the diffrac-
tion pattern of some standard material. The LaBe, a standard
proposed by NIST? was used and the value of the least
square refining weighted pattern R factor, Ryp, was lower
than 5.4, indicating high quality refining. Still, it is essential
to mention that the NIST standard material specimen
showed, in this occasion, some weak physical broadening
due to existence of crystallites with average sizes of about
6000 A. It is proposed to use the so-adjusted fundamental
parameters of the standard specimen to generate ideal
diffraction lines (containing just spectral and instrumental
contributions) at the positions of interest for the investi-
gated specimen. The bohmite peaks (02 0) and (0 8 0) were
chosen to be used in Warren-Averbach method, since the
crystallographic direction [0 1 0] is the only direction that
provides secondary order lines required for this method.
The intensities of so-generated peaks are irrelevant in the
process of deconvolution?®. Thus, the instrument is ad-
justed only once by the use of some standard material (it
could be LaBg, Si, BaF>) and the parameters may be used
for all materials investigated, without the need to prepare a
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standard specimen for each new investigated material that
could usually take a very long time. The step to obtain the
ideal peak now could be successfully done in the matter of
minutes. From this point the Warren-Averbach method
proceeds in the classical manner!. However, the tedious
calculation of Fourier coefficients is now facilitated by the
interactive program Fourya®® that calculates the real and
imaginary Fourier coefficients in the matter of seconds.
Still, some useful and practical observations about the
Warren-Averbach method will be provided during the dis-
cussion.

3. Experimental

The X-Ray diffractometer was a Philips 1820, with
CuKo radiation, acceleration tension of 40 kV and current
of 30 mA, also equipped with a graphite monochromator
and two Soller slits. The nominal diffractometer parameters
are presented in Table 1.

Three specimens of bohmite with different nominal
crystallite size distributions were investigated by X-ray
diffraction technique. The first sample has the nominal
monomodal distribution with nominal average crystallite
size of 200 A; the second one is also characterized by the
nominal monomodal crystallite size distribution with
nominal average crystallite size of 80 A; the third one is the
50%:50% mixture of first two samples. These samples were
kindly provided by CENPES-PETROBRAS and identified
as stated previously. The nominal sizes were determined by
the method developed by Saavedra and DeAngelis*. These
three samples are recorded diffractometrically over the
same 20 range (7-65°), with 20 step of 0.02° and acquisition
time of 10 seconds per step, covering all bohmite diffrac-
tion lines. The diffraction lines from (020) to (231) were
recorded also separately with the 20 seconds per step.

4. Results and Discussion

The FP approach provides a systematic way to generate
a diffraction pattern for any crystalline material and a
specific diffractometer, once a standard material, in this
case, LaBe-NIST standard, has been fitted. Table 1 com-
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pares the nominal values for the equipment used in this
research with the adjusted parameters by the Koalariet/X-
Fit program?®. It must be noted that the parameters sample
length, radius and target size were not adjusted. The used
target size, 0.1 mm, was found to provide a better fitting for
the overall parameters than the nominal one by trial and
error. Crystallite size and microstrain were also used in the
fitting of the standard material, the fitting residual, Rwp, was
5.358 and the goodness of fit was 1.112. The simulation of
the bohmite peaks at (0 2 0) and (0 8 0) was done assuming
infinite crystallite size, zero microstrain and constant back-
ground.

Figure 1 shows the peak (0 8 0) for the 200 A nominal
size specimen. It is clearly visible the overlap of the Kol
and Ko2 for the experimental peak. The Fourier transform
and deconvolution were easily done with the program
Fourya®. The simulated equipment peak was used as the
reference peak for the Stokes method for the deconvolu-
tion. A linear background for the experimental peak was
chosen, by trial and error, in such way that no downward
concavity was observed for the first Fourier coefficients of
the intrinsic physical line profile (deconvoluted profile).
This procedure results in no “hook effect” in the size
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Figure 1. Experimental and instrument X-ray diffraction profiles at
(0 8 0) for sample with nominal 200 A crystallite size.

Table 1. Comparison of the nominal diffractometer dimensions and adjusted dimensions determined by fitting the NIST standard material, LaBe.

Nominal diffractometer dimensions (Philips 1820)

Sample length  Source length

Soller slits
(degree)

Radius (mm)
(mm) (mm)

20.0 12.0 unknown 173

Adjusted diffractometer dimensions

Receiving slit  Receiving slit ~ Target size Fixed
width (mm) length (mm) (mm) divergence

angle

0.2 17.5 0.2 1.0°

Receiving slit  Receiving slit ~ Target size Fixed
width (mm) length (mm) (mm) divergence

angle

0.1630 11.234 0.1 1.21°

Sample length  Source length

Soller slits
(degree)

Radius (mm)
(mm) (mm)

20.0 11.963 3.848 173
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coefficients of the intrinsic diffraction line Fourier trans-
forms.

Figure 2 shows the real part of the calculated Fourier
transform of the peak (0 8 0) presented in Fig. 1 for the 200
A nominal size specimen. The separation of the size and
strain contributions was done by the classical Warren-
Averbach approach, using the real parts of the Fourier
transform of the intrinsic peaks (0 2 0) and (0 8 0). Figure
3 presents the size coefficients of the Fourier transform for
the [0 1 0] crystallographic family direction in the 200 A
nominal size specimen. The same procedure was per-
formed for the other samples.

The volume-weighted size distributions'? for the three
specimens are presented in Fig. 4. The samples 80 A and
200 A were supposed to have a monomodal distribution.
The sample 200 A shows a very broad distribution. The
mixture of these two samples looks definitely bimodal. The
surface-weighted size distributions for the same samples
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Figure 2. Real part of the Fourier transform for family direction [0 1 0]
for sample with nominal 200 A crystallite size.
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Figure 4. Volume-weighted distributions as a function of crystallite sizes
for the three samples.

Normalized Distributions

--------- Nominal 80 A Sample
- Nominal 200 A Sample
—— "Mixture" Sample

Volume-weighted distribution

o

are shown in Fig. 5. All samples seem to be monomodal,
but the samples 200 A and “mixture” show a longer tail for
larger crystallite sizes. The present results indicate that
surface-weighted size distributions are not always capable
to differentiate bimodal conditions. No consistent discus-
sion has been provided in the literature for this topic. On
the other hand, both Balzar and Enzo methods do not show
any bimodal distribution for these samples, as one may
notice from Fig. 6 which presents the crystal size distribu-
tions obtained by these methods for the sample “mixture”.

Benedetti er al.'® applied the Enzo’s method for a
precipitated zirconia powder and observed a shoulder in the
volume-weighted crystallite distribution function towards
higher L values. This shoulder could be an indication of a
bimodal distribution. However, they discarded their results
assuming that they were due to a too large difference in the
Gaussian content of the diffraction lines (1 1 1) and (2 2 2)
used in the method. They did not realize that as long as the
diffraction peak is well fitted, they were just using the
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Figure 3. Size coefficients determined from the real part of the Fourier
transform for family direction [0 1 O] for sample with nominal 200 A
crystallite size.

Figure 5. Surface-weighted distribution as a function of crystallite sizes
for the three samples.
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Figure 6. Comparison of the volume-weighted distributions determined
through the Balzar and Enzo et al. methods for the "mixture"sample. These
two methods resulted in similar behavior and do not show the bimodal
distribution determined by Warren-Averbach method (Figure 4).

Warren-Averbach method which has no restrictions for
calculation of multimodal distributions.

However, Balzar’s method is not able to show a bimo-
dal distribution because the used Fourier transform ap-
proximation for the Voigt function’! is an always
decreasing function, which does not allow for a secondary
peak.

The method proposed by Warren-Averbach makes no
assumption about the form of the peak profile and the size
coefficient, Enzo’s method restricts the peak profile to a
pseudo-Voigt function, but the size coefficient is also cal-
culated as in the Warren-Averbach method. Balzar’s
method restrains the peak profile, the size and the strain
coefficients to a Voigt function. Balzar’s and Enzo’s
method separates the size and strain coefficient following
Warren-Averbach. If A(L) is the Fourier transform for the
intrinsic peak profile, then

A(L) — ASize(L).AStmin(S, L)

AS7(L) is the unknown size coefficient and the strain
coefficient is given by

AStmin(S, L) — exp( _21[252L2<82(L)>)’

where s is the variable in reciprocal space, L is the column
length of orthogonal diffracting planes and €*(L) is the
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mean-square strain, orthogonal to diffracting planes,
averaged over the distance L.

Table 2 presents the average crystallite sizes obtained
from the surface and volume-weighted distributions, and
the microstrain, <e>>"? for all three methods. All methods
show the same trends. Although, it is clear that the micros-
trains values determined through the Balzar method are
almost one order of magnitude greater than the values
obtained by the other two methods. The average crystallite
sizes from the surface-weighted distributions are about the
same for all three methods. Balzar and Enzo methods show
almost identical average crystallite sizes from the volume-
weighted distributions for all the specimens, but differ from
the Warren-Averbach method for the 200 A sample. Two
possible complementary explanations are considered.
Firstly, the convolution profiles employed by Balzar and
Enzo do not correctly account for the intrinsic asymmetry
of the profiles (due to the sample microstructure), while the
Warren-Averbach method does not assume any shape for
the diffraction lines®*. Further, the sample with larger crys-
tallite sizes has narrower intrinsic physical line profiles
and, therefore, requires more Fourier coefficients to de-
scribe the diffraction line than the analytical functions
employed in the Balzar or Enzo convolution methods.

Figure 7 presents the root mean square averaged strain
versus crystallite size for two samples. Specimen 200 A
shows almost constant strain values while the sample "mix-
ture" shows the hyperbolic strain decrease, similar to that
obtained by Balzar and Enzo methods, followed by strong
oscillations. The Specimen 80 A showed very strong oscil-
lations for crystallite sizes greater than 25 10%, SO it was not
considered reliable. The behavior of strain, presented by
the specimen 200 10\, was also observed by Alexandrov et
al*?, which suggested to be caused by inhomogeneity in
the strain and reduction contribution from smaller crystal-
lites possessing larger values of strain.

5. Conclusion

The proposed procedure to obtain an instrumental dif-
fraction profile provides good results and is much faster to
implement than the usual procedure that include the prepa-
ration of a reference sample of the studied material with
large crystalllite sizes and without microstrains.

Table 2. Comparison of the defect structure parameters determined by X-Ray Diffraction for three different approaches.

Warren-Averbach Balzar Enzo et al.
Sample Dy Ds PPN Dy Ds <t Dy Dy PPN
80 A 53 43 0.0011 61 63 0.0165 61 51 0.0018
200 A 143 103 0.0005 242 125 0.0017 245 125 0.0002
Mixture 106 64 0.0005 129 64 0.0035 128 78 0.0005

Mixture is a 50 w% of each nominal sample. Crystalite sizes are in Angstrons. < €2 >" calculated at Dv/2.
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Figure 7. Root mean square averaged strain versus crystallite size deter-
mined by the Warren-Averbach method.

The volume-weighted crystallite size distribution is
more capable to distinguish multimodal conditions than the
surface-weighted crystallite size distribution.

For larger crystallite sizes, the results calculated from
the Warren-Averbach method for the volume-weighted
average crystallite size differs significantly from the ones
obtained from the Balzar and Enzo methods.

The results obtained for the microstrains presented the
same trends, but the values from the Balzar method are one
order of magnitude higher than the values of the other two
methods.

Even though the Warren-Averbach method is more
involved and tedious to execute, it does provide more
consistent data and is capable to distinguish bimodal distri-
butions.
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