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ABSTRACT
The presence of a long-wavelength sensitive (LWS) opsin gene was 
demonstrated in the stygobitic crustacean Creaseria morleyi (Creaser, 
1936) by PCR readings from genomic DNA. In order to find the expression 
of this gene in extraocular tissue, shrimps were collected and placed in a 
tank to expose them to light/dark conditions for a period of 72 hours, and 
immediately after, sacrificed and sampled for RNA in the eyes, cephalothorax, 
abdomen, and sixth abdominal segment plus uropods. The transcripts of 
the LWS opsin gene were found in the eyes and abdomen of individuals 
exposed to light. The expression of these opsins could be involved in 
extravisual functions such as synchronization of their biological processes 
with environmental cycles related to diurnal vertical migration.
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INTRODUCTION

The opsins are a group of G protein-coupled 
receptors (GPCR), which are characterized by their 
capacity for photon absorption (Terakita et al., 2012). 
They are found on the membrane of photoreceptor 
cells of animals, where they capture light energy and 
translate it into different physiological responses; 
among them, an electrochemical signal which is the 
first step in the visual transduction cascade (Shichida 
and Matsuyama, 2009). 

The opsins contain a protein, of a variable 
amino acid residue number with molecular masses 
of 30-50 kDa (Terakita, 2005). These form seven 
transmembrane α-helix regions connected by 
cytoplasmic and extracellular loops (Peirson et 
al., 2009; Lledó-Riquelme et al., 2010); that are 
distinguished from other GPCRs by the binding of 
a retinal-type chromophore (Terakita, 2005; Peirson 
et al., 2009). 

The degree of specialization of the structures that 
detect light enable organisms to perform different 
photoreception types. Extravisual photoreception 
(EP) refers to the detection of the quantity of light 
from the environment allowing them to perform 
processes like phototaxis or physiological functions 
and behaviors related to the day phase (Alexandra 
and Cronin, 2016). EP can be present even though 
the organism lacks true eyes, such as in the case of 
photoreceptor cells of the pineal gland in birds or the 
ocelli in arthropods (Fu et al., 2005; Santillo, 2006). 

Photoreceptors in crustaceans have been described 
in the eyes, caudal photoreceptors, and intracerebral 
ocelli (Meyer, 2001). Likewise, opsins with extravisual 
functions have been identified such as the short-
wavelength sensitive opsin (SWS) and the LWS in 
the abdominal ganglion of the crayfish Procambarus 
clarkii (Girard, 1852); and the peropsin in the abdomen 
and cerebral ganglion of the Antarctic krill Euphausia 
superba Dana, 1850 (Kingston and Cronin, 2015; 
Biscontin et al., 2016).

Creaseria morleyi (Creaser, 1936) is a stygobitic 
crustacean that could possess opsins with extravisual 
functions. It is endemic to the Yucatán Peninsula and 
inhabits submerged cave systems accessed through 
sinkholes, locally known as cenotes (Hobbs et al., 1977). 
In this subterranean environment, individuals have 
developed multiple adaptations to the lack of light, and 
oligotrophic conditions. Their bodies are translucent 
through loss of pigments and with greatly reduced 
eyes (Alvarez and Illife, 2008; Botello and Alvarez, 
2010; Benítez et al., 2020). Nevertheless, in cenotes 
that receive light at the entrance area, individuals have 
vestigial eyes and perform a vertical migration that 
seems to be synchronized with the environmental 
light. During daylight hours, the shrimps are more 
abundant in the depths, while during the night they 
move closer to the cenote entrances (Chávez-Solís, 
2015; Chávez-Solís et al., 2018). This kind of behavior, 
typically synchronized with environmental light, is 
shown by other species, including some planktonic 
crustaceans (Forward, 1976; Wallace et al., 2010). 
Thus, the question arises whether C. morleyi has 
opsins that perform extravisual functions and enable 
it to synchronize with the environment. Therefore, 
the aim of this project is to demonstrate the presence 
of opsin genes and show their expression in various 
body regions of C. morleyi.

MATERIALS AND METHODS

Collection and preservation of specimens
Four specimens of Creaseria morleyi were collected 

alive from the Noh-Mozon, Tecoh, Yucatán State, 
México, during October 2017. They were transported 
to the Unidad Multidisciplinaria de Docencia e 
Investigación de la Facultad de Ciencias, UNAM, 
located in Sisal, near Mérida, Yucatán.

To demonstrate the expression of opsins, two 
test individuals were exposed directly to light, while 
two control specimens were kept in the dark. For 
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this purpose, four 14 L tanks were constructed with 
constantly circulating water taken from the Noh 
Mozón cenote. A RADION XR15W G4 PRO lamp 
was placed above two tanks to emit white light 24 hours 
a day. The other two tanks were completely covered 
so that these individuals remained in total darkness. 

The experiment was maintained for three days 
with amphipods and anostracans (Artemia salina 
(Linnaeus, 1758)) provided for nourishment. 

Extraction, amplification and sequencing of DNA
Degenerate primers were designed to de-

tect the long-wavelength opsins (LWS) by PCR; 
OpnL WCrustF: 5’-CTGGTACCARTWYCCYC-
CCATG-3’, and OpnLWCrustR: 5’-GAACACCG-
TACCCCAGATGG-3’. The Forward primer binds to 
the initial amino region and the Reverse to the seventh 
transmembrane segment. The oligonucleotides were 
designed based on conserved regions between amino 
acid sequences and nucleotides of LWS opsins from 
decapods Litopenaeus vannamei (Boone, 1931), Cam-
barellus schufeldtii (Faxon, 1884), Cambarus ludovi-
cianus Faxon, 1884, Orconectes australis (Rhoades, 
1941), Cambarus maculatus Hobbs and Pflieger, 1988, 
Orconectes virilis (Hagen, 1870), Procambarus clarkii, 
Procambarus seminolae Hobbs, 1942, and Procamba-
rus orcinus Hobbs and Means, 1972. The sequences 
were visualized using BioEdit software (Hall, 1999) 
and aligned with Clustal W (Thompson et al., 1994) 
and MAFFT (Katoh et al., 2002). The DNA was 
extracted from shrimp abdominal muscular tissue 
with a commercial kit DNeasy ® Blood and Tissue by 
QIAGEN ®. Amplification reactions consisted of 32 
cycles of denaturation at 94 °C for 60 s, annealing at 
53 °C for 45 s and elongation of DNA at 72 °C (GoTaq 
Green Master Mix, Promega). The PCR products 
were purified with the Wizard ® SV Gel kit and PCR 
Clean-Up System (Promega). They were inserted 
in the pGEM ®-T Easy vector (Promega) and the 
resultant plasmid constructions were propagated in 
Escherichia coli using One Shot TOP Electrocomp by 
Thermo Fisher Scientific. Finally, they were sequenced 
in both directions through automatic sequencing by 
Molecular Cloning Laboratories (MacLab) and the 
obtained sequences were edited with the BioEdit 
software. Homologies were analyzed with BLAST 

(Camacho et al., 2009), to determine whether the 
obtained nucleotide sequences corresponded to op-
sin genes. Additionally, cluster analysis of genetic 
distance was performed with the Unweighted Pair 
Group Method with Arithmetic Mean UPGMA in 
MEGA X software (Kumar et al., 2018), with branch 
support of the resampling data method of Bootstrap 
with 1000 replicates. 

RNA extraction and expression of the opsin genes
The expression of opsin genes by C. morleyi in 

response to different light conditions was investigated 
by RT-PCR analysis. Given the low accessibility of the 
species and the difficulty to keep animals in captivity 
we used the tissue from two specimens pooled for 
each experimental condition. First, messenger RNA 
isolation was performed by the Trizol® method 
(Chomczynski and Sacchi, 1986) from four regions 
of the body: eyes, cephalothorax, abdomen and sixth 
abdominal segment/uropods (6A+U). Then, the DNA 
present in the sample was digested employing the 
Thermo Scientific DNase I, RNase-free kit by Thermo 
Fisher Scientific and the synthesis of complementary 
DNA carried out using the High-Capacity cDNA 
Reverse Transcription Kit by Applied Biosystems. 
Thereafter, cDNA was employed as a template for 
PCR with primers OpnWCrustF and OpnWCrustR 
as indicated above.

RESULTS AND DISCUSSION

Opsin detection and identification
The Creaseria morleyi 848 pb opsin fragment was 

cloned, sequenced (GenBank accession number 
MT265680) and homology analysis was performed 
with BLAST. The sequence shows homology with 
LWL of crustaceans with an identity greater than 90% 
with the opsins of the crayfish Cambarellus shufeldtii 
(Faxon, 1884) (Accession number AF003544), 
Orconectes virilis (Accession number AF003545), 
and Procambarus clarkii (Accession number S5384), 
among others. 

The UPGMA cluster analysis located the C. 
morleyi opsin in the long wavelength sensitive opsin 
of crustaceans (Fig. 1). The amino acid sequence 
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showed some of the important elements for the 
GPCRs structure and the phototransduction 
process (Gartner and Twoner, 1995; Townson et al., 
1998): two cysteine residues in the first and second 
extracellular domains, which are responsible for the 
disulfide bond stabilization, a glutamic acid residue 
serving as a counterion of a Schiff base in the second 
transmembrane domain (Terakita et al., 2004), and the 
motifs QAKKM and DRY which are potential sites of 
G protein binding in the third and second intracellular 
domain respectively (König et al., 1989) (Fig. 2). 
Also, the C. morleyi opsin has two residues (tyrosine 
and serine in the third domain) that are functionally 
related to the LWS/MWS spectral sensitivity (Fig. 3), 
that allow this protein to bond to a chromophore in 
cephalopods and arthropods, according to protein 
modeling (Chang et al., 1995).

The LWS opsin genes have been detected 
previously from the genomes of several Mysida 
including Archaeomysis grebnitzkii Czerniavsky, 
1882, Holmesimysis costata (Holmes, 1900), Mysis 
diluviana Audzijonyte and Väinölä, 2005, and 
Neomysis americana (S.I. Smith, 1873), and also 
in the Euphausiacea Euphausia superba (Porter et 
al., 2007). Although it would not be expected for 
stygobitic shrimp such as C. morleyi to express opsins, 
nor to perform visual functions, the presence of an 
opsin gene in its genome is entirely not surprising 
since those genes are found and expressed in other 
phylogenetically related crustaceans with epigean 
habits such as P. clarkii, Litopeneaus vannamei 
and Macrobrachium nipponense (De Haan, 1849) 
(GenBank: Access number DQ825437; Kingston 
and Cronin, 2015; Li et al., 2018).

Figure 1. Opsins cluster diagram. UPGMA clustering diagram with bootstrap values of 1000 replicates for each node. The lower bar 
indicates the genetic distance. The Creaseria morleyi opsin is in the red square, in the group of the long wavelength sensitive opsins 
of crustaceans. LW: long-wavelength sensitive opsin; MW: medium-wavelength sensitive opsin; SW: short-wavelength sensitive 
opsin; opn: opsin.
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Figure 2. Amino acid sequence alignment of the Creaseria morleyi long wavelength opsin and other crustacean opsins. The conserved 
residues are shadowed, and the gaps indicated by dash (-). Amino acid numbers per individual sequence are indicated on the right. 
The transmembrane helix is shown as roman numeral and enclosed in squares. The “DRY” and “QAKKM” motif, which are important 
for the union to the G protein are shown by # and % symbols respectively. The cysteine residues responsible of the disulfide bond 
stabilization are indicated by ! symbol. The glutamic acid that acts as a counterion on the Schiff base is shown as $. The Y and S 
amino acids with the LWS/MWS spectral sensitivity are shown with the symbol &.
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Opsin expression localization
To determine the LW expression on different 

tissues and light exposure conditions from Creaseria 
morleyi, RT-PCR was performed using the eye, 
cephalothorax, abdomen and the sixth abdominal 
segment plus uropods (6A+U) RNA. The LWL 
detected on the genome was expressed in the vestigial 
eyes and abdomen of one of the individuals exposed 
to continuous light. Regarding C. morleyi specimens 
kept in total darkness, LWL was expressed in the 
abdomen and 6A+U (Fig. 3). 

The existence of an extraocular photoreceptor 
in decapods was demonstrated for the first time by 
Prosser in 1934. In his study on the action potential 
in the astascid Procambarus clarkii, Prosser (1934) 
described the activity of a photoreceptor cell located 
in the sixth abdominal segment. This photoreceptor is 
part of the pacemaker system for circadian rhythm that 
includes the supraesophageal ganglion and eyes and 
participates in the synchronization of the circadian 
rhythm of locomotion in decapods with day and night 
cycles (Rodriguez-Sosa et al., 2012). 

The opsin expression, of both LWS and SWS opsin 
in the retina and in abdominal photoreceptors, has 
been observed in P. clarkii using immunohistochemical 
techniques during the search for opsins in the sixth 
ventral ganglion and along the central nervous 

system. It was found that the LWS and SWS opsins 
are expressed in the nerve fibers that extend from the 
brain throughout the central nervous system. This 
leads to the conclusion that these two photopigments 
are involved both in retinal vision and in extravisual 
functions by P. clarkii (Kingston and Cronin, 2015) 
among other decapod crustaceans such as Cherax 
destructor Clark, 1936, Orconectes virilis, Panulirus 
interruptus (Randall, 1840), Penaeus setiferus 
(Linnaeus, 1767), Crangon septemspinosus Say, 1818, 
Upogebia pugettensis (Dana, 1852), and Galathea 
strigosa (Linnaeus, 1761) (Kingston and Cronin, 2016). 

Our data show for the first time that Creaseria 
morleyi ’s genome contains a gene sequence 
corresponding to at least one type of LWS opsin. 
This opsin is expressed in the eyes, abdomen and 
6A+U of shrimp, where, in the last case, its expression 
is modified by light exposure. The question arises 
whether, like in other crustaceans, the expression of 
these opsins could be involved in diverse extravisual 
functions such as the synchronization of their 
biological processes with environmental cycles.
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