RESUMOConsiderando a morfologia, a dieta e a distribuição espacial de Satanoperca pappaterra e Crenicichla britskii (Perciformes: Cichlidae) na planície de inudação do alto rio Paraná (Brasil) as seguintes questões foram investigadas: (1) A forma do corpo pode ser utilizada para predizer o uso dos recursos espaciais e tráficos por ambas as espécie? (2) As relações entre morfologia e uso dos recursos tráficos e espaciais podem ser estendidas à escala intraespecífica? (3) Quais são as características morfológicas utilizadas para predizer a variação na dieta e ocupação do em nível intra e interespecífico? Testou-se a hipótese de que diferenças intra e interespecíficas nos padrões morfológicos implicam em diferentes formas de exploração dos recursos, sendo que a partir de análises ecomorfológicas é possível identificar a segregação do nicho tráfico e espacial. Os peixes foram amostrados em diferentes tipos de hábitats (rios, canais secundários, lagoas conectadas e desconectadas) na planície de inudação do alto rio Paraná. Análises de conteúdo estomacal foram realizadas a fim de caracterizar os padrões alimentares, enquanto vinte e dois índices ecomorfológicos foram calculados com base nas medidas morfométricas lineares e áreas. A análise de componentes principais (PCA) realizada com os referidos índices evidenciou a formação de dois eixos significativos: no eixo 1 houve uma ordenação ecomorfológica de acordo com o tipo de hábitat explorado, independentemente da espécie considerada. Nesse sentido, indivíduos de ambas as espécie coletados em ambientes lóticos tenderam a apresentar características morfológicas que propiciam maior capacidade de movimentos progressivos e retrógrados, frenagens e natação contínua, enquanto os indivíduos encontrados em ambientes lênticos e semi-lóticos apresentaram morfologia adaptada à maior capacidade de manobrabilidade e estabilização em guinadas. Por outro lado, o eixo 2 evidenciou segregação ecomorfológica relacionada à dieta, revelando uma divergência entre S. pappaterra e C. britskii. Essa relação entre morfologia e uso dos recursos espacial e alimentar foi confirmada pela significância do teste de Mantel realizado em nível intra e interespecífico. Portanto, a hipótese pressuposta foi aceita, sugerindo que análises que incorporam variações morfológicas intra e interespecíficas podem contribuir para o maior entendimento sobre a estrutura das assembleias de peixes, propiciando evidências acerca das características do nicho de cada espécie.
Original Articles • Neotrop. ichthyol. 11
(2)
• Jun 2013 • https://doi.org/10.1590/S1679-62252013005000001 linkcopiar
Relationships between morphology, diet and spatial distribution: testing the effects of intra and interspecific morphological variations on the patterns of resource use in two Neotropical Cichlids
Autoria
person Ana Lúcia A. Sampaio
schoolUniversidade Estadual de Maringá (UEM), Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), 87020-900, Maringá, PR, BrazilUniversidade Estadual de Maringá (UEM)BrazilMaringá, PR, BrazilUniversidade Estadual de Maringá (UEM), Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), 87020-900, Maringá, PR, Brazil
person João Paulo A. Pagotto
schoolUniversidade Estadual de Maringá (UEM), Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), 87020-900, Maringá, PR, BrazilUniversidade Estadual de Maringá (UEM)BrazilMaringá, PR, BrazilUniversidade Estadual de Maringá (UEM), Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), 87020-900, Maringá, PR, Brazil
person Erivelto Goulart
schoolUniversidade Estadual de Maringá (UEM), Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), 87020-900, Maringá, PR, BrazilUniversidade Estadual de Maringá (UEM)BrazilMaringá, PR, BrazilUniversidade Estadual de Maringá (UEM), Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), 87020-900, Maringá, PR, BrazilschoolUniversidade Estadual de Maringá (UEM), Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPÉLIA), 87020-900, Maringá, PR, BrazilUniversidade Estadual de Maringá (UEM)BrazilMaringá, PR, BrazilUniversidade Estadual de Maringá (UEM), Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPÉLIA), 87020-900, Maringá, PR, Brazil
SCIMAGO INSTITUTIONS RANKINGS
Universidade Estadual de Maringá (UEM), Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), 87020-900, Maringá, PR, BrazilUniversidade Estadual de Maringá (UEM)BrazilMaringá, PR, BrazilUniversidade Estadual de Maringá (UEM), Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), 87020-900, Maringá, PR, Brazil
Universidade Estadual de Maringá (UEM), Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPÉLIA), 87020-900, Maringá, PR, BrazilUniversidade Estadual de Maringá (UEM)BrazilMaringá, PR, BrazilUniversidade Estadual de Maringá (UEM), Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPÉLIA), 87020-900, Maringá, PR, Brazil
Figuras | Tabelas | Fórmulas
imageFig. 1 Dispersion of the scores of the first two PCA axes, calculated with the variance matrix of 22 ecomorphological indices. a) Scores classified by the type of environment; b) Scores classified by food resources, where: Emp = empty, Cru = crustacean, Aqu = aquatic insect, Fis = fish, Mol = mollusk, Hig = higher plant, Det = detritus. Dashed line: Crenicichla britskii; dotted line: Satanoperca pappaterra. ARA = Aspect ratio of the anal fin; ARC = Aspect ratio of the caudal fin; ARPt = Aspect ratio of the pectoral fin; ARPv = Aspect ratio of the pelvic fin; PI = Protrusion index; RAA = Relative area of the anal fin; RAD = Relative area of the dorsal fin; RAE = Relative area of the eye; RAPt = Relative area of the pectoral fin ; RAPv = Relative area of the pelvic fin ; RHM = Relative height of the mouth; RHPd = Relative width of the caudal peduncle; RWPd = Relative width of the caudal peduncle. open_in_new

imageFig. 2 Head of Satanoperca pappaterra (a) and Crenicichla britskii (b), showing differences in the mouth protrusion. open_in_new

table_chartTable 1
Description of the sampled environments
| Environments | Characteristics |
| Rivers | Lotic environments characterized by high mean current velocity, close to 1 m/s, variable according to the flow. |
| Connected Lagoons | Lentic environments continuously connected with rivers or channels. They are slightly rounded and without well-defined boundaries because gradually become flooded areas. Depth ranges from 1.5 to 5 m. This category includes backwaters, lentic environments resulting from the margins of the sidebars to the islands of the Paraná River. |
| Disconnected Lagoons | Lentic environments that occupy the most depressed areas of the floodplain, without direct connection with rivers or channels. Intense sedimentation with predominance of mud and organic matter. |
| Secondary Channels | Semi-lotic environments with reduced velocity, with possibility of change in the direction of the water current. Quite varied characteristics of length, width, average depth and vegetation on the banks. Generally, a channel connects at least two environments, but can also connect two points of the same environment. |
table_chartTable 2
Ecomorphological indices with respective formulas and biological interpretations. Formulas include the following measurements: standard length (SL), maximum body height (MBH), body midline height (BMH), maximum body width (MBW), caudal peduncle length (CPdL), caudal peduncle height (CPdH), caudal peduncle width (CPdW), head length (HdL), head height (HdH), head width (HdW), length of snout with the mouth closed (LSC), length of snout with the mouth open (LSO), eye height (EH), mouth height (MH), mouth width (MW), caudal fin height (CH), anal fin length (AL), pectoral fin length (PtL), pelvic fin length (PvL), eye area (EA), dorsal fin area (DA), caudal fin area (CA), anal fin area (AA), pectoral fin area (PtA), pelvic fin area (PvA).
| Indices | Formulas | Biological interpretation |
| 1. Compression index | CI = MBH/MBW | Higher values indicate lateral compression of the fish, expected for fish that exploit habitats with slower water velocity (Gatz Jr., 1979; Watson & Balon, 1984). |
| 2. Depression index | DI = BMH/MBH | Lower values are associated with fish that exploit habitats with rapid water flow. Depressed body helps remaining in the water column without swimming (Hora, 1922; Watson & Balon, 1984). |
| 3. Relative length of the caudal peduncle | RLPd = CPdL/SL | Long caudal peduncle is associated with fish living in places with rapid water flow, owing the need for propulsion at short distances (Watson & Balon, 1984; Oliveira et al., 2010). |
| 4. Relative height of the caudal peduncle | RHPd = CPdH/MBH | Lower values indicate greater maneuverability potential (Winemiller, 1991; Oliveira et al., 2010). |
| 5. Relative width of the caudal peduncle | RWPd = CPdW/MBW | Higher relative values indicate better continuous swimmers (Winemiller, 1991; Oliveira et al., 2010). |
| 6. Relative length of the head | RLHd = HdL/SL | Higher values are found in fish that feed on large prey (Gatz Jr., 1979; Watson & Balon, 1984). |
| 7. Relative height of the head | RHHd = HdH/MBH | Higher values are found in fish that feed on relatively large prey. (Oliveira et al., 2010). |
| 8. Relative width of the head | RWHd = HdW/MBW | Higher values are found in fish that feed on relatively large prey (Oliveira et al., 2010). |
| 9. Relative height of the mouth | RHM = MH/MBH | Higher values are found in fish that feed on relatively large prey (Gatz Jr., 1979; Watson & Balon, 1984). Lower values are associated with greater suction capacity (Norton & Brainerd, 1993). |
| 10. Relative width of the mouth | RWM = MW/MBW | Higher values are found in fish that feed on relatively large prey (Gatz Jr., 1979; Watson & Balon, 1984). Lower values are associated with greater suction capacity (Norton & Brainerd, 1993). |
| 11. Eye position | EP = EH/HdH | Index related to the foraging position in the water column. Higher values represent species with dorsal eyes and possibly benthic, while low values indicate necton fish with lateral eyes. (Gatz Jr., 1979; Watson & Balon, 1984; Freire & Agostinho, 2001). |
| 12. Relative area of the eye | RAE = EA/(SL)2 | Index related to food detection. It can indicate the preferential position of the species on the water column, since species that inhabit deeper areas have relatively smaller eyes (Gatz Jr., 1979; Wikramanayake, 1990). |
| 13. Protrusion index | PI = LSO/LSC | Higher values related to the ability to capture evasive and large prey (Hulsey & García de León, 2005; Cochran-Biederman & Winemiller, 2010). |
| 14. Relative area of the dorsal fin | RAD = DA/(SL)2 | Species with dorsal fins with larger relative areas have better capacity to stabilization and braking in acceleration (Breda et al., 2005). |
| 15. Relative area of the caudal fin | RAC = CA/(SL)2 | Caudal fins with larger relative areas are important for acceleration (Breda et al., 2005; Oliveira et al., 2010). |
| 16. Aspect ratio of the caudal fin | ARC = (CH)2/CA | Higher values indicate fish with caudal fins with tendency to bifurcation, and generally are good swimmers for continuous swimming. Species with low values have caudal fins with larger areas and exhibit excellent performance for acceleration. (Breda et al., 2005). |
| 17. Relative area of the anal fin | RAA = AA/(SL)2 | Larger relative area indicates higher maneuverability capacity and movement stabilization (Breda et al., 2005). |
| 18. Aspect ratio of the anal fin | ARA = (AL)2/AA | Anal fins with larger aspect ratio indicate a higher capacity to make rapid progression and regression movements (Breda et al., 2005). |
| 19. Relative area of the pectoral fin | RAPt = PtA/(SL)2 | Larger areas can be directly associated with braking and acceleration (Gatz Jr., 1979; Watson & Balon, 1984). For benthic fish inhabiting rapids stretches, some authors have noted that large pectoral fins can increase the contact area with the surface, where the fish leans on, promoting thus a greater attachment to the substrate (Casatti & Castro, 1998; Kerfoot Jr. & Schaefer, 2006). |
| 20. Aspect ratio of the pectoral fin | ARPt = (PtL)2/PtA | Higher values represent long and narrow fins. The highest values are associated with increased swimming speed (Breda et al., 2005). For benthic fish inhabiting rapids, longer pectoral fins may favor the maintenance of the position amidst a strong current flow (Casatti & Castro, 1998). |
| 21. Relative area of the pelvic fin | RAPv = PvA/(SL)2 | Larger areas indicate benthic fish. Larger pelvic fin can increase the contact area with the surface where the fish leans on, promoting thus a greater attachment to the substrate (Casatti & Castro, 1998; Kerfoot Jr. & Schaefer, 2006), while smaller relative areas indicate pelagic fish (Breda et al, 2005). |
| 22. Aspect ratio of the pelvic fin | ARPv = (PvL)2/PvA | High values denote long fins and are associated with braking (Gatz Jr., 1979). For benthic fish inhabiting rapids, longer pelvic fins may favor the maintenance of the position amidst a strong current flow (Casatti & Castro, 1998). |
table_chartTable 3
Diet composition and alimentary index of Satanoperca pappaterra and Crenicichla britskii in the Upper Paraná River floodplain (%V = percentage of volume; %O = percentage of occurrence and IAi = alimentary index; NI = non-identified).
| Satanoperca pappaterra | Crenicichla britskii | ||||||||||
| Items | %V | %O | IAi(%) | %V | %O | IAi(%) | |||||
| Detritus (Det) | 70.03 | 98.57 | 76.13 | 21.41 | 29.41 | 17.77 | |||||
| Higher plant (Hig) | 9.69 | 80.00 | 8.55 | 4.44 | 52.94 | 6.63 | |||||
| Algae (Alg) | 0.91 | 0.62 | |||||||||
| Cyanophyceae | 0.05 | 15.71 | 0.01 | 5.88 | |||||||
| Chlorophyceae | 0.07 | 15.71 | 0.11 | 11.76 | |||||||
| Bacillariophyceae | 0.59 | 72.86 | 0.16 | 17.65 | |||||||
| Euglenophyceae | 0.00 | 2.86 | 0.15 | 5.88 | |||||||
| Oedogoniophyceae | 0.11 | 14.29 | 0.21 | 11.76 | |||||||
| Zygnemaphyceae | 0.27 | 22.86 | 0.29 | 17.65 | |||||||
| Crustacean (Cru) | 9.13 | 19.03 | |||||||||
| Copepoda | 2.89 | 84.29 | 0.57 | 5.88 | |||||||
| Cladocera | 2.15 | 78.57 | 0.21 | 11.76 | |||||||
| Ostracoda | 3.86 | 60.00 | 0.06 | 5.88 | |||||||
| Decapoda | - | - | 22.09 | 5.88 | |||||||
| Aquatic insect (Aqu) | 2.58 | 2.45 | |||||||||
| Diptera | 0.02 | 5.71 | - | - | |||||||
| Simuliidae | <0.01 | 1.43 | - | - | |||||||
| Ceratopogonidae | 0.09 | 10.00 | - | - | |||||||
| Chironomidae | 2.47 | 64.29 | 0.10 | 23.53 | |||||||
| Trichoptera | 0.14 | 2.86 | 0.38 | 5.88 | |||||||
| Coleoptera | 0.54 | 2.86 | - | - | |||||||
| Odonata | 0.34 | 2.86 | - | - | |||||||
| Ephemeroptera | 0.02 | 2.86 | 1.37 | 29.41 | |||||||
| Terrestrial invertebrate (Ter) | 0.01 | 0.11 | |||||||||
| Insect fragments - NI | 0.01 | 4.29 | 0.13 | 5.88 | |||||||
| Hymenoptera | - | - | 0.19 | 5.88 | |||||||
| Hemiptera | 0.11 | 4.29 | - | - | |||||||
| Acari | 0.05 | 7.14 | - | - | |||||||
| Adult Diptera | 0.03 | 1.43 | - | - | |||||||
| Mollusk (Mol) | 1.98 | 3.04 | |||||||||
| Bivalvia | 4.53 | 37.14 | 3.62 | 23.53 | |||||||
| Gastropoda | 0.12 | 4.29 | 0.95 | 5.88 | |||||||
| Other aquatic invertebrate (Oth) | 0.28 | 0.35 | |||||||||
| Nematoda | 0.26 | 31.43 | 0.44 | 17.65 | |||||||
| Rotifera | <0.01 | 1.43 | - | - | |||||||
| Testate amoebae | 0.01 | 4.29 | 0.10 | 5.88 | |||||||
| Sponge spicules | 0.01 | 8.57 | - | - | |||||||
| Oligochaeta | 0.15 | 17.14 | - | - | |||||||
| Tardigrada | <0.01 | 1.43 | - | - | |||||||
| Hidracarina | 0.08 | 4.29 | - | - | |||||||
| Fish (Fis) | 0.43 | 50.00 | |||||||||
| Scale | 1.27 | 30.00 | 1.68 | 29.41 | |||||||
| Fin | 0.03 | 1.43 | 17.25 | 11.76 | |||||||
| Fragments - NI | - | - | 24.09 | 11.76 | |||||||
| Number of stomachs | 70 | 17 | |||||||||
table_chartTable 4
Eigenvectors of morphological variables for axes 1 and 2 of the principal components analysis. The eigenvectors with the highest positive and negative values (in bold) were selected to interpret the species ordination in the multivariate morphological space. In the lower portion of the table are listed the eigenvalues and the percentage of variability explained by each principal component.
| Morphological variables | Axis 1 | Axis 2 |
| Compression index | -0.012 | -0.211 |
| Depression index | 0.019 | 0.112 |
| Relative length of the caudal peduncle | 0.020 | -0.275 |
| Relative height of the caudal peduncle | -0.006 | 0.156 |
| Relative width of the caudal peduncle | -0.018 | -0.351 |
| Relative length of the head | -0.007 | -0.032 |
| Relative height of the head | -0.001 | -0.042 |
| Relative width of the head | -0.013 | -0.123 |
| Relative height of the mouth | -0.019 | 0.278 |
| Relative width of the mouth | -0.060 | 0.058 |
| Eye position | -0.003 | -0.129 |
| Relative area of the eye | -0.312 | -0.076 |
|---|---|---|
| Protrusion index | 0.001 | 0.151 |
| Relative area of the dorsal fin | -0.329 | -0.168 |
| Relative area of the caudal fin | -0.308 | -0.141 |
| Aspect ratio of the caudal fin | 0.286 | -0.006 |
| Relative area of the anal fin | -0.321 | 0.283 |
| Aspect ratio of the anal fin | 0.331 | -0.043 |
| Relative area of the pectoral fin | -0.332 | -0.314 |
| Aspect ratio of the pectoral fin | 0.311 | -0.144 |
| Relative area of the pelvic fin | -0.301 | -0.284 |
| Aspect ratio of the pelvic fin | 0.320 | -0.497 |
| Eigenvalue | 33.65 | 9.35 |
| Predicted eigenvalue: broken-stick | 9.72 | 7.09 |
| Explained variability (%) | 58.06 | 16.13 |
| Cumulative variability (%) | 58.06 | 74.19 |
Como citar
location_on
Sociedade Brasileira de Ictiologia
Neotropical Ichthyology, Departamento de Biologia Animal e Vegetal, CCB, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, Cidade Universitária, 86055-900, Londrina, Paraná, Brazil, Phone +55(43)3371-5151 -
Londrina -
PR -
Brazil
E-mail: neoichth@nupelia.uem.br
E-mail: neoichth@nupelia.uem.br
rss_feed
Acompanhe os números deste periódico no seu leitor de RSS
Versão para download de PDF
Artigos relacionados
Versões e tradução automática
Versão original do texto
Tradução automática
