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Abstract: The development of polymer resins can benefit from the application of neural networks, using its
great ability to correlate inputs and outputs. In this work we have developed a procedure that uses neural
networks to correlate the end-user properties of a polymer with the polymerization reactor’s operational
condition that will produce that desired polymer. This procedure is aimed at speeding up the development of
new resins and help finding the appropriate operational conditions to produce a given polymer resin; reducing
experimentation, pilot plant tests and therefore time and money spent on development. The procedure shown

in this paper can predict the reactor’s operational condition with an error lower than 5%.
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Introdution

Development of new polymer resins and new
grades of these resins has been one of the great
concerns of the polymer industry. Several steps are
required to come with new grades produced to satisfy
client’s needs. First of all, it is necessary to know the
end properties of the polymer that the client wants.
Second, it is necessary to study which basic polymer
physicochemical properties will give these end
properties the client wants. And finally, it is necessary
to study how to set up the reactor’s operational
conditions in order to produce that specific polymer.

Great part of the polymer industries produces only
a few grades of resins, each one with different
physicochemical properties that are suitable for some
applications of the plastic industry. The problem is that
these resins may not be suitable for some applications
of some new developed ones. The plastic processing
industry may require a polymer with characteristics
that the polymer industry does not produce.

What should be done in this case? The polymer
industry should develop a new polymer grade or
should the plastic industry be satisfied with a polymer
grade that has properties close to the one required for
its product but which will not fulfill its quality
standards?

With the present level of competition among the
polymer industry, a good answer for that question is
to develop a new polymer grade for that client.

Specially if the referred amount of polymer to be
produced is considerable.

The aim of this paper is to present how neural
networks can help dealing with the development of new
resins, starting from the end user properties to set up the
reactor’s operational conditions. This procedure if
followed can immensely reduce the number of
experiments, pilot-plant tests, polymer characterization
tests and most of all time and money spent on
development. Thus, bringing real competitive advantage.

The problem with this procedure is the great
amount of data that must be gathered to train the
neural networks used in the procedure. The data that
must be gathered account for physicochemical — end
properties relationships and for the physicochemical
properties of the polymer produced by different
operational conditions of the reactor.

Those data can be obtained through experimental
work or by means of mathematical models. Unless a
great amount of experimental data is easily available,
using simulated data should be considered to train the
neural networks, since one of the objectives of the
procedure presented wherein is to save time and money
spent on experiments. Data for physicochemical - end
properties relationships can be obtained by molecular
modeling and group interaction techniques (Askadskii,
1987; Bicerano, 1992; VanKrevelen, 1990; Porter,
1995). Data for the polymer characteristics produced
by each operational condition can be obtained by
running well defined rigorous mathematical models
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for the polymer reactor. In this paper the fluidized bed
reactor was used as case study, a reactor type which
has two good models available: Fernandes and Lona
(2001) and Hatzantonis et al. (2000).

Neural Network Models

Neural networks have been attracting great
interest as predictive models, as well as for pattern
recognition. The potential for using neural networks
in industrial applications is enormous. Neural
networks have the ability of learning the behavior of
the process and the relationships between variables,
without having a model of the phenomenological laws
that rules the system. The success in obtaining a
reliable and robust network depends strongly on the
choice of process variables involved, as well as the
available set of data and the domain used for training
purposes (Nascimento et al., 2000).

In general, the network consists of processing
neurons and information flow channels between the
neurons, usually denominated interconnects. Each
processing neuron calculates the weighted sum of all
interconnected signals from the previous layer plus a
bias term, and then generates an output through its
activation sigmoid functions.

In this work, the back propagation algorithm was
used, because it is the most extensively adopted
algorithm and was predicted well the data presented.
The available data were split in two sets for each
neural network in the method. One set was used to
train the network and the other to test its prediction
capability. Special attention was kept in order to not
overtrain the networks.

Polyethylene Production in Fluidized Bed Reactors

The fluidized bed reactor for polyethylene
production comprises three different phases (bubble,
emulsion gas and particulate). Reacting and inert gases
are fed into the bottom of the reactor through a
distributor and splits to form the bubble and emulsion
gas phases. The gas in excess for maintaining the
minimum fluidization condition passes through the bed
as bubbles. Unreacted gases exiting from the top of
the fluidized bed of polymer flows upwardly through
a disengaging zone in the upper part of the reactor.
The disengaging zone normally is larger in diameter
than the polymerization zone, so as to reduce the gas
flow velocity and thereby facilitate the settling out of
solid particulate. Particles that pass the disengaging
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Figure 1. Fluidized bed polymerization reactor and phases diagram.

zone are separated from the gas phase by means of a
cyclone and then are returned to the fluidized bed.

The catalyst is generally fed near the top of the
reactor. As reaction proceeds, polymer is formed in
the catalyst surface. During operation of the reactor,
new polymer product is continuously formed by the
catalyzed polymerization of the gas and product is
continuously withdrawn to maintain the fluidized
polymer product bed at a constant level.

Figure 1 shows a schematic view of the fluidized
bed reactor and a diagram of the phases inside the reactor.

Data

Polymer End Properties

Great part of the polymer properties are dependent
on its structure, especially on the molecular weight
and the monomer units that build the polymer
structure. Some variables can be temperature, time
or pressure dependent.

A large quantity of polymer properties (more than
150) can be estimated from group interaction
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modeling, correlations and physical laws. These
calculation methods were extensively reviewed by
VanKrevelen (1990) and Porter (1995).

The properties used to train the neural networks
used to develop this method were obtained by estimat-
ing 120 different end properties for polyethyl-
ene-1-butene copolymer with different molecular
weight and monomer fractions in the polymer struc-
ture. The software PolyPPS was used to generate the
data used to train and test the neural networks.

Fluidized Bed Reactor Operational Conditions and
Basic Properties

The model developed by Fernandes and Lona
(1999, 2001) for fluidized bed, and used in this work,
is a three phase heterogeneous model. This model dif-
fers from the two phase model (bubble and emulsion)
by splitting the emulsion phase in two different phases:
emulsion gas phase and particulate phase (polymer
particles). This division allows a more detailed mod-
eling of the polymer, since during production the study
of its development, morphology and characterization
is extremely important. The model was developed fo-
cusing on the polymer particles, being the polymer-
ization reaction and polymer development key elements
for the resolution of the model.

The equations that rule the model are based on
the polymerization time rather than on the reactor
height (as dome by traditional models). It is assumed
that the particles have a plug-flow behavior flowing
from the top of the reactor in direction to the base
where the polymer is removed from the reactor.

Bubble and gas emulsion phases are related to
the particulate phase through the time contact ratio
between the phases. The prediction of the reactor
behavior throughout the reactor height is obtained by
converting polymerization time into reactor position
using the velocity of each phase.

Mass and energy balances for the particulate
phase is given by Equations 1 and 2.
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The material balance for the emulsion gas phase
assumes the consumption of the gases during
polymerization reaction and the mass transfer
between bubble and emulsion phases (Equation 3).
Energy balance for the emulsion phase assumes the
energy transferred by diffusion due to temperature
gradient between bubble and emulsion and particle
and emulsion phase and also to the energy transferred
due to mass transfer (Equation 4). Energy and material
balance for the bubble phase is given by the equations
5and 6.
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The polymer properties characterization is simu-
lated using the method of moments (Zabisky et al.,
1992). Application of this method allows the predic-
tion of several physicochemical characteristics of the
polymer (molecular weights, density, polydispersity,
melt index and active sites occupation and efficiency).
The reaction mechanism used in this work is presented
in Table 1.

The polymerization rate is given by equation 7,

Table 1. Reaction mechanism for ethylene — 1-butene copolymeriza-
tion through coordination reaction using Ziegler-Natta catalyst (McAuley
et al., 1990).

K

Formation R*——R,

Initiation R() +Ci ki N Ri ( 1)
H*+C— 5 R.(1)

H*+X — 5 R (1)

Propagation R(r)+ Cy, ﬂ_> R (r+1)

Chain Transfer

kfimik
to monomer Ri(V)+CkLP(V)+Rk(1)
to hydrogen Ri (I") + HZ L) P(I") +H*
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depending mainly on the propagation rate, monomer
concentration and the zero-moment of the live
polymer. Copolymerization, terminal effects and
active site type are also considered.

= ko M. Yo (|
Rp ZJ:ZI:Zk: Pik-M Yo () )

The simulations with the model have been
outputting the expected results for industrial fluidized
bed reactors. Test with the model were done with
literature and patent data (Brule et al., 1993; Goeke
etal., 1983; Jenkins et al., 1985; McAuley et al, 1994).
Validation of the model was done based on infor-
mation such as concentration profiles, consumption
of reagents, productivity and polymer characteristics.

Development of New Polymer Grades using Neural
Networks

To predict the operational conditions of the fluid-
ized bed reactor that will produce the polymer with
the clients desired end properties it is necessary first to
determine the basic physicochemical properties of the
polymer (molecular weight and chain structure) from
the end property and then to determine the operational
conditions from the basic physicochemical properties.

If the scheme of Figure 2 is run up to the first part, it
will be predicting the basic polymer properties and this
procedure can be used to select the most probable
commercial resin that the client should get. If the scheme

Polymer Basic
Physicochemical >
Properties

Reactor’s
Operacional
Conditions

Specified
End Property

A 4

Figure 2. Prediction Flowchart.

is run to the second stage (prediction of the operational
conditions) this procedure can be used for polymer grade
development. The entire neural network configurations
used in this procedure is shown in figure 3.

Prediction of the Basic Physicochemical Properties

As said before, the first part consists in determin-
ing the basic physicochemical properties of the poly-
mer from the end user properties. This prediction is
done by network 1. Since polymer properties are di-
rectly related to its molecular structure it is not pos-
sible to specify too many properties for the polymer,
because by specifying some properties other proper-
ties will be automatically being specified. This is be-
cause they are inherent to the same polymer chain
structure and molecular weight.

In general, only two end properties can be chosen
to specify a polymer grade. A list of the most common
end properties that are required by the plastic industry
is shown in Table 2.

For example: values for density and viscosity can
be specified since density is a function of the polymer
composition and viscosity is a function of com-
position and molecular weight. On the other hand,
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Figure 3. Complete neural network flowchart
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Table 2. Most common end properties specified by the plastic industry.

Melting Temperature
Opacity

Impact Resistance
Strain Stress Tension
Hardness
Mechanical Modules
Density

Viscosity

values for density and melting temperature could not
be specified, since both are functions of the polymer
composition and by setting one of them, the other
will be automatically set. So to have the knowledge
of what influences each end user property is very
important.

Network 1 is really a series of networks. Since there
are x end properties that can be specified, then x neural
networks have to exist in order to output the basic
polymer properties with the specified property. When
two end properties are specified then stacked neural
networks (Zhang et al., 1997) are used in order to
combine the results of the individual network outputs.

For the polyethylene copolymer case, network 1
needs only one hidden layer with 8 neurons to output
predictions with errors of 0.01 to 0.1 % what can be
considered an excellent prediction. Training of the
individual networks (one for each end property) is
very fast and only a few data points are needed (ten
data points where used for polyethylene copolymers).
Errors were calculated as:

|(simulation data) - (NN prediction)|

= % 8
© (simulation data) \ 00 1o (®)

With the predictions of the basic polymer
characteristics it is possible to use the networks 2 to
8 to predict the other polymer properties related to
the polymer chain structure found by network 1.
Network 2 to 8 are trained with the data collected
with the PolyPPS software used to predict the polymer
properties. Again, a neural network topology of one
hidden layer and 8 neurons in this layer was enough
to predict the other end properties with an error lower
than 0.1%. Training of these networks is also fast.
Alternatively, a predestine algorithm that uses group
interaction to estimate polymer end properties can
also be used at this point.
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Prediction of the Reactor’s Operational Conditions

The biggest challenge of this procedure is to train
network 9 which will predict the operational condition
of'the fluidized bed reactor based on the basic polymer
properties and the desired productivity.

Fluidized bed reactors, due to its complexity, has
at least 6 variables that need to be specified as
operational conditions: concentrations at feed,
temperature at feed, catalyst flow rate, superficial
velocity, bed porosity and pressure. Network 9 must
provide all these information.

The data used to train this network was obtained
running 176 simulations using Fernandes and Lona
(2001) fluidized bed model. The simulations were
chosen carefully using experimental design technique
in order to cover a full 3" factorial design with the
possible operational conditions that can be employed
in the reactor under industrial conditions. Table 3
presents the range of the operational conditions used
for each variable.

The first attempts for the topology of this network
was to have 2 or 3 hidden layers with at least 12 neurons
and a maximum of 50 neurons in each layer. Training
for these conditions have failed to output good results
and training time was also very high taking more than
48 hours for some cases. Errors of prediction were greater
than 20 % for some test data points (Figure 4).

The error presented were due to two major factors:
an unsuitable variable output and a variable difficult
to train. During the test with the neural networks, big
prediction problems were detected with the variables:
superficial velocity and catalyst feed rate.

In fluidized bed reactors, the superficial velocity
of the gas is usually expressed as the number of time
it is bigger than the minumum fluidizing velocity
(Ug=X. U,y). First attempts to train the neural
networks were done using this expression and the

Table 3. Range used for each operational condition variable

Variable Range
Ethylene Concentration (%) 35to 50
Inert Concentration (%) 30to 50
Feed Temperature (K) 310 to 350
Catalyst Feed Rate (¢/s) 0.05 to 0.50
Superficial Velocity [x U ] 3t06
Porosity 0.41t00.7
Pressure [atm] 20to 30
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Figure 4. Error predictions for training and testing samples. Prediction
of the superficial velocity (worst case). Last 35 points refer to testing
data. NN topology: 2 hidden layers (30:20 neurons).

value X was expected as one of the outputs of the
neural network. This way of expressing the superficial
velocity was proven to be unsuitable, returning very
bad predictions. When training was done with the
actual value of the superficial velocity (in m/s) the
prediction error decreased. So it is important when
dealing with neural networks to test the best form of
training for each variable.

Even though, the best strategy encountered was
training three different networks that would work with
different ranges of superficial velocities (ranges: 3 to
4,4 to 5 and 5 to 6 times the minimum fluidizing
velocity). The data was sorted and then used in training,
Some of the data were presented to more than one
network. The best topology encountered was with 3
hidden layers (20, 15 and 15 neurons). The use of the
networks to predict the reactor’s operational conditions
was done presenting the input data (polymer
physicochemical data and required productivity) to all
three networks. Each network outputted an operational
condition set. The best set was selected based on the
quantity of catalyst used, since a lower flow rate of
catalyst means a better use of the catalyst productivity
potential and lower operational cost.

The second difficulty noticed was upon the
catalyst feed rate. Predictions at low feed rates were
very poor (predictions errors up to 30 %), whereas
the predictions at high feed rates were better not
surpassing 5 %. Since the catalyst feed rate is a critical
variable for the process, affecting both production rate
and molecular weight, the neural network prediction
error for this variable should not be greater than 2 %,
otherwise, the neural network application would not
be useful for the estimation process. Predictions got
a lot better when two more levels were added for this
variable in the factorial design. Using 5 levels of
values for the catalyst feed rate on the factorial design
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Table 4. Example of neural network prediction for fluidized bed reactor
conditions.

Desired Polymer

Mw = 110900 g/mol
Polydispersity = 3.4
24% of 1-Butene
Production = 7.5 torvh

Simulated Operational Conditions

Ethylene Conc. = 0.3436 mol/L
1-Butene Conc. = 0.1475 mol/L
Superficial Velocity = 0.29 m/s
Catalyst Feed Rate = 0.075 ¢/s
Porosity = 0.4

Predictions of the Neural Network

Ethylene Conc. = 0.3429 mol/L
1-Butene Conc. = 0.1479 mol/L
Superficial Velocity = 0.289 nvs
Catalyst Feed Rate = 0.0736 ¢/s
Porosity = 0.404

has improved the predictions of the neural network,
and a maximum error of 2 % was obtained. Therefore
if a variable presents a bigger error at one end of its
range then the data presented to train the neural
network will need at least one more level of values
near the point were the predictions are bad, so the
neural network will be better trained at that region.
The operational condition predicted by the
networks is able to produce the polymer with the
desired end property with an error lower than 5 % what
can be considered a good estimation (simulation
results). An example of prediction is given in Table 4.
It is important to notice that the prediction may
not be error free so experimentation and pilot plant
test may be needed in order to tune these operational
conditions, but the neural network will give a very
good head start for a reduced number of experiments.

Conclusions

This work has presented a novel procedure that
can be used for estimating the operational conditions
of a fluidized bed reactor used to produce a polymer
with some client specified end property.
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Predictions have been good with this procedure
outputting estimations with less than 5% of error. For
error free estimation pilot plant experimentation may
be necessary and the conditions predicted by the
procedure can be used as a very good head start for
experimentation.

The procedure can also be used to estimate
operational conditions for other kinds of reactors and
for polymer selection. If used with other kinds of
reactors, then the neural networks should be trained
with data for that specific reactor.
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Nomenclature

C concentration

Cp  heat capacity

D diffusion coefficient

h particle-emulsion heat transfer coefficient
bubble-emulsion heat transfer coefficient
bubble-emulsion mass transfer coefficient
M monomer concentration

molecular weight

P dead polymer chain

R;  live polymer chain with terminal monomer i
Rp  reaction rate

r polymer chain length

r, polymer radius

t time

T temperature

U velocity

X cocatalyst concentration

Y, zero-moment of the live polymer
0 void fraction

AH  heat of reaction

€ porosity

p density
subscripts

b bubble phase

e emulsion phase

p polymer phase
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