Acessibilidade / Reportar erro

Silane grafting and mositure crosslinking of LLDPE by a reactive extrusion process: effect of processing conditions and reaction system

Although silane-modified polyolefins have become an industrial process, little data have been published on the dependence of silane grafting reactions and the properties of crosslinked polyolefins on reaction parameters. Here we studied the melt grafting of vinyl trimetoxi silane (VTMS) onto linear low density polyethylene (LLDPE) promoted by dicumyl peroxide (DCP) in a single screw extruder followed by crosslinking reaction in hot water. The influence of grafting formulations and processing conditions on the melt flow index (MFI), gel content and thermal properties of grafted and crosslinked LLDPE was evaluated using a statistical design. The silane content was the most important variable when the reaction was performed with a low concentration of DCP (0.02 wt. (%)). Samples with significant gel content, however, were obtained with 0.07 wt. (%) of DCP. A decrease in the melt temperature and in the degree of crystallinity of LLDPE, as determined by differential scanning calorimetry (DSC) melting enthalpies, was observed as a result of crosslinking formation. The thermogravimetric analysis (TGA) showed an improvement in the thermal stability of LLDPE due to the introduction of crosslinking reactions. Results from Fourier Transformed Infrared Spectroscopy (FTIR) provided evidence for VTMS grafting onto LLDPE and subsequent crosslinking reaction.

polyethylene; crosslinking; peroxides; silanes; grafting reaction; extrusion


Associação Brasileira de Polímeros Rua São Paulo, 994, Caixa postal 490, São Carlos-SP, Tel./Fax: +55 16 3374-3949 - São Carlos - SP - Brazil
E-mail: revista@abpol.org.br