
�

�

“main” — 2016/4/27 — 12:15 — page 23 — #1
�

�

�

�

�

�

Pesquisa Operacional (2016) 36(1): 23-44
© 2016 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
doi: 10.1590/0101-7438.2016.036.01.0023

ALTERNATIVE METHODS TO MULTIPLE CORRESPONDENCE ANALYSIS
IN RECONSTRUCTING THE RELEVANT INFORMATION IN A BURT’S TABLE

Sergio Camiz1 and Gastão Coelho Gomes2*

Received September 11, 2015 / Accepted February 20, 2016

ABSTRACT. In this work, the reconstruction of the Burt’s table, Greenacre (1988)’s Joint Correspondence

Analysis (JCA), and Gower & Hand (1996)’s Extended Matching Coefficient (EMC) are compared to Mul-

tiple Correspondence Analysis (MCA) in order to check the quality of the methods. In particular, for the

whole table, the ability is considered separately the diagonal, and the off-diagonal tables, that is the abil-

ity to describe either each character’s distribution or the interaction between pairs of characters, or both.

The theoretical aspects are discussed first, and finally the results obtained in an application are shown and

discussed.

Keywords: Correspondence Analysis, Multiple Correspondence Analysis, Joint Correspondence Analysis,

Extended Matching Coefficient, Singular Value Decomposition.

1 INTRODUCTION

Both Multicriteria Analysis and Multicriteria Decision Models [4, 37] are tools largely adopted
in operational research, in particular when dealing with Knowledge Discovering in Databases

[14]. In present days it may be of high interest to deal with qualitative unstructured data, whose
treatment may be more complex. Studies in this framework are found in recent operational re-
search literature [16, 17, 30, 40]. In this context, data reduction through exploratory multidimen-

sional scaling may contribute to clarify the data at hand, by revealing structures and factors. In
particular, factors, together with the observed characters most associated to them, may lead to a
consistent dimension reduction and at the same time to the ability to select the most appropriate

characters to take into account for further, more focused investigation. Thus, the identification of
the proper dimension of a data table may be a topic of investigation per se.

In exploratory multidimensional scaling the identification of the proper dimension of the solution
is the basis to define a threshold between relevant information and residuals. The relevant infor-

mation is also tied to the possibility of interpreting the factors according to the paradigms of the
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24 ALTERNATIVE METHODS TO MULTIPLE CORRESPONDENCE ANALYSIS

methods at hand: in the linear case, the percentage of explained inertia is the most widely used.

Thus, to take into account a large share of inertia is the most evident rough method that may be
used and a higher-dimensional solution is normally preferred rather than a smaller one only if
its corresponding inertia is significantly larger than a smaller-dimensional solution. Tied to this

aspect, the reconstruction of the original data table according to a lower rank matrix is of rele-
vance, since a good reconstruction of the data obtained this way is helpful to better understand to
what extent the reduction in dimension, through the use of factors, is a reasonable approximation

of the original data.

In this paper, we consider the special case of qualitative data, that are usually summarized by
the so-called Burt’s matrix, the super-contingency table that cross-tabulates all characters taken
into account. Multiple Correspondence Analysis (MCA) [7, 19] is the best known exploratory

factor analysis method to deal with it, but alternative methods are proposed in literature, based
on different rationale. Critics to MCA emphasize the misuse of the chi-square metrics [18], a
metrics that for contingency tables finds its rationale in the partition of the chi-square in inde-

pendent components [27, 35, 44], thus on the deviation from the expectation. Now, to compute
distances between lines in both the indicator matrix and its square, the Burt’s table, such met-
rics is tremendously biased by the obvious (squared) differences between levels belonging to the
same character [20, 21]. In addition, rare levels raise their importance in the computation but en-

hance aspects that reveal being useless, since the chi-square statistics may not be applied to these
tables; hence, its use is hardly justifiable [18]. Eventually, it is known since long the problem
of the underestimation of the inertia explained by the factors, that deserve being re-evaluated in

some way [2, 8, 19]. Indeed, applying the chi-square metrics to such a table, the highest contribu-
tions to the total inertia result from the block-diagonal tables crossing each character with itself,
which is information without noticeable value, since this way the expected values provide the

maximum deviation from expectation. Along with this, a problem results in the unpredictabil-
ity of the partial data reconstruction of the Burt’s table, as already put in evidence by [10]. The
problem may be relevant in qualitative discriminant analysis [39], which is based on MCA coor-

dinates. Here, a bad reconstruction would prevent the reduction of the number of factors to take
into account.

In this paper, we consider two different alternatives: the Joint Correspondence Analysis (JCA,
[20]) and the Principal Component Analysis (PCA, [26]) of the Extended Matching Coefficient

matrix (EMC, [18]), which are suggested by the corresponding authors as a solution. It must
be noted that the aims of both MCA and EMC are the same: to perform a kind of PCA on
qualitative data, i.e. to find uncorrelated quantitative characters giving independent ordinations

to the units, that optimize the explained inertia. It is the definition of inertia that is different,
bearing in mind that EMC aims at fixing the emphasis given to the rare levels of MCA by the
chi-square metrics. Since the solutions of both methods are based on the eigendecomposition,

their different dimensional solutions are encapsulated, so that the reconstruction of the original
data may be seen as a sum of 1-rank independent tables. On the opposite, JCA aims at finding
the best reconstruction of the off-diagonal tables of the Burt’s table only, generalizing the Simple
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Correspondence Analysis to the simultaneous analysis of several 2-way contingency tables. The

idea is analogous to the one of [42] to fit the off-diagonal elements of a correlation matrix and is
obtained by numerical optimization. Therefore, this time different dimensional solutions are not
encapsulated.

To compare the results, we consider the reconstruction quality only. At the end, these methods

will be applied to a very small table, taken from studies in linguistics [32].

2 THEORETICAL FRAMEWORK

2.1 Singular Value Decomposition

We may ground our further discussion on the well-known Singular Value Decomposition (SVD,

[1, 19]) theorem, which states

Theorem 1. Any real matrix X may be decomposed as X = U�1/2V ′, with � the diagonal
matrix of the real non-negative eigenvalues of X X ′, U the orthogonal matrix of the correspond-
ing eigenvectors, and V the matrix of eigenvectors of X ′X (with the same eigenvalues), with both
constraints U ′U = I and V ′V = I .

This theorem corresponds to the reconstruction formula of an S-rank matrix X ∈ Rr×c

xi j =
S∑

α=1

√
λα uiα v jα, ∀i ∈ (1, r), j ∈ (1, c) (1)

or, in vector notation

X =
S∑
α=1

√
λα uα v′

α,

on which the Eckart & Young’s theorem [13] is based:

Theorem 2. (Eckart and Young) The s-rank reconstruction of any real matrix X, with s < S, the
rank of X, once its singular values are sorted in decreasing order,

X ≈
s∑

α=1

√
λα uα v′

α = Ĥ

is the best one in the least-squares sense.

This means that, for every s < S, the matrix Ĥs solves the problem to approximate a matrix X

by another matrix H of lower rank at the best in the least-squares sense, thus by minimizing
r∑

i=1

c∑
j=1

(xi j − hi j )
2 = trace

(
(X − H )(X − H )′

)
(2)

As it is trivial that trace(Ĥs Ĥ ′
s) = ∑s

α=1 λα, the minimum of (2) reached by Ĥs equals

trace
(
(X − Ĥs)(X − Ĥs)

′) =
S∑

α=s+1

λα.

Pesquisa Operacional, Vol. 36(1), 2016
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26 ALTERNATIVE METHODS TO MULTIPLE CORRESPONDENCE ANALYSIS

It is well-known that Principal Component Analysis (PCA, [26]) finds its rationale in this theo-

rem, once the data table is standardized according to zi j = xi j −x̄ j√
nσ j

, with x̄ j and σ j the average

and the standard deviation of the j -th character; indeed, this way Z ′Z = cor(X) = C, the matrix

of correlations between the columns of X . Thus, given the PCA of the correlation matrix C, with
� and V as their diagonal matrix of eigenvalues and unit matrix of eigenvectors respectively, and
given U as the unit eigenvectors of Z Z ′, the reconstruction formula (1) becomes

xi j =
(

r∑
α=1

√
λα uiα v jα

)
√

nσ j + x̄ j , ∀i ∈ (1, r), j ∈ (1, c) (3)

For correspondence analysis, we shall adopt the Generalized Singular Values Decomposition
(GSVD, [1, 19]), in which two other matrices are involved:

Theorem 3. Given two real positive definite matrices M and N, any real matrix X may be
decomposed as X = Ũ�1/2Ṽ ′, under constraints Ũ ′ MŨ = I and Ṽ ′ N Ṽ = I.

The solution is given by the SV D of the matrix X̃ = M1/2X N1/2 = F̃�1/2G̃′, with F̃ ′ F̃ = I ,
G̃′G̃ = I , Ũ = M−1/2 F̃ , and Ṽ = N−1/2G̃. It results that ŨŨ ′ = M−1 and Ṽ Ṽ ′ = N−1

respectively.

In this case the minimization problem (2) becomes

r∑
i=1

c∑
j=1

(x̃i j − h̃i j )
2 = trace

(
(X̃ − H̃)(X̃ − H̃ )′

)
with H̃ = ∑s

α=1
√
λα f̃α g̃′

α, with s ≤ S = rank(X̃ ).

Using the matrix

Ĥs = M−1/2 H̃ Ñ−1/2 =
s∑
α=1

√
λα (M

−1/2 f̃α) (N
−1/2g̃α)

′, (4)

as trace (Ĥ Ĥ ′) = ∑s
α=1 λα, the minimization problem is solved as:

r∑
l=1

c∑
k=1

⎛⎝ r∑
i=1

c∑
j=1

m1/2
li (xi j − ĥi j )

2n1/2
jk

⎞⎠2

= trace
(
M(X − Ĥs)N(X − Ĥs)

′) =
S∑

α=s+1

λα. (5)

In the particular case in which both M and N are diagonal, (5) simplifies to

r∑
i=1

c∑
j=1

mii n j j (xi j − ĥi j )
2 = trace

(
M(X − Ĥs)N(X − Ĥs)

′) =
S∑

α=s+1

λα. (6)

Therefore, the exploratory analysis paradigm states that the most relevant information is tied
to the largest eigenvalues and the non-relevant to the least ones. The problem of distinguishing

Pesquisa Operacional, Vol. 36(1), 2016
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among them, that is to identify at least a tentative cutpoint of either the singular- or the eigen-

values sequence, remains a crucial issue, that did not find a univocal solution so far (for PCA
see, e.g., [11, 25, 36]). In Simple Correspondence Analysis (SCA, [7, 19]), it seems more eas-
ily solved, since the special chi-square metrics adopted allows a useful solution and an easy

interpretation of the results, and regarding MCA we shall see that [5, 6] propose an interesting
method.

2.2 Simple Correspondence Analysis

Let N an r × c contingency table, with n = n.. the table grand total, X = N/n the table

of relative frequencies pi j = ni j/n, r = (p1., . . . , pr.)
′ the vector of row marginal profile,

c = (p.1, . . . , p.c)′ the vector of column marginal profile, and Dr = diag(r), Dc = diag(c) the
corresponding diagonal matrices. Let E = rc′ represents the table with equal marginal profiles

of X under the independence hypothesis. The SCA of N results from the application of GSVD to
the matrix X with the real positive definite matrices represented by the diagonal matrices D−1

r

and D−1
c . In this particular case the decomposition results X̃ = D−1/2

r X D−1/2
c = F̃�1/2G̃′

and both matrices X̃ X̃ ′ and X̃ ′ X̃ have a trivial eigenvalue λ1 = 1 to which the eigenvectors
f̃1 = (

√
ri ) and g̃1 = (

√
c j ) correspond respectively. It can also be shown that the other non-

trivial eigenvalues are always contained between 0 and 1. If we take off the summation the trivial

eigenvalue, the s-rank reconstruction formula (s ≤ S = min(r, c)) may be little transformed:

pi j ≈ ĥi j,s = ri c j

s∑
α=1

√
λα (r

1/2
i f̃iα) (c

1/2
j g̃ jα)

= ri c j

(
1 +

s∑
α=2

√
λα (r

−1/2
i f̃iα ) (c

−1/2
j g̃ jα)

) (7)

Incidentally, we observe that, in order to produce graphics with simultaneous symmetrical rep-

resentation of both rows and columns, the SCA eigenvectors are usually rescaled by defining as
coordinates the vectors ϕα and ψα given by ϕiα = λ

1/2
α r−1/2

i f̃iα and ψ jα = λ
1/2
α c−1/2

j g̃ jα,
respectively. In this case the reconstruction formula (7) becomes

pi j ≈ ĥi j,s = ri c j

(
1 +

s∑
α=2

1√
λα

ϕiα ψ jα

)
.

Thus, depending on which coordinates one chooses, the reconstruction formula for N becomes:

N = n r c ′ + n Dr F�1/2G′ Dc = n r c ′ + n Dr��
−1/2	 ′Dc. (8)

Returning to the optimization problem (6), we may explicitly write the residual as

trace
(

D−1
r (X − Ĥs)D

−1
c (X − Ĥs)

′) =
r∑

i=1

c∑
j=1

(xi j − ĥi j,s )
2

ri c j
=

S∑
α=s+1

λα. (9)

Pesquisa Operacional, Vol. 36(1), 2016



�

�

“main” — 2016/4/27 — 12:15 — page 28 — #6
�

�

�

�

�

�
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Now, if we consider the 1-rank reconstruction, that is Ĥ1 = E = rc′, the residual takes the

particular form

r∑
i=1

c∑
j=1

(xi j − ĥi j,1)
2

ri c j
=

r∑
i=1

c∑
j=1

(xi j − ri c j )
2

ri c j
=

S∑
α=2

λα. (10)

that is the sum of squared deviations of the observed values from the expected ones under inde-
pendence divided by the expected ones. This is commonly called the inertia of the table X that
is, up to the factor n, the chi-square of N ; indeed, multiplying (10) by n, we get

n
r∑

i=1

c∑
j=1

(pi j − ri c j )
2

ri c j
=

r∑
i=1

c∑
j=1

(ni j − n ri c j )
2

n ri c j
= χ2 = n

S∑
α=2

λα. (11)

Hence, the decomposition of the inertia along the non-trivial eigenvectors of SC A leads to the
decomposition of the chi-square along each corresponding dimension:

χ2 = n(λ2 + · · · + λS) = χ2
2 + · · · + χ2

S

α equals χα2 = nλα.

Based on [44], this result led [35] to check for significance the partial chi-squares associated to

each eigenvalue, χ2
α with d f = (r + c − 2α − 1) degrees of freedom, to detect if there are linear

ordinations of both rows and column levels that explain the deviation from expectation. Indeed,
[28] proved that the first eigenvalue is larger than the corresponding chi-square and [29] proved

that the distribution of the eigenvalues is that of those of a Wishart matrix (W (m1 − 1)(m2 −
1), Min(m1 − 1,m2 − 1), I ). Nevertheless, [15] finds that the sum of the smallest eigenvalues
may be used as a test for their nullity, that leads to the Malinvaud’s [31] stopping rule, to test the

residuals of each reduced rank solution. Indeed, one may test for significance

Q̃s =
∑

i j

(
ni j − nĥi j,s

)2

nri c j
= χ2 −

s∑
α=2

χ2
α = n

S∑
β=s+1

λβ,

asymptotically chi-square-distributed with (r − α − 1)× (c − α − 1) degrees of freedom.

2.3 Multiple Correspondence Analysis

Let us consider now a qualitative data table X with n observations, with Q as nominal characters
and J as the total number of levels, that is J = ∑Q

i=1 li , where li is the number of levels of

the i-th character. It is well-known that MCA of such a matrix is nothing but a generalization of
SCA and it is based on SCA of either the indicator matrix Z , whose rows are the units and the
columns are all the J levels of the Q considered variables, or the so-called Burt’s table B = Z ′Z
that gathers all contingency tables obtained by cross-tabulating all the variables in Z , including

the diagonal tables obtained by crossing each variable with itself. The idea is to adopt for both
matrices the same optimized decomposition of SCA, namely the GSVD of either Q−1 Z D−1

r or

Q−2D−1
r B D−1

r = Q−2D−1
r Z ′Z D−1

r . (12)

Pesquisa Operacional, Vol. 36(1), 2016
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Indeed, it is evident that the latter is the square of the previous, so that they share the eigenvectors,

and the singular values in Burt’s case are the squares of those of the indicator matrix case: να =
μ2
α . The identity of the eigenvalues allows identical interpretation of the resulting factors. Thus,

it makes no difference to perform MCA on either matrix. On the other side, whereas the total

inertia of Z is Iz = J−Q
Q , the one of B equals

∑
να = ∑

μ2
α. In both cases, the chi-square

metrics is adopted so that the interpretation of results ought to be done once again in terms of
deviations from expectation. This point deserves some special attention, since the deviation refers

to all contingency tables gathered in the Burt’s table, including the diagonal ones. The problem is
that such diagonal matrices, that “theoretically” would indicate maximum deviation, in this case
are just the expected ones, as they cross each character with itself.

As SCA, given a Burt matrix B, MCA may be defined as the weighted least-squares approxima-

tion of B by another matrix H of lower rank, minimizing

n−1Q−2trace
(

D−1
r (B − H )D−1

r (B − H )′
)
. (13)

Notice how (13) derives from (10). In terms of the subtables, this may be rewritten as

n−1 Q−2trace
(

D−1(B − H )D−1(B − H )′
)

=

= n−1
Q∑

i=1

Q∑
j=1

trace
(

D−1
i (Ni j − Hi j )D

−1
j (Ni j − Hi j )

′) ,
where H is the supermatrix of the Hi j . Introducing the norm notation

‖A − B‖2
i j = trace

(
D−1

i (A − B) D−1
j (A − B)′

)
the minimization can be written as

n−1
Q∑

i=1

Q∑
j=1

∥∥Ni j − Hi j
∥∥2

i j . (14)

In MCA the identification of the true dimension is particularly difficult, despite the MCA is a
SCA of a particular table, because the chi-square test has no sense. Indeed, for B a chi-squared

statistic may again be calculated as if it were a contingency table, and this simplifies as

χ2
B = 2

Q∑
i=1

i−1∑
j=1

χ2
i j + n(J − Q),

where χ2
i j is the chi-squared statistic for the off-diagonal subtable Ni j = Z ′

i Z j crossing the i-th

and the j -th characters, but without the possibility to make a test. Unfortunately neither Qα nor
Q̃α computed on the indicator matrix Z are chi-square distributed [5], since Z is composed by
0’s and 1’s, and it is dramatically inflated by the diagonal tables without any real meaning.

Pesquisa Operacional, Vol. 36(1), 2016
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The high number of eigenvalues of the MCA, and their corresponding low values, were criticized

by the same Benzécri [8] that suggests to reevaluate those larger than their average. Indeed,
applying both SCA and MCA to the same two characters, by partitioning the Burt’s table Z ′Z
into submatrices it can be shown (ibid.) the relation μα = 1±√

λα
2 that holds among μα , the

eigenvalues of Z , and λα, those of the SCA of the contingency table crossing the two characters.
In this case, it is evident that to the eigenvalues λα = 0 of SCA correspond eigenvalues μα = 1

2
of Z and να = 1

4 of B, whereas to the other two correspond, one of which larger and the

other smaller than 1
2 and 1

4 respectively. To generalize this argument to several characters results
in admitting to limit attention in MCA only to the eigenvalues larger than their mean, that is
μ ≥ μα = 1

Q .

The argument is discussed in detail by both Benzécri [8] and Greenacre [20, 21]. Both authors

suggest, in order to get a measure of relative importance of each factor, to re-evaluate the eigen-
values larger than the mean (equal to 1

Q ) according to the formula

ρ (μα) =
(

Q

Q − 1

)2

(μα − μ)2 , μα ≥ μ = 1

Q
.

Benzécri [8] suggests to consider as total inertia the sum of the re-evaluated eigenvalues and to
take as percentage of explained inertia the ratio ρ(μα)∑

α ρ(μα)
. This results in a dramatic re-evaluation

of the relative importance of the first eigenvalues. On the opposite, Greenacre [20] bases his
arguments on the unusefulness to take into account the diagonal block matrices and the utility
to limit attention only to the total off-diagonal inertia of the table, that is the sum of squared
(non-re-evaluated) eigenvalues minus the diagonal inertia; represented as:

Q

Q − 1

⎛⎝ ∑
μα>1/Q

μ2
α − J − Q

Q2

⎞⎠ .
Experiments show that the Greenacre’s reevaluation is always limited to a share of the total iner-
tia of Burt’s table even by taking into consideration all the eigenvalues larger than the mean. This
does not affect the interpretation of the factors, that essentially depends upon the eigenvectors –
and thus to the contributions of both levels and characters to them –, but affects more the quality

of representation of these elements on the factor subspaces, that varies according to the percent-
age of inertia attributed to each one. Indeed, this is a point that would deserve some specific
consideration, in particular in deciding which reevaluation may be better taken into account. In

the following, we shall call adjusted MCA the one with re-evaluated inertia, therefore with the
coordinates recalculated accordingly.

The reduction in number of the dimension, thanks to both Benzécri’s and Greenacre’s reevalua-
tions, does not solve the problem of the true dimension of the table. To this question, an answer

comes from Ben Ammou & Saporta [5, 6]: they suggest to estimate the significance of the eigen-
values of MCA according to their distribution. If the characters are independent,

J−Q∑
β=1

μβ = J − Q

Q
and Sμ2 =

J−Q∑
β=1

μ2
β = J − Q

Q2
+
∑

i 
= j φ
2
i j

Q2

Pesquisa Operacional, Vol. 36(1), 2016
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with n..φ2
i j ≈ χ2

(li −1)(l j−1) , thus,

E[n..φ2
i j ] = E[χ2

i j ] = (li − 1)(l j − 1)

so the expectation of the variance S2
μ of the eigenvalues is

σ 2 = E[S2
μ] = 1

n..Q2(J − Q)

∑
i 
= j

(li − 1)(l j − 1).

Roughly, one may assume that the interval 1
Q ±2σ should contain about 95% of the eigenvalues.

Indeed, since the kurtosis of the set of eigenvalues is lower than for a normal distribution, the
actual proportion is larger than 95%.

2.4 Joint Correspondence Analysis

Greenacre [20] criticizes the MCA approach, stating that it is not a natural generalization of SCA,
and proposes as more natural his Joint Correspondence Analysis (JCA). With it, he overcomes
the MCA’s useless fitting of the diagonal subtables of B which contribute with the term n(J − Q)

to the total inertia. Hence, he takes as more natural measure of total inertia the sum
∑∑

q 
=s χ
2
qs

of the inertias of the off-diagonal tables. This suggests an alternative generalization of correspon-
dence analysis which fits only the off-diagonal tables, analogous to factor analysis where values
on the diagonal of the covariance or correlation matrix are of no direct interest.

Indeed, the proposed redefinition of the total inertia, by removing the diagonal block-matrices,
would fix an important bias due to the application to the Burt’s table of the chi-square metrics,
since the diagonal structure of the diagonal block-matrices represents a very high fictitious devi-
ation from the expected values, that MCA analyzes as if it were a true deviation. On this basis,

opposite to the current use, this kind of analysis is not really suitable.

Greenacre [20] proposes his Joint Correspondence Analysis (JCA) as a weighed least-squares
approximation aiming at minimizing

n−1
Q∑

i=1

i−1∑
j=1

∥∥Ni j − Hi j
∥∥2

i j , (15)

instead of (14) with the corresponding χ2
J = ∑Q

i=1

∑i−1
j=1 χ

2
i j , sum of the chi-squares of all

off-diagonal tables, that unfortunately may not be checked for significance.

In order to get the solution, he proposes an alternating least-squares algorithm, based on the
reformulation of (15) as follows:

n−1
Q∑

i=1

i−1∑
j=1

∥∥Ni j − Hi j
∥∥2

i j = n−1
Q∑

i=1

i−1∑
j=1

∥∥Ni j − n ri r j
′ − Li j

∥∥2
i j (16)

with ri the diagonal of the i-th block-diagonal matrix. Calling H and L the supermatrices gath-
ering the Hi j and Li j respectively, [20] states the equivalence of the rank-K solution of L which

Pesquisa Operacional, Vol. 36(1), 2016
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satisfies the normal equations in the minimization of the second term of (16) with the rank-

(K + 1) matrix H = r r ′ + L which satisfies minimizing (15), with r the supervector gathering
the Q vectors ri .

The matrix approximation L of rank K is of the form L = n DX DβX ′ D, where the J × K matrix
X is normalized as X ′DX = QI , with D = diag(r). The matrix X of parameters has rows

corresponding to the categories of the variables and columns corresponding to the dimensions of
the solution, that must be chosen in advance. The diagonal matrix Dβ contains a scale parameter
for each dimension. This form of L and the normalization conditions are chosen to generalize

the bivariate case (8). The parameter matrix X is partitioned row-wise according to the variables
as X1, . . . , X Q , where Xq is Jq × K , so that the submatrices of L are Lqs = n Dq Xq DβX ′

s Ds .
There are also inherent centering constraints on X of the form X ′r = 0 due to the orthogonality

with the dimension defined by the trivial solution. It is evident that the dimension of the solution
must be chosen in advance.

Thus [20] proposes the approximate reconstruction of the whole matrix B − n r r ′, namely

B − n r r ′ ≈ n DX DβX ′ D + C,

where C is a block diagonal matrix with submatrices Cqq , q = 1, . . . , Q down the diagonal

and zeros elsewhere. Here, each Cqq is composed by dummy parameters which effectively allow
perfect fitting of the submatrices on the diagonal of B−n r r ′, thereby eliminating their influence
on the model of interest. The minimization of

B − n r r ′ = 2n−1
Q∑

i=1

i−1∑
j=1

∥∥Ni j − n ri r j
′ − Li j

∥∥2
i j

+ n−1
Q∑

k=1

∥∥Nkk − n rk rk
′ − Lkk − Ckk

∥∥2
k .

(17)

is equivalent to minimizing (16) because the latter set of terms in (17) can always be made zero
by setting Cii = Nii − n ri ri

′ − Lii .

The algorithm proposed by [20] to minimize (17) can be performed iteratively by alternating
between the variables in C and those in X and Dβ as follows:

1. fix the dimension K of the solution.

2. initiate the algorithm with an analysis of the full Burt matrix B, that is

B − n r r ′ ≈ n DX DβX ′D. (18)

3. limiting attention to the first K dimensions, say the first K columns of X x(1), . . . , x(K ),
(18) can be rewritten as

B − n r r ′ ≈
K∑

k=1

nβk Dx(k)x′
(k)D. (19)
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so that, if all quantities except the βk(k = 1, . . . , K ) are regarded as fixed, the problem

reduces to a simple weighted least-squares regression (see [20], for further details).

4. Keeping X and Dβ fixed, set

Cii = Nii − n ri ri
′ − n Di Xi DβX ′

i Di (i = 1, . . . , Q).

5. Keeping C fixed, minimize with respect to X and Dβ : this is achieved by performing a

correspondence analysis on the table B∗ = B − C, that is the Burt’s matrix with modified
submatrices on its diagonal, setting X equal to the first K vectors of optimal row or column
parameters and the diagonal of Dβ equal to the square roots of the first K principal inertias

respectively.

6. Iterate the last two steps until convergence.

In the special case Q = 2, the problem reduces to fitting the single off-diagonal submatrix N12.
It is relevant to mention that the initial solution described above is optimal and provides the

simple correspondence analysis of N = N12 exactly. It is also noteworthy to quote [22, pag.
148]’s alternative proposal to reevaluate the inertias along the axes by estimating them through a
weighted least-squares regression. Indeed, it means to estimate only once the βks in (19), where

the xks are the eigenvectors issued by MCA, once the dimension of the solution K is decided.
We are not convinced by this solution, since the objections that concern the use of the chi-square
metrics remain unaltered.

2.5 The Extended Matching Coefficient

JCA was introduced by [20] as a way to drop the excessive attention given to the diagonal of the
Burt’s matrix by MCA, that indeed does not deserve any interest, but with a different optimization
aim, that is to reconstruct at the best the off-diagonal subtables. In this case, the chi-square
metrics is justified, whereas we have already stated that in classical MCA it has no theoretical

justification. For this reason, we are not convinced that some inertia reevaluation of MCA, as
the quoted ones, may be a solution. On the opposite, we find interesting to explore Gower &
Hand’s [18] proposal to drop the chi-square metrics in favor of a more simple one: the Extended

Matching Coefficient. Indeed, for two units, they define it as the number of common levels across
all characters. Therefore, given the indicator matrix Z , Z Z ′ would give us a similarity matrix to
deal with; indeed, given its size, the Burt’s table B as such is its corresponding in the dual space,

so that it is sufficient to perform the SVD of the centered Burt’s matrix, that is

Q−2 B = Q−2Z ′Z (20)

to be compared with (12). Now, the reconstruction formula (3) holds, but this time the layers
may not be interpreted in terms of deviations from expectation, that is not taken into account by

the method, but merely as contribution to the reconstruction, that is in this case the frequencies
in the Burt’s cells. Unfortunately, no stopping rule is available for this method so far, thus we
considered both Cattel’s [12] and brokenstick [3] tests.
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3 AN APPLICATION TO THE KIND OF WORDS

To show in detail the different behavior of the different analyses in practice, we refer first to a
data set taken from [32], consisting in 2000 words taken from four different kind of periodic

reviews (Childish (TC), Review (TR), Dissemination (TD), and Scientific Summary (TS)), classi-
fied according to their grammatical kind (Verb (WV), Noun (WN), and Adjective (WA)) and the
number of internal layers (Two- (L2), Three- (L3), and Four and more layers (L4)), as a measure

of the word complexity. In Table 1 the Burt’s table that results by crossing the three characters is
reported.

Table 1 – Burt’s table of the words’ type example.

L2 L3 L4 WN WV WA TC TR TD TS

L2 1512 0 0 788 483 241 433 385 399 295

L3 0 375 0 203 23 149 64 82 86 143
L4 0 0 113 62 9 42 3 29 21 60

WN 788 203 62 1053 0 0 229 284 273 267
WV 483 23 9 0 515 0 174 133 125 83

WA 241 149 42 0 0 432 97 79 108 148

TC 433 64 3 229 174 97 500 0 0 0
TR 385 82 29 284 133 79 0 496 0 0

TD 399 86 21 273 125 108 0 0 506 0

TS 295 143 60 267 83 148 0 0 0 498

L2 L3 L4 WN WV WA TC TR TD TS

In Table 2 are reported the eigenvalues of the three SCAs of the contingency data tables that
cross the three characters two by two: the eigenvalues, the percentage of corresponding inertia,
and the p-value associated to the chi-square calculated for the corresponding one-dimensional

reconstruction, that, in this case, is identical to the Malinvaud’s test, since each solution is 2-
dimensional.

Table 2 – SCA of the three contingency data tables of the three characters two by two. In the columns,

the eigenvalues, the percentage of inertia, and the p-value of the chi-square associated to the factors.

Words - Levels Publications - Words Publications - Levels

N. Eigen % p-value Eigen % p-value Eigen % p-value

1 .0925 99.98 .0000 .0253 80.53 .0000 .0619 98.82 .0000

2 .0000 0.02 .8625 .0061 19.47 .0022 .0007 1.18 .4771

In two cases, the tests do not attribute to the second factors any real meaning, since the p-value

is larger than 5%, whereas in the case of the table type of publication – kind of words the second
factor is also significant.
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In Figure 1 the results of the three SCAs are represented too: it must be pointed out that the
vertical position of the items is significant only for the second graphic. Indeed, the inspection of
this factor plane shows an arch pattern due to a Guttman effect [9, 24]; the same, the interpre-
tation is straightforward: for the first table, both verbs and nouns seem to have in general less
syllables than the adjectives; for the second, the variation in use of the words according to the
higher complexity of the publication: verbs for the childish, nouns for reviews and dissemina-
tions, adjectives for scientific summaries; for the third, the more complicated words (3 and more
syllables) in scientific summaries than in all others. It is noteworthy in the second table the oppo-
site pattern of verbs and adjectives, the first reducing while the publication is of higher level and
the second raising; this explains clearly the observed Guttman effect. The position of long words
very elongated on the second axis of both the first and the third analyses, in the latter case also
with review is explained by the shortness of the verbs and its scarce presence in childish publi-
cations, but it is not significant. We may ground our comparisons on this interpretation of the
data. Running MCA, the pattern of eigenvalues is represented in Table 3, in which are reported
the singular values of Z , their percentage to their total (that equals J−Q

Q = 2.33), the cumulate
percentage, the eigenvalues of the Burt’s matrix, corresponding to the explained inertia, and the
cumulate inertia.

Figure 1 – Words’ type example: The pair of characters levels on the three two-way SCAs: (a) Words vs.

Levels; (b) Publications vs. Words; (c) Publications vs. Levels.

In addition, on the table are reported the re-evaluated inertia and its percentages and cumulated
ones according to both [8] and [20], limited to the only three singular values larger than 1/Q =
1/3, with the totals in the following row. In both cases, the first dimension’s re-evaluated inertia
is by far larger than the others. If we apply the Ben Ammou & Saporta’s [5, 6] estimation of
the average singular value distribution under independence, we find that the standard deviation
is σ = 0.0159364, so that the confidence interval at 95% level is (0.30146 < λ < 0.36521).
As a consequence, only the first singular value is outside the confidence interval and should be
considered significant. As a matter of facts, the second one is very close to the threshold (0.3640):
this is consistent with the fact that only one of the 2-dimensional tables has a significant second
eigenvalue.
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Table 3 – MCA singular values, percentage to the total and cumulate percentage, eigenvalues, and

cumulate inertia of the Burt’s table of words’ type example. Then re-evaluated inertia and percent-

ages according to both [8] and [20].

N
Sing. % Cumul. Eigen. Cum. Re-ev. Benzécri’s Greenacre’s
value Inertia % inertia Inertia % Cum.% % Cum.%

1 0.4896 20.98 20.98 0.2397 0.2397 0.0549 95.91 95.91 88.36 88.36
2 0.3640 15.60 36.58 0.1325 0.3722 0.0021 3.69 99.60 3.40 91.76
3 0.3434 14.72 51.30 0.1179 0.4901 0.0002 0.40 100.00 0.37 92.13
4 0.3300 14.14 65.44 0.1089 0.5990 0.0572 100.00 92.13
5 0.3084 13.22 78.66 0.0951 0.6941
6 0.2728 11.69 90.35 0.0744 0.7685
7 0.2252 9.65 100.00 0.0507 0.8192

In Figure 2a the distribution of all character levels on the plane spanned by the first two factors of
MCA is represented. Indeed, the patterns of all the characters’ levels repeat fairy well the same
in the three two-way tables: thus it may be taken as a sign of coherence between the individual
SCAs and MCA.

Figure 2 – Words’ type example: representation of the three-character levels on the plane spanned by the

first two factors: (a) MCA; (b) JCA.

It may be observed that the similarity is good even on the second dimension, albeit not significant,
whereas on the plane the Guttman effect appears again in good evidence. This may also depend
upon the magnitude of the first two eigenvalues, that is sufficiently high to state that the three
characters share around either 48% or 36% of the first and second factor respectively. Concerning
the inertia reevaluation, this does not affect the interpretation of the single factors but in case of
the spaces, since it acts as different multiplicative constants on the factors.
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Let us now discuss the results of the JCA carried out on the same example. In the 2-dimensional
solution1 the axes inertias are 0.2488 and 0.0272, with a proportion of 90.15% and 9.85%, re-
spectively: considering only the first axis as significant, we may observe in Figure 2b a pattern of
levels nearly identical to the one of MCA. Some differences appear on the second axis, in which
are noticeable the very different positions of verbs and childish publications on the negative side
and of long words and summaries on the positive one, but, once again, this may not be considered
significant.

Table 4 – Eigenvalues, percentages of explained and cumulate inertia of the analysis of EMC on Words’

type example. On the right, the pattern of the eigenvalues. The dotted line represents their average (166.66).

N. Eigen % Cum %

1 272.7187 23.38 23.38

2 245.3787 21.03 44.41
3 168.3971 14.43 58.84
4 163.5518 14.02 72.86

5 145.3435 12.46 85.32
6 121.7007 10.43 95.75
7 49.5341 4.25 100.00

Eventually, we got the results of EMC. The seven (J − Q) non-zero eigenvalues and the cor-
responding percentages of explained and cumulate inertia are reported on Table 4. They are
reported also in the figure nearby, where the average (166.66) corresponds to the dotted line.
Thus, one may identify two major eigenvalues that summarize 44% of the total inertia, three
others around the mean and two minor ones. Here, the Cattel test would suggest two factors,
whereas the brokenstick considers random even the first one, since the threshold to consider it
non-random would be 37.04%. These contradictory results lead us to compare them with the
previous ones, therefore considering the first dimension as the “true” one, but also taking into
account the second, at least for the graphical representation. In Figure 3 all levels are plotted
on the plane spanned by the first two factors: indeed, the pattern of levels along the first axis is
somehow similar to the ones resulting from both MCA and JCA but not so much: both L4 and L3
and even more WA and WN are exchanged, slightly modifying the interpretation of the results.
On the opposite, the pattern along the second factor is so different that no agreement seems to be
possible. In both cases, differences may result from the fact that here rare levels are found close
to the centroid and the frequent ones are far away, whereas in the chi-square-based methods the
opposite occurs. Indeed, this is the case of both L2 and WN that have the highest marginal values,
whereas L4, with the lowest ones, is set toward the center.

Let us look now at the one-dimensional reconstruction, as resulting by the SCAs of the three
individual tables, by the MCA, and by Greenacre’s JCA as reported in Table 5. The comparison
of the SCA one-dimensional solutions with the original tables shows that the amount of the

1The R package ca, that we used, gave a diagnostic when asked of running the 1-dimensional solution.
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Figure 3 – Words’ type example: representation of the three-character levels on the plane spanned by

the first two factors of the centered PCA on the Burt’s table, corresponding to the Extended Matching

Coefficient.

cumulate absolute residuals is in good agreement with the quality of the solution, as represented
by the corresponding chi-square. For this reason, the low quality of the reconstruction of the table
crossing kind of words with the type of publications depends on the significance of the second
dimension of the SCA of this table, that here is not taken into account. At first glance, it is evident
the high difference in the cumulate absolute residuals of MCA in respect to the other solutions,
that is an important sign of the limits of MCA in respect to JCA.

Indeed, the quality of JCA one-dimensional reconstruction is in all cases acceptable, so that it
is possible to observe a synthetic graphical representation of the three tables that is realistic.
Finally, looking at the first layer obtained by EMC we find a behavior somehow comparable with
the first layer of MCA: much worst for the first table, much better for the second and relatively
equal for the third. This may also depend on the different way that this method uses to reconstruct
the data table, as each layer does not represent a deviation from expectation but rebuilds the table
anew. Thus, a better reconstruction must be expected through a larger number of factors. We did
it by comparing the sum of the absolute differences in the partial reconstructions obtained by
increasing the solution dimension: this could be done for the whole 7 factors of both MCA and
EMC and only for the first 3 above the mean for both adjusted MCA and JCA. The results are
given in Table 6.
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Table 5 – Original two-way contingency tables of words’ type example and their reconstruc-

tion according to the first dimension of SCAs, MCA, adjusted MCA, JCA, and EMC with the

corresponding cumulate absolute residuals.

Original Contingency Tables

WN WV WA TC TR TD TS TC TR TD TS

L2 788 483 241 L2 433 385 399 295 WN 229 284 273 267

L3 203 23 149 L3 64 82 86 143 WV 174 133 125 83

L4 62 9 42 L4 3 29 21 60 WA 97 79 108 148

SCA First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 788 483 241 L2 435 382 400 296 WN 253 257 267 276

L3 204 23 149 L3 60 89 85 141 WV 165 144 127 79

L4 61 9 42 L4 5 25 22 61 WA 82 96 112 142

SCA cumulate absolute residuals

2 29 134

MCA First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 770 559 183 L2 492 409 401 211 WN 249 257 264 283

L3 216 -24 183 L3 13 69 82 211 WV 219 155 145 -3

L4 67 -20 66 L4 -5 18 23 76 WA 32 84 97 219

MCA cumulate absolute residuals

304 342 397

Adjusted MCA First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 783 471 258 L2 433 385 399 295 WN 229 284 273 267

L3 206 39 130 L3 64 82 86 143 WV 174 133 125 83

L4 63 6 44 L4 3 29 21 60 WA 97 79 108 148

Adjusted MCA cumulate absolute residuals

78 67 166

JCA First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 783 484 245 L2 435 391 393 293 WN 259 260 266 269

L3 207 29 139 L3 53 82 87 153 WV 160 136 136 82

L4 63 2 48 L4 12 24 25 52 WA 81 100 104 147

JCA cumulate absolute residuals

44 64 134

EMC First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 630 595 287 L2 477 381 391 262 WN 178 256 259 360

L3 334 -72 114 L3 12 88 88 187 WV 234 134 139 7

L4 89 -8 32 L4 10 27 27 49 WA 88 106 108 131

EMC cumulate absolute residuals

631 219 390
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Table 6 – Absolute residuals of the reduced dimensional reconstructions of both the Burt’s table

and the two-way off-diagonal ones according to MCA, adjusted MCA and JCA respectively: to 0

correspond the deviations from independence.

MCA Adjusted MCA JCA EMC
N

Total Diag. Off Total Diag. Off Total Diag. Off Total Diag. Off

8906 7000 953 8906 7000 953 8906 7000 953

1 7557 5470 1044 6879 6263 308 6629 6149 240 7849 5363 1243

2 7378 4303 1537 6588 6116 236 6206 5916 145 5950 3907 1022

3 7089 3463 1813 6510 6080 215 5836 5800 18 5185 3129 1028

4 5949 2805 1572 3961 2172 895

5 3675 1720 977 2143 1080 531

6 2335 877 729 513 394 60

7 0 0 0 0 0 0

In Table 6 are reported the cumulate absolute residuals of reconstructions of MCAs, both normal
and adjusted, JCA, and EMC: they are both total and partitioned according to the diagonal ma-
trices and the off-diagonal ones. In this latter case, the residuals are divided by two, that is the
sum of the residuals of the individual 2 × 2 contingency tables, that form either triangular off-
diagonal sub-matrix. The residuals for 0-dimension are the deviations from independence and
the following are reported for all the allowed dimensions: 7 = J − Q for both MCA and EMC
and 3 for both adjusted MCA and JCA, that corresponds to the number of singular values of the
Burt’s table larger than the average.

The first row reports the deviations in respect to the independence, that for EMC does not make
any sense. For each method, the first column represents the inertia of the whole Burt’s table
reconstruction: it is always descendant, as it should be expected, although with different slope:
in this respect, EMC performs best by far. Indeed, the same occurs for what concerns the re-
construction of the diagonal tables: once again the EMC’s performance is the best, albeit not as
for the total table. Both MCA and EMC eventually rebuild totally the Burt’s table, as expected.
The surprises arise looking at the off-diagonal tables reconstruction: here, the MCA reconstruc-
tion is dramatically bad and problematic: indeed, all partial reconstructions are worst than the
independence, that is the estimated frequencies are further from the observed than those due the
independence, but the last one. That is, the first 5 dimensions, instead of improving the estima-
tion, get it even worse! In this respect, EMC performs much better, as it is constantly decreasing.

If we look now at both adjusted MCA and JCA, we notice that, for what concerns the diagonal
submatrices, they perform very badly, even worst than MCA, but this ought to be expected,
specifically for JCA, in which the diagonal submatrices are intentionally neglected. On the other
side, the improvement in the reconstruction of the off-diagonal ones is incredibly better, even in
respect to EMC, with an excellent performance of JCA.
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4 CONCLUSION

This study started with the aim to understand to what extent the JCA [20] could be of help in
identifying the true dimension of an analysis concerning a set of qualitative data. In this sense,

the confidence interval proposed by Ben Ammou & Saporta [5, 6] seems a better answer to this
problem, that in the proposed example resulted in agreement with the most one-dimensional
solution of the SCAs applied to the two-way tables.

During the study, the problem of the data reconstruction not only showed that MCA is bad

in reconstructing the whole data table, in respect to EMC, even in what concerns the diago-
nal submatrices, but mostly concerning the off-diagonal ones, that are even more biased: the
reconstruction of the two-way off-diagonal tables is for the most reduced-dimensional solu-

tions worst than the independence table. Indeed, only redefining the inertia according to the
adjusted MCA, a suitable reconstruction may be performed, albeit far from optimality, that is
much better approached by JCA. It is interesting to note that, concerning the off-diagonal tables

the adjusted MCA seems to perform better than EMC, a result that should be further studied.
Eventually, the performance of JCA, as expected, is by no means the most suitable to deal with
the off-diagonal tables, that is on the study of the relations between pairs of characters. As for

the interpretation of the factors, JCA is not very different from MCA, whereas the method’s
differences of EMC impose a different interpretation that may be further studied. Thus, JCA
seems the most promising development of MCA and its properties deserve some further deep-
ening, including the three available programs [21, 41, 43]: indeed, a direct comparison of these

results with those obtained through Greenacre’s [22] inertia evaluation through regression, may
provide further insights on both methods, albeit our critics on the use of chi-square metrics for
the whole Burt’s table remain.

Indeed, no direct comparison of the results is strictly correct, since the methods considered in

this work use different metrics, either chi-square or EMC, and/or optimize different criteria, as
described. In addition, JCA solutions are not nested. These aspects deserve being taken into
account while interpreting the results obtained by the different methods. Eventually, address

the study in a different framework such as maximum-likelihood estimation, may be a fruitful
alternative.
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