
versão impressa ISSN 0101-7438 / versão online ISSN 1678-5142 

Pesquisa Operacional, v.26, n.1, p.109-127, Janeiro a Abril de 2006 109 

BAYESIAN ASSESSMENT OF THE VARIABILITY  
OF RELIABILITY MEASURES 

 
 

Enrique López Droguett * 
Departamento de Engenharia de Produção 
Universidade Federal de Pernambuco (UFPE) 
Recife – PE 
ealopez@ufpe.br 
 
Frank J. Groen 
Ali Mosleh 
Reliability Engineering Program 
University of Maryland 
College Park – USA 

 
* Corresponding author / autor para quem as correspondências devem ser encaminhadas 

 
Recebido em 01/2005; aceito em 09/2005 após 1 revisão 
Received January 2005; accepted September 2005 after one revision 

 
 

Abstract 
 
Population variability analysis, also known as the first stage in two-stage Bayesian updating, is an 
estimation procedure for the assessment of the variability of reliability measures among a group of sub-
populations of similar systems. The estimated variability distributions are used as prior distributions in 
system-specific Bayesian updates. In this paper we present a Bayesian approach for population 
variability analysis involving the use of non-conjugate variability models that works over a continuous, 
rather than the discretized, variability model parameter space. The cases to be discussed are the ones 
typically encountered by the reliability practitioner: run-time data for failure rate assessment, demand-
based data for failure probability assessment, and expert-based evidence for failure rate and failure 
probability analysis. We outline the estimation procedure itself as well as its link with conventional 
Bayesian updating procedures, describe the results generated by the procedures and their behavior 
under various data conditions, and provide numerical examples. 
 
Keywords:  Bayes’ theorem; population variability; reliability. 
 
 

Resumo 
 
Análise de variabilidade populacional, também conhecida como o primeiro estágio no processo de 
atualização Bayesiana em dois estágios, é um procedimento de estimação utilizado para a quantificação 
da variabilidade de métricas de confiabilidade num conjunto de sub-populações de sistemas similares. 
As distribuições de variabilidade obtidas são usadas como distribuições a priori em atualizações 
Bayesianas específicas para um sistema. Neste artigo, apresenta-se um procedimento Bayesiano para a 
análise da variabilidade populacional envolvendo o uso de modelos de variabilidade não-conjugados 
que utilizam um espaço contínuo, ao invés de discreto, dos parâmetros do modelo de variabilidade. 
Discutem-se casos tipicamente encontrados na prática: dados de falha no tempo, dados de falha sob 
demanda e opiniões de especialistas para a estimação da taxa e probabilidade de falha. O procedimento 
de estimação é discutido, estabelece-se sua ligação com procedimentos convencionais de atualização 
Bayesiana e descrevem-se resultados gerados e o comportamento dos mesmos sob diferentes condições 
de dados, apresentando-se também exemplos numéricos. 
 
Palavras-chave:  teorema de Bayes; variabilidade populacional; confiabilidade. 
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1. Introduction 

When samples are identical with respect to some reliability measure, we have the so-called 
homogeneous samples. These type of samples are typically obtained from components or 
systems that have been operating under the same environmental and operational conditions, 
and a Bayesian sequential updating can be performed such that, data from one subset is used 
to update the state-of-knowledge obtained based on data from another subset. The same 
result can be reached by aggregating all data sets and then applying the Bayes’ theorem. For 
example, it is possible to sum up the number of failures and time in service in each sample, 
and then update the failure rate estimate via Bayes’ theorem by using the aggregated number 
of failures and total time in service. For a detailed discussion on Bayesian parameter 
estimation, please refer to Siu & Kelly (1998). 

However, in many situations we do not have homogeneous samples. Samples for a system or 
component submitted to different operational and environmental conditions, design and 
production differences, present different reliability measures. They may have different 
failure modes, failure rates, and repair rates. For instance, pressure-temperature sensors 
operating under different temperature and vibration conditions may have different failure 
rates. Similarly, variations in maintenance and reliability practices of different natural gas 
suppliers can lead to different failure rates of identical pressure control valves. 

In such cases, it is not realistic to assume that all items of a population composed of different 
samples (sub-populations) have the same reliability measures (e.g., failure rate). We have an 
inherent variability of the reliability measures among the samples. We say that the 
population is non-homogeneous. In other words, the failure rate or any other reliability 
parameter is inherently different from sample to sample in the population. This is the so-
called population variability of the reliability measure of interest (failure rate). It is important 
to stress that such variability is a characteristic of the system and it is not changed just with 
an increased amount of evidence. It will only change if the actual reliability characteristics of 
the item change (for a discussion on the concept of population variability, the reader may 
refer to Siu & Kelly, 1998). 

In this context, population variability analysis is a technique for arriving at a prior 
distribution for Bayesian reliability parameter assessments based on partially relevant data. It 
concerns the assessment of the inherent variability in reliability measures such as failure 
rates among a number of sub-populations. The variability analysis is known as the first stage 
of a two-stage Bayesian parameter updating procedure introduced, in the context of 
reliability and risk analysis, by Kaplan (1983). The second stage of the procedure 
corresponds to the updating based on system specific data and having the parameter’s 
population variability distribution as the prior. 

Also known as non-homogeneous analysis and hierarchical Bayes, population variability 
analysis has been recognized as computationally demanding, Hora (1990). As a result, 
proposed solutions to the problem have introduced conceptual limitations in order to make 
the approaches computationally less demanding. Indeed, under the umbrella of Bayes 
Empirical Bayes methods, Kaplan (1983) introduces a discretization of the parameter space, 
while the approaches proposed by Hora (1990) and Pörn (1996) make use of conjugate 
variability models (Bernardo, 1994). 

Other methods that are not fully Bayesian have also been proposed. Frohner (1985) approach 
consists in the construction of the variability distribution by superimposing posterior 
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distributions obtained for the individual sub-populations. Vaurio (1987) presents a matching-
moment procedure for the selection of a single Gamma distribution. However, it has been 
recognized that these procedures have severe conceptual limitations that handicap their 
applicability (Kaplan, 1985). 

In order to circumvent these limitations of both Bayesian and non-fully Bayesian approaches, 
Droguett, Groen & Mosleh (2004) proposed a fully Bayesian population variability analysis 
methodology that makes possible the combined use of run-time data (e.g., failures and 
operational time) and expert opinions resulting in a set of mixed likelihood models. 
However, this approach is only discussed in the context of these mixed likelihood models 
and there is no attempt to develop models for cases where either run-time data or expert-
based evidence is available. 

Therefore, in this paper we present the building blocks of a fully Bayesian approach for 
population variability analysis involving the use of non-conjugate variability models, i.e., 
when the probability distribution for the variability and the likelihood function for the 
evidence do not result in a analytical model as the posterior distribution. Furthermore, the 
approach works over a continuous, and not discretized, variability model parameter space. 
The cases to be discussed are the ones frequently encountered by the reliability and risk 
practitioner: run-time data for failure rate (or repair rate) assessment, demand-based data for 
failure probability assessment, and expert-based evidence for failure rate and failure 
probability analysis. Some elements of the approach in this paper have previously been 
presented in Droguett & Groen (2004). 

This paper also discusses the interpretation of the results generated by population variability 
analysis, as well as some behavioral properties, with the objective to illustrate the usefulness 
of this type of analysis in practical situations. The topics covered include lessons learned 
during the development of an algorithm for performing population variability assessment 
using a Markov Chain Monte Carlo method (Chib & Greenberg, 1995; Gilks, Richardson & 
Spiegelhalter, 1996), as well questions commonly asked by users of the software in which 
the algorithm is incorporated. 

The paper starts out by discussing the population variability analysis procedure, including a 
presentation of the probabilistic model that forms the basis for the analysis construction. 
Various types of likelihood models are developed for situations that make use of partially 
relevant test and field data, as well as the use of engineering judgments. The concept of 
mixed likelihoods is also introduced. Next, the paper focuses on the form and interpretation 
of the results generated by a population variability analysis. These results include the 
population variability distribution, which consists of a weighted sum of distributions, and the 
estimation of variability measures. Then, it is shown how this distribution can be used as a 
prior distribution in a system-specific parameter estimation procedure. In the next section, a 
detailed discussion of the behavior of the population variability distribution under a variety 
of data conditions is illustrated. Examples of application are presented in sections 7 and 8. 
Concluding remarks are then provided. 

 

2. Model-Based Variability Estimation 

Let us now suppose that in estimating a reliability measure x of an item, the available 
evidence E forms a non-homogeneous population. We then need to assess the population 
variability distribution, φ(x), of the reliability measure of interest. Let us also assume that the 
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population variability is a member of a parametric family of distributions, and 1{ , , }= … nθ θ θ  
is the set of parameters, i.e., 1( ) ( | , , )= … nx xϕ ϕ θ θ . We have that the uncertainty distribution 
over the space of ( | )xϕ θ  is the same as the uncertainty over values of θ , as for each value 
of θ  there is a unique ( | )xϕ θ  and vice-versa. Therefore, our goal of assessing ( | )xϕ θ  is 
reduced to estimating θ . 

By considering that our prior state-of-knowledge about θ  is represented by the probability 
distribution ( )oπ θ , and given the available evidence E, we use the Bayes’ theorem to find 
the posterior probability distribution over θ : 

 0

0

( | ) ( )
( | )

( | ) ( )
⋅

=
⋅ ⋅∫

L E
E

L E d
θ

θ π θ
π θ

θ π θ θ
 (1) 

where ( | )L E θ  is the likelihood of evidence E given θ , and ( | )Eπ θ  is the posterior 
distribution of θ  given evidence E. 

 

3. Bayesian Revision of Parameter Distributions 

To perform a population variability analysis of a reliability measure we need to specify an 
appropriate probability distribution to describe the underlying variability of the measure of 
interest, ( | )xϕ θ , as well as construct the likelihood function ( | )L E θ . The likelihood 
construction is obviously an evidence-driven process, i.e., it is dependent on the type of 
available evidence. We will consider two categories: (i) data-based likelihoods 
corresponding to evidence of type number of failures and exposure (time in service or 
number of demands); (ii) expert-based likelihoods that corresponds to estimates of possible 
values of a reliability measure. The specification of the probability distribution describing the 
variability may be guided by the nature of the reliability measure, for instance, a gamma 
distribution for failure rate, or a beta distribution in case of probability of failure. 

 
3.1 Data-based likelihoods 

Let us assume that we are interested in assessing the population variability of an item failure 
rate, λ, and the available evidence is {( , ), 1, }i ik T i n= … , where ki is the number of failures 
and Ti is the time to observe the ki failures in the i sample, and n is the total number of 
samples. If we know the failure rate λi = λ of each sample, we can use the Poisson 
distribution to estimate the likelihood of observing ki failures in Ti : 

 ( )( , | )
!

−=
i

i

k
Ti

i i
i

T
P k T e

k
λλ

λ  (2) 

As we only know that λ is one of the possible values of the failure rate represented by its 
population variability distribution ( | )ϕ λ θ , we average the likelihood over all possible 
values of λ in order to calculate the probability of the data unconditional on the unknown 
value of  λ: 
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If the population variability distribution is a Gamma with parameters α and β, we have a 
Gamma-Poisson likelihood: 
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Another possible choice for the variability distribution is a Lognormal with parameters µ and 
σ, resulting in the Lognormal-Poisson likelihood as follows: 
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Another important case is the assessment of the variability of the failure probability p. Let us 
assume that the non-homogeneous evidence is {( , ), 1, , }= …i ik D i n , where now Di is the 
number of demands in the ith sample. We now use the Binomial distribution to estimate the 
likelihood of observing ki failures in Di: 

 ( )( , | ) 1 − 
= − 
 

i ii D ki k
i i

i

D
P k D p p p

k
 (6) 

As before, to find the probability of the data unconditional on the unknown value of p, we 
average the likelihood over all possible values of p: 

 ( )
1

0
( , | ) 1 ( | )− 

= − 
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i i
i

D
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k
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where ( | )pϕ θ  is the probability of failure population variability. If the variability is 
represented by a Beta distribution with parameters α and β, we have a Beta-Binomial 
likelihood: 
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3.2 Expert-based likelihood 

In this section we consider the situation where independent experts provide estimates about a 
reliability characteristic (e.g., an item failure rate or probability of failure) with underlying 
variability. As noted by Mosleh (1992), this variability reflects the experts’ ability to provide 
assessments and the difference among them. 

Therefore, assume that we are interested in assessing the variability of an item failure rate 
and the available evidence is in the form of estimates of possible values of the failure rate 
and the analyst’s measure of confidence in each expert, which is considered to be represented 
by the multiplicative error model (Mosleh & Apostolakis, 1986). That is, the data is 
{( , ), 1, , }= …i i i nλ σ , where λi is the opinion provided by expert i, σi is the logarithmic 
standard deviation of λi  representing the uncertainty of expert i, and n is the total number of 
experts. Note that σi can be interpreted as the analyst’s confidence on the ith expert. Provided 
that we know the failure rate λi of each sample, we use the Lognormal distribution with 
median lnλ  to assess the likelihood of observing λi: 

 

2ln ln1
21( , | )

2

 −
−  

 =
i

i
i i

i i

L e
λ λ
σλ σ λ

πλσ
 (9) 

Provided that the failure rate has variability given by ( | )ϕ λ θ , the probability of data 
unconditional on the unknown value of  λ is obtained by averaging the likelihood over all 
possible values of  λ, i.e., 
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where we have considered that the population variability is represented by a Lognormal 
distribution with parameters µ and σ: 
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The Eq. (10) can be solved to provide the Lognormal-Lognormal likelihood: 
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3.3 Mixed likelihoods 

Each one of the preceding likelihood models were constructed assuming one source of 
evidence as an indication of a measure variability. In many situations, however, additional 
information might be available. For instance, we could have ( ),i ik T  data as well as experts’ 
opinions ( ),i iλ σ  regarding an item failure rate variability. Different likelihoods are possible 
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depending on the nature of evidence and the choice of the underlying variability distribution, 
which give rise to the following Mixed Likelihood models: 
 

Table 1 – Mixed likelihood functions. 

Prior/Evidence (ki,Ti) (λi, σi) (ki,Di) 

Gamma Gamma-Poisson-Lognormal  

Lognormal-Poisson-Lognormal  
LogNormal 

 Lognormal-Binomial-Lognormal 

Beta  Beta-Binomial-Lognormal 

 
In this article, however, we focus on the building blocks of these mixed models, namely the 
gamma-poisson, lognormal-poisson, beta-binomial and lognormal-lognormal models, and 
their behavior under various data conditions as discussed in the next sections. For a detailed 
discussion on the mixed likelihood models see Droguett, Groen & Mosleh (2004). 

 
4. Variability Measures 

At this point, we assume that we have a model of the variability of x, φ(x|θ1,...,θn), as well as 
a distribution π(θ1,...,θn). We first consider the construction of the best estimate of the 
variability density function. This estimate is arrived at by averaging φ(x|θ1,...,θn) using 
π(θ1,...,θn) as a weighting function 

 
1

1 1 1,...,
ˆ ( ) ( | ,..., ) ( ,..., )

n
n n np x x d d

θ θ
φ θ θ π θ θ θ θ= ⋅ ⋅∫ ∫" "  (13) 

The estimated density function therefore consists of a weighted mix of distributions of the 
chosen model, as opposed to being formed by a single ‘best’ distribution chosen from the set 
of distributions possible within the definition of the model, e.g., a Maximum Likelihood 
estimator. The estimated mean of the population variability distribution is obtained by 
computing the mean of the estimated density function 

 ˆ ˆ ( )x x
x p x dxµ = ⋅ ⋅∫  (14) 

Similarly, the estimated variance is defined as 

 
22 ˆ ˆ( ) ( )x x

x

x p x dxσ µ= − ⋅ ⋅∫  (15) 

In addition to these point estimators it is possible to estimate uncertainty distributions for 
measures such as the cumulative variability density function P(x), z-percentile xz, mean µx, 
and variance σx². These distributions provide an indication of the degree of uncertainty 
associated with the estimated variability distribution, and thus due to the limited amount of 
knowledge about the populations under consideration. 

The concept of these uncertainty distributions is shown in Figure 1. The figures shows a joint 
density expressing the likelihood that a particular distribution φ(x| θ1, θ2) represents the 
variability among the subpopulations. For instance, consider that we are assessing the 
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variability of the failure rate among a number of populations, and that we believe the 
variability to be distributed lognormally. The joint density distribution will then be defined 
over the parameter space ( , )ν τ . The higher the value of ( , )π ν τ , the better the match 
between the distribution LN( , )x ν τ  and the distribution of failure rates indicated by the data. 

Figure 1(b) shows a number of the results in the density space. Each thin solid lines 
represents a unique distribution ϕ(x|θ1, θ2). The thicker solid line represents the estimated 
population variability distribution ˆ ( )p x , computed according to Eq. (13) referred to as the 
‘mean distribution’. In contrast, the distribution of the means is represented by the dashed 
line. This distribution does not express a degree of variability, but rather the extent of 
uncertainty about the mean of the variability distribution. 

 

θ1

θ2

x

xµxP(x)

p(x)
π(θ1,θ2)

π(µx)

ϕ(θ1,θ2)
p(x)

P(x)
π(P(x'))

x'

π(xz)

b

c

a

 
Figure 1 – Plots of the various estimation results. 

 
The solid line in Figure 1(c) represents the estimated cumulative distribution ˆ( )P x . This 
value is interpreted as saying that the estimated fraction of the populations for which the 
value of X is smaller than x equals ˆ( )P x . The dashed lines in this plot show the degree of 
uncertainty about this estimate in the form of percentile curves Pα(x), constructed by plotting 
the α-percentile of distributions π(P(x)), evaluated for each value x. Simultaneously, these 
bounds can be interpreted as the α uncertainty bounds on the z-percentiles of the variability 
distribution. 

 

5. Model of Probabilistic Dependencies 

The primary application of population variability analysis in the risk and reliability context is 
that of the construction of generic prior distributions for system-specific analyses. In Kaplan 
(1983), the combination of population variability analysis and system-specific update is 
referred to as a two-stage Bayesian procedure. The result of a population variability analysis 
consists of an estimate of the distribution of parameters such as failure rates, among a 
number of populations. In case of system-specific analyses, this distribution serves as a prior 
to estimate that parameter for a single population. In other words, the two-stage Bayesian 
updating procedure is considered to be a procedure that in fact involves two separate 
updating rounds. 
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λ1

p(λ)θ

λ2

k1,T1

system-specific analysis

population variability analysis

 
Figure 2 – Model of probabilistic dependences in combined population variability – 

system specific analysis. 

 
By considering the probabilistic dependencies involved in the problem, it can be shown that 
both stages can be integrated into a single problem. In fact, a model of probabilistic 
dependencies in the combined problem, in the form of a belief network (Pearl, 1998), is 
shown in Figure 2. A similar illustration was presented earlier by Pörn (1996). Given a 
probability distribution ( , )π α β , we can find a prior ( )iπ λ  using Eq. (13), which is based on 
the dependencies between ( , )α β  and ( )p λ , and ( )p λ  and iλ , that is: 

 
,

( ) ( | , ) ( , )= ⋅ ⋅ ⋅∫∫i i d d
α β

π λ π λ α β π α β α β  (16) 

The probability distribution ( )iπ λ  is referred to as the generic prior and represents the 
uncertainty about both λ1 and λ2 in case no other information about either population was 
available. 

Suppose now that for population 1, k1 failures were observed during a total time of operation 
T1. In a system-specific analysis, we would use the dependency between λ1 and the 
observation as a likelihood function in Bayes Theorem 

 1 1 1 1
1 1 1

1 1

Pr( , | ) ( )( | , )
Pr( , )

k Tk T
k T
λ π λπ λ ⋅

=  (17) 

However, the evidence could simultaneously be used to update the distribution over α  
and β  

 

1 1 1 1
1 1 1

1 1

1 1 1 1

1 1

Pr( , | , , ) ( , , )( , , | , )
Pr( , )

Pr( , | ) ( | , ) ( , )
Pr( , )

⋅
=

⋅ ⋅
=

k Tk T
k T

k T
k T

λ α β π λ α βπ α β λ

λ π λ α β π α β
 (18) 

If we marginalize this distribution to 1 1( , | , )k Tπ α β  by integrating over λ, we obtain 
precisely the expression of Eq. (4). This illustrates that k1 and T1 theoretically affects both the 
system-specific distribution 1( )π λ  as well as the population variability distribution in the 
form of ( , )π α β  and thus derived distributions such as 2( )π λ . 
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This model illustrates that when performing a two-stage procedure, data used in the second, 
system-specific, stage, should not be included in the first stage of the analysis, in order to 
avoid ‘double-counting’ of the data. 

 
6. Behavior under Various Data Conditions 

The amount of data available to perform a population variability analysis can be 
characterized based on the number of subpopulations as well as the exposure level, in terms 
of the number of demands or total time in operation (exposure) for individual populations. 
Larger amounts of exposure provide better estimates of the reliability parameter for 
individual populations; higher numbers of sub-populations provide more information about 
the variability of the reliability parameters, see Figure 3. 
 

more data

less data

x

fewer populations

more populations population
variability

 
Figure 3 – Characterization of the impact of the number of populations and the amount of data 

available for individual populations in population variability estimations. 
 
In order to arrive at a good, and ultimately exact, estimate, it is not necessary to have infinite 
amounts of data for individual populations, as long as data is available for a sufficiently large 
number of populations. This can be shown for the case where data for each population is 
available in the form of the number of failures and total time in operation or total number of 
demands. We use k to denote the number of failures, and t to denote the total exposure 
(operating time or number of demands). The likelihood function for n populations is 

 
1 1

1

Pr( , ,..., , | ) Pr( , | )
n

n n i i
i

k t k t k tθ θ
=

=∏  (19) 

where 

 Pr( , | ) Pr( , | ) ( | )i i i ik t k t d
λ

θ λ π λ θ λ= ⋅ ⋅∫  (20) 

Here, λ represents failure rate or failure probability, depending on the interpretation of t. 
If we assume that the exposure t for all populations is constant, Eq. (19) can be rewritten as 

 
1 1

0

Pr( , ,..., , | ) Pr( , | ) kn
n n

k

k t k t k tθ θ
∞

=

=∏  (21) 
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where nk  is the number of populations in which k failures were observed. Assuming that the 
population truly has a population variability governed by ( | )�xϕ θ , the expected values of nk, 

k = 0,…,∞, are given by Pr( , | )⋅ �n k t θ . As the number of populations n increases, the 
likelihood function therefore approaches 

 Pr( , | )
1 1

0

Pr( , ,..., , | ) Pr( , | )
n

n k t
n n

k

k t k t k t θθ θ
∞→∞

⋅

=

= ∏ �  (22) 

Regardless of the variability model φ(x|θ), this likelihood function has a maximum for 

 Pr( , | ) Pr( , | ),  0,...,k t k t kθ θ= = ∞�  (23) 

which is the case when = �θ θ , i.e., when the probability of observing k failures to the 
observed fraction of subpopulations for which k failures were actually observed. As the 
number of populations n increases, the posterior distribution obtained using the likelihood 
function in Eq. (22) will converge towards its maximum at = �θ θ . It follows that the 
uncertainty about the population variability can be completely removed based on limited 
amounts of information for individual populations, as long as the number of populations is 
sufficiently high, the chosen variability model is a good representation of the true population 
variability distribution, and the exposure levels of the subpopulation are constant. 

If the actual population variability distribution is not well captured by any of the distributions 
( | )xϕ θ , the procedure will generally still converge towards a single value θ̂  of the 

variability model parameter as the number of subpopulations increases. 

This behavior is best illustrated by considering the case where the data strongly indicate two 
prevalent failure rates, λ1 and λ2 , equally distributed among the populations. Given n 
populations, the expected likelihood function, based on the expected number of populations 
for which k failures were observed, equals 

 ( )1 2Pr( , | ) Pr( , | )
2

1 1
0

Pr( , ,..., , | ) Pr( , | )
n k t k t

n n
k

k t k t k t
λ λ

θ θ
∞ ⋅ +

=

=∏  (24) 

assuming again equal exposure t for all populations. This function, with λ1 = 1E-3, 
λ2 = 1E-2, and t = 1,000, and a Gamma variability distribution model 

 
1

( | , )
( )

eα β λ αβ λϕ λ α β
α

− ⋅ −⋅
=

Γ
 (25) 

is plotted as a function of α and β for n1 = 10, n2 = 50, and n3 = 100 in Figure 4. The plot 
shows that for increasing n, the significant part of the likelihood function converges towards 
a single point, despite the fact that the Gamma density is a poor fit for the actual distribution. 
This type of behavior is generally observed in case of a poor match between model and true 
variability, including cases where the exposure ti, i = 1,…,n, is not constant. Note however 
that the likelihood function, with a maximum at α = 0.898 and β = 163.3 indicates a best fit 
Gamma distribution with a mean (0.055) equal to that of the true mean of the variability 
distribution. This correspondence is not found between the estimated variance (3.38e-5) and 
the actual variance (2.03e-5). 
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Figure 4 – Contour plots of likelihood function for increasing amounts of data drawn from a truly 

bimodal variability distribution. 

 
The behavior of the procedure as a function of the amount of data obtained for each 
population is characterized in Table 2. The table presents the properties of the estimated 
variability distribution obtained for nine datasets. Each set contains data for 200 populations, 
the failure rates of which were generated based on a Gamma population variability 
distribution with parameters α = 2 and β = 100. For cases A.1, A.2, and A.3, the exposure of 
the individual populations was systematically varied such that populations with lower failure 
rates had a larger exposure. In cases B.1 and B.2, the exposure for each population was 
constant. Finally, in cases C.1 and C.2, the exposure was random (uniformly distributed). In 
each case, the number of failures was randomly sampled from the Poisson distribution. 

The Table 2 lists the estimated value for each case, along with the theoretical values 
(“Actual” column). The table indicates that in case A.1, a bias exists towards lower failure 
rates levels, where the data had systematically larger exposure levels. This bias disappears 
however when the overall degree of exposure increases (cases A.2 and A.3). The bias is not 
present in cases with constant exposure (B.1 and B.2) or random exposure (C.1 and C.2). In 
case B.1 however, the variance of the variability distribution is underestimated. The 
conclusion with respect to the impact of population sizes on the estimate is that populations 
with larger exposure levels carry a larger weight in the estimate. 

 
Table 2 – Estimated population densities under various data conditions. 

 Actual Case A.1 Case A.2 Case A.3 Case B.1 Case B.2 Case C.1 Case C.2 

ti - 2 / λ 20 / λ 200 / λ 100 500 250-750 2500-7500 

Mean 2.00E-02 1.45E-02 1.92E-02 1.96E-02 1.85E-02 2.02E-02 2.02E-02 2.00E-02 

Variance 2.00E-04 1.25E-04 1.93E-04 1.85E-04 1.44E-04 1.97E-04 1.96E-04 1.87E-04 

1st 1.49E-03 7.22E-04 1.29E-03 1.55E-03 1.71E-03 1.55E-03 1.59E-03 1.66E-03 

5th 3.55E-03 2.07E-03 3.22E-03 3.65E-03 3.97E-03 3.70E-03 3.77E-03 3.84E-03 

10th 5.32E-03 3.30E-03 4.90E-03 5.41E-03 5.76E-03 5.51E-03 5.60E-03 5.65E-03 

50th 1.68E-02 1.18E-02 1.60E-02 1.66E-02 1.61E-02 1.70E-02 1.71E-02 1.70E-02 

90th 3.89E-02 2.92E-02 3.77E-02 3.78E-02 3.43E-02 3.89E-02 3.89E-02 3.82E-02 

95th 4.74E-02 3.63E-02 4.62E-02 4.60E-02 4.15E-02 4.74E-02 4.74E-02 4.64E-02 

99th 6.64E-02 5.28E-02 6.54E-02 6.43E-02 5.80E-02 6.64E-02 6.64E-02 6.47E-02 
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7. Example: Estimating the Failure Probability from Engineering Judgments 

This section illustrates and discusses the methodology through an example. In particular, the 
assessment of the variability of a reliability measure is analyzed when the available evidence 
is in the form of engineering judgments. Indeed, let us suppose that we are interested in 
assessing the population variability of the failure probability on demand, p, of a certain type 
of system. Following the reasoning presented in section 3, it is considered that the variability 
of the probability of failure is given by a Lognormal distribution. With the aim of having a 
reference to validate the behavior of the model, expert-based evidence was generated from a 
Lognormal distribution, Eq. (11), with median equals to 41 10−×  and 1.4=σ . In the context 
of expert opinions, it is a common practice to express the analyst’s confidence on the ith 
expert, iσ , in terms of the error factor 1.645= i

iEF e σ  (see Cooke, 1991). Therefore, the data 
used for this example consists of a series of expert estimates of the system’s failure 
probability and associated error factors, as shown in Table 3. This data set was analyzed 
using the Lognormal-Lognormal model. 

 
Table 3 – Engineering judgments used in the example. 

Expert Estimate EF Expert Estimate EF 

1 4.6E-05 10 14 1.0E-04 10 

2 5.7E-05 10 15 1.1E-04 10 

3 6.4E-05 10 16 1.1E-04 10 

4 6.8E-05 10 17 1.1E-04 10 

5 7.3E-05 10 18 1.2E-04 10 

6 7.6E-05 10 19 1.2E-04 10 

7 8.0E-05 10 20 1.3E-04 10 

8 8.3E-05 10 21 1.3E-04 10 

9 8.6E-05 10 22 1.4E-04 10 

10 8.9E-05 10 23 1.5E-04 10 

11 9.3E-05 10 24 1.6E-04 10 

12 9.6E-05 10 25 1.9E-04 10 

13 9.9E-05 10 26 2.2E-04 10 
 

The first step in the analysis is the estimation of the joint probability density function of the 
population variability parameters. In this example, this distribution ( , | )Eπ µ σ  is obtained 
by solving Eq. (1) with the likelihood function given by Eq. (12), where E is the available 
evidence in Table 3. The resulting ( , | )Eπ µ σ  is shown in  
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Figure 5 – Posterior distribution of the failure probability variability parameters based on 

engineering judgments. 
 
Next, we proceed to estimate the population variability distribution of the failure probability. 
With the posterior joint density of the variability distribution parameters, ( , | )Eπ µ σ , and 
the Lognormal variability distribution ( | , )pϕ µ σ , the expected population variability 
distribution for the failure probability is estimated by solving Eq. (13). The resulting 
estimated cumulative population variability density function is shown in Figure 6, along with 
the theoretical distribution from which the data set was generated. In order to have a measure 
of the uncertainty surrounding the estimated failure probability variability distribution, 
Figure 6 also shows the corresponding 5% and 95% uncertainty bounds. Figure 6 shows that 
the estimated expected variability distribution is a reasonable approximation of the true 
distribution. The deviations at lower and higher values of the failure probability as well as 
the wide uncertainty bounds are a result of the limited amount of evidence used in the 
variability analysis and from the high value of the error factor assigned to the engineering 
judgments, reflecting the analyst low confidence level in the experts. 
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Figure 6 – Cumulative population variability density of the failure probability based on 

engineering judgments. 
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8. Example Application: Assessment of the Failure Rate Variability Distribution of 
Motor-Operated Valves 

In this section we discuss the estimation of the failure rate variability distribution of motor-
operated valves (MOV) based on real data. Table 4 shows the actual run-time data gathered 
for different motor-operated valves from eight plants. The data is for the failure mode 
‘transfer open/closed during operation’. 

 
Table 4 – Run time data used in estimating the failure rate variability distribution for motor-

operated valves. 

Data Source Component Failures Operating Time 
(hours) 

Plant A Manual and MOV 0 71.10 10×  

Plant B MOV (transfer open/leakage) 0 56.95 10×  

Plant C Manual and MOV 0 29.12 10×  

Plant D Manual (transfer open/leakage) 0 66.00 10×  

Plant E Manual and MOV 0 63.70 10×  

Plant F Manual (transfer open/leakage) 0 22.90 10×  

Plant G MOV (transfer open/leakage) 0 61.89 10×  

Plant H MOV 1 73.10 10×  
 

The objective is to estimate the population variability distribution of the failure rate for 
motor-operated valves given the available evidence in the form of failures and operating time 
from MOV operating in different plants and likely under different operating and maintenance 
policies. Therefore, it is not realistic to assume that the samples are homogeneous with 
regards to the failure rate. In other words, we cannot consider that the different motor-
operated valves have the same failure rate. Indeed, the failure rate is different from MOV to 
MOV observed in operation, and this variability is represented by the population variability 
distribution of the failure rate. 

Given the type of available evidence, we will employ the Lognormal-Poisson model, i.e., the 
population variability is assumed to follow a Lognormal distribution and the likelihood of 
observing ki failures in Ti is provided by a Poisson distribution. Solving the Lognormal-
Poisson model given the available evidence in Table 4, the resulting cumulative density 
function and probability density function of the expected failure rate variability are shown in 
Figure 7 and Figure 8, respectively. Also plotted in Figure 7 are the 5% and 95% percentile 
curves. 
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Figure 7 – Expected failure rate variability distribution and 5th and 9th uncertainty bounds for 

motor-operated valves. 

 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1,0E-10 1,0E-09 1,0E-08 1,0E-07 1,0E-06 1,0E-05 1,0E-04 1,0E-03

Failure  Rate  [/h]

 
Figure 8 – Probability density function of the expected failure rate variability for  

motor-operated valves. 

 

The Table 5 shows the mean, 5th, 50th, and 95th percentile curves of the failure rate population 
variability. Also shown in Table 5 are the several percentiles for each of these curves. 
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Table 5 – Mean and percentile curves of the failure rate variability distribution for  
motor-operated valves. 

Value Mean Curve 5th Curve 50th Curve 95th Curve 

Mean 1.25E-06    

Variance 0.004001    

1st  1.93E-09 3.10E-08 4.49E-09 4.69E-10 

5th  7.94E-09 4.73E-08 1.13E-08 2.00E-09 

10th  1.51E-08 6.22E-08 1.84E-08 4.24E-09 

50th  9.25E-08 3.48E-07 9.95E-08 3.30E-08 

90th  8.12E-07 4.92E-06 5.58E-07 9.22E-08 

95th  1.80E-06 1.12E-05 9.09E-07 1.14E-07 

99th  9.88E-06 5.24E-05 2.31E-06 1.60E-07 
 

Note that the resulting expected failure rate variability distribution has a mean of 
61.25 10−× /h with 5th and 95th percentiles of 97.94 10−× /h and 61.80 10−× /h, respectively. 

This wide uncertainty bounds, also shown in Table 5, are due to not only the limited amount 
of data but also the scarce number of failure: only one failure was observed in a total 
operating time of 75.43 10×  hours. The uncertainty bounds tend to get narrower as additional 
operating experience is gained, for instance, by increasing the number of populations 
(see discussion in section 7). Another possibility to reduce the level of uncertainty in the 
failure rate assessment is the combined used of run-time data and expert-based evidence. 

 

9. Concluding Remarks 

In this paper we have discussed a Bayesian approach to assess the variability of reliability 
measures based on partially relevant data. The so-called population variability analysis has a 
very strong appeal from a practical point of view as it allows for the quantification of 
reliability metrics such as an item’s failure rate or probability of failure based on evidence 
obtained from not only equivalent or similar items but also under only similar operating 
conditions and maintenance policies. The mathematical framework was then presented and 
discussed where emphasis was given to the likelihood construction process for various types 
of information: exposure-based data and expert-based evidence. 

In this context, the modeling of mixed evidence was introduced. Mixed evidence modeling 
concerns the incorporation of exposure data and engineering judgments into the body of 
knowledge about some reliability measure of interest. It allows for both the coupled and 
decoupled modeling of exposure and expert information sources, where the former 
corresponds to cases where the expert provides estimates about a reliability measure of an 
item for which exposure evidence is also available. The latter situation occurs when an 
expert’s opinion is about an item different from the one for which exposure evidence is 
available. This class of mixed models is topic of current research and a detailed discussion 
can be found in Droguett, Groen & Mosleh (2004). 
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The utilization of a population variability distribution as a prior in a two-stage variability 
analysis was then presented. It was demonstrated by considering the probabilistic 
dependencies involved in the Bayesian two-stage updating procedure, that both stages can be 
integrated into a single problem. 

The behavior of the population variability modeling under different data conditions was 
analyzed. Provided that available evidence can be characterized based on the number of sub-
populations and the exposure level for individual populations, it was shown that to arrive at a 
good estimate it is not necessary to have infinite amounts of data for individual populations 
as long as data is available for a sufficiently large number of populations. This was then 
illustrated by means of an example based on simulated data from a Gamma population 
variability distribution. 

The Bayesian variability analysis approach was then illustrated by means of two examples. 
In the first of them, the probability of failure variability distribution of a system was assessed 
when only expert opinions were available. To work as a validation case, the data set was 
generated from a Lognormal distribution. From the results, it was observed that the estimated 
expected variability distribution is a reasonable approximation to the theoretical distribution. 

In the second example the approach was employed in the failure rate variability analysis of 
motor-operated valves based on real data. Primarily due to the limited number of observed 
failures (only one failure in a total of 75.43 10×  operating hours for eight units), the results 
showed a somewhat wide uncertainty bounds (5th and 95th percentile curves). However, as 
illustrated in both examples, the approach allows for the explicit quantification of the 
uncertainty in a population variability analysis, which is a valuable aid in the process of 
decision making under uncertainty. 
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