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ABSTRACT. In power delivery systems, the use of dispersed generation and security control to improve

network utilization requires the optimal use of system control devices. The installation of loop controller

allows the distribution system to operate in a loop configuration, achieving effective management of voltage

and power flow. In the investment planning process, it is important to identify the optimal location and

installed capacity of the equipment such that all operational constraints are satisfied. This paper presents

a method for identifying the optimal location and capacity with the minimum installation cost. Our novel

approach uses an economic model that considers the fixed costs. A slope scaling procedure is presented,

and its efficiency is demonstrated using numerical experiments.

Keywords: optimization, linear approximation, stochastic programming, power system, optimal power

flow, loop controller.

1 INTRODUCTION

In the electric power industry, many issues are dealt with as mathematical programming prob-
lems. Representative integer programming and combinatorial optimization problems include the

unit commitment problem (Shiina & Birge, 2004; Shiina & Watanabe, 2004) and the power
generation planning problem (Shiina & Birge, 2003). Discussions of the application of stochas-
tic programming methods to the electricity industry can be found in works by Ruszczyński &

Shapiro (2003) and by Shapiro et al. (2009). For these problems, the branch-and-bound meth-
ods are used in which discrete variables are enumerated, techniques that relax the constraints, or
approximation methods such as local search. Solution methods using a discrete structure for the

problem are most commonly used. Until recently, it has been extremely difficult to solve large-
scale combinatorial optimization problems, but the development of mathematical programming
methods has provided techniques that allow approximate solutions to be found effectively. These
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approximation methods are referred to collectively as metaheuristics. If the local search method

is to function effectively, then it is important that the set of feasible solutions be identified quickly.

In contrast, the basic economic power dispatch problem is a nonlinear programming problem.
In the case of convex nonlinear programming problems, solution methods that solve large-scale
problems effectively have been demonstrated (Bazaraa et al., 1993). Shiina (1999) adressed a

convex programming problem that considered the uncertainty in demand in a power supply.
However, the problem becomes very challenging when convex programming cannot be applied.
In calculating the optimal power flow (OPF) (Wood & Wollenburg, 1996; Zhu, 2015), because

the flow equation is described as a nonlinear equality constraint, the problem becomes one of
nonlinear optimization with a feasible set that is not convex. In this case, a feasible solution may
not be obtainable. In recent years, solutions based on the semidefinite programming have been

studied (Bai et al., 2008; Molzahn et al., 2013). However, implementation using these solution
method is not always easy to introduce. A simple method using software that is easy to obtain
is desired.

The problem considered in the present paper is one of optimization under combinatorial condi-

tions that represent the location of the equipment and the installation of a loop controller (LPC)
to control the power flow, in addition to the calculation of the OPF. The LPC operates the current
distribution network in a loop configuration. It can be installed between two specific points on

the network and its capacity must also be decided. From the viewpoint of suppressing the cost,
the LPC can effectively utilize existing facilities. In addition, since it has a very simple structure,
it is possible to introduce various types of power supply and deal with fluctuations in demand
flexibly. The installation of equipment is formulated as an integer programming problem or a

combinatorial optimization problem, but because the calculation of flow is a non-convex nonlin-
ear programming problem, a solution is difficult to find. This problem takes the power demand as
an input condition and determines the installation that minimizes costs under the operational con-

straints of the network. The network operational constraints to be considered here are the voltage
operating range and the line thermal capacity. However, when optimizing large-scale systems
or considering flow constraints in multiple scenarios, the number of variables and constraints in

the optimization problem becomes huge, and a more efficient optimization technique is required.
A conventional technique uses a two-stage approach that mixes combinatorial optimization and
nonlinear optimization, in which the search for a location and the determination of the capacity

of the equipment are treated separatedly. When this technique is applied, there are many cases
in a local search for the installation location in which no feasible flow exists, which makes it
difficult for an efficient search to be conducted. In this study, we investigated a new technique in

which linearly approximation is made of the installation cost, without relying on a local search.
This linear approximation method called the dynamic slope scaling procedure (Kim & Pardalos,
1999; 2000), and has the advantage that a feasible power flow can always be obtained. Since this

method approximates an objective function that includes a fixed cost, it does not include a 0 − 1
variable representing the installation, and so always retrieves a feasible value for the location and
power flow.
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The rest of the paper is organized as follows. In Section 2, the problem is formulated. In sec-

tion 3, the technique based on local search is discussed and the principle for designing a solution
for the optimal installation is described. A novel algorithm based on linear approximation is then
demonstrated. In Section 4, the technique is applied to the optimization of a full-scale system

model. Both single scenario and multiple scenario optimizations are considered, and the effec-
tiveness of our novel technique is demonstrated. We summarize our results in Section 5.

2 FORMULATION OF THE OPTIMAL INSTALLATION PROBLEM

The power system to be considered is represented by a network N = (V , E), where V is a
node set and E is the arc set, consisting of node pairs (i, j ) ∈ E such that there exists an arc

between each pair with nodes i, j as its ends. In the power system, a piece of electrical equipment
referred to as a bus corresponds to a node on the network, and factors such as the transformer
and transmission lines correspond to the arcs. The power flow through each piece of equipment

in the network is called the flow.

In this paper, we consider the problem of calculating an OPF that takes into account the instal-
lation of the equipment. In order to maintain the voltage in the system at a suitable level, it is
necessary to determine the location of the installation and its capacity. The collection of nodes

(i, j ) at which the equipment can be installed, is the set A of (i, j ) (i, j ∈ V ), and is given as
follows.

A = {(i, j )|the equipment can be installed between nodes i and j} (1)

Here, in relation to set A, we assume that A ∩ E = ∅. In other words, the equipment is not
installed on the existing arcs in the network, rather we define as A the collection of node pairs

that are candidate locations. As we must take into account both the power flowing out of the LPC
and that flowing in, the direction of (i, j ) ∈ A must be considered. When power flows from node
i into the equipment, we call i the start node in the collection of installation nodes (i, j ), and

when the power flows out from the equipment to node j , we call node j the end node. The sets
of start nodes and end nodes in the collection of installation nodes are designated, V + and V −,
respectively, and defined as follows.

V + = {i ∈ V |∃(i, j ) ∈ A, power flows from node i into the equipment} (2)

V − = { j ∈ V |∃(i, j ) ∈ A, power flows from the equipment into node j} (3)

If we remove from set V the collection of nodes belonging to the set of start nodes V + and

the set of end nodes V − belonging to set A, the remaining set of nodes is V̄ and we define
V̄ = V \ {V + ∪ V −}. There is no intersection between the LPC and the nodes belonging to set
V̄ . The values of the current flowing in and out of each bus, and the active and reactive power,

can be calculated using the value of the voltage variable. In exceptional cases, V̄ includes one
slack bus, N0 ∈ V̄ ; in the slack bus, the voltage value is given and the active and reactive power
values are treated as variables.

Pesquisa Operacional, Vol. 37(3), 2017
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The binary variables relating to the installation location are determined as follows. If the equip-

ment is installed at pair (i, j ) ∈ A, then xi j = 1; if no equipment is installed, then xi j = 0.
The capacity of the equipment to be installed at pair (i, j ) ∈ A is defined as variable yi j . The
objective function is the installation cost, αi j represents the fixed costs for installation at node

pair (i, j ), and βi j represents the variable costs per unit capacity of the equipment. The objective
function is given as follows.

min
∑

(i, j)∈A

(αi j xi j + βi j yi j ) (4)

Next, we present the constraints on the optimal installation problem. Here, j is the imaginary
unit. The active and reactive power of bus i ∈ V are defined as variables Pi , Qi , respectively.
The active and reactive power generated at bus i is given by PGi and QGi , and the load active

and reactive power are given by PLi and QLi , respectively. In this case, we exclude any slack
buses, and for each bus i ∈ V̄ \ {N0} at which the LPC is not installed, the following constraint
(5) must be satisfied.

Pi + jQi = PGi − PLi + j(QGi − QLi), i ∈ V̄ \ {N0} (5)

At the slack bus N0 ∈ V̄ , no load exists and the constraint (6) must be satisfied.

PN0 + jQN0 = PGN0 + jQGN0 (6)

At the slack bus, the values of PN0 , QN0 are given and in their place PGN0 , QGN0 are defined

as variables. If a pair (i, j ) ∈ A is a candidate for the installation location, the active power and
reactive power flowing into the equipment are represented by variables P L PC

i and QL PC
i , and

the active power and reactive power flowing from the equipment into bus j are represented by

variables P L PC
j and QL PC

j . At the start node i ∈ V + in the collection of pairs (i, j ) ∈ A that
are candidates for the installation, the constraint (7) must be satisfied.

Pi + jQi = PGi − PLi + j(QGi − QLi ) − xi j (P L PC
i + jQL PC

i ),

i ∈ V +, (i, j ) ∈ A (7)

At the end node i ∈ V − in the collection of pairs (i, j ) ∈ A that are candidates for the installation,
the constraint (8) must be satisfied.

Pi + jQi = PGi − PLi + j(QGi − QLi ) + xi j (P L PC
i + jQL PC

i ),

i ∈ V −, (i, j ) ∈ A (8)

Here, the values of the active power flowing into the equipment and the active power flowing out

from the equipment must be equal.

P L PC
i = P L PC

j , (i, j ) ∈ A (9)

Care should be taken to ensure that there are no constraints on the reactive power flowing into
and out of the LPC.

Pesquisa Operacional, Vol. 37(3), 2017
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Next, we represent the variable Vi that indicates the voltage at bus i in Cartesian coordinates as
Vi = ei + j fi , where ei and fi are variables corresponding to the real and imaginary parts of
the voltage, respectively. The admittance of arc (i, j ), namely Gi j + jBi j is given. The current Ii

flowing into the network from bus i can be represented by (10).

Ii =
N∑

k=1

(Gik + jBik )(ei + j fi ) (10)

From this, we can represent the relation between the voltage at each bus i ∈ V̄ and the active and
reactive power Pi , Qi by (11), where Īi represents the complex conjugate of Ii .

Pi + jQi = Vi Īi (11)

By taking the real and complex components of equation (11), we obtain the following relations.

Pi = ei

N∑
k=1

(Gik ek − Bik fk ) + fi

N∑
k=1

(Bik ek + Gik fk ) (12)

Qi = −ei

N∑
k=1

(Bik ek + Gik fk ) + fi

N∑
k=1

(Gik ek − Bik fk ) (13)

Using relations (12) and (13), we can represent (5) by (14) and (15) for i ∈ V̄ \ N0.

ei

N∑
k=1

(Gik ek − Bik fk ) + fi

N∑
k=1

(Bik ek + Gik fk ) − PGi + PLi = 0 (14)

−ei

N∑
k=1

(Bik ek + Gik fk ) + fi

N∑
k=1

(Gik ek − Bik fk ) − QGi + QLi = 0 (15)

In the same way, using relations (12) and (13), we can represent (6) by (16) and (17), where
eN0 and fN0 at the slack bus are given as constants, whereas PGN0 and QGN0 are defined as
variables.

eN0

N∑
k=1

(GN0 kek − BN0k fk ) + fN0

N∑
k=1

(BN0 kek + GN0 k fk ) − PGN0 = 0 (16)

−eN0

N∑
k=1

(BN0 kek + GN0 k fk ) + fN0

N∑
k=1

(GN0 kek − BN0k fk ) − QGN0 = 0 (17)

At the start node in the collection of pairs (i, j ) ∈ A that are candidates for the installation
location, using relations (12) and (13), we can represent (7) by (18) and (19) for i ∈ V +,

(i, j ) ∈ A.

ei

N∑
k=1

(Gik ek − Bik fk ) + fi

N∑
k=1

(Bik ek + Gik fk ) − PGi + PLi + xi j P L PC
i = 0 (18)

−ei

N∑
k=1

(Bik ek + Gik fk ) + fi

N∑
k=1

(Gik ek − Bik fk ) − QGi + QLi + xi j QL PC
i = 0 (19)

Pesquisa Operacional, Vol. 37(3), 2017
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At the end node in the collection of pairs (i, j ) ∈ A that are candidates for the installation
location, using relations (12) and (13), we can represent (8) by (20) and (21) for i ∈ V −,

(i, j ) ∈ A.

e j

N∑
k=1

(G jk ek − B jk fk ) + f j

N∑
k=1

(B jk ek + G jk fk ) − PG j + PL j − xi j P L PC
j = 0 (20)

−e j

N∑
k=1

(B jk ek + G jk fk ) + f j

N∑
k=1

(G jk ek − B jk fk ) − QG j + QL j − xi j QL PC
j = 0 (21)

The above constraints are concerned with power flow. The voltage of each bus i must also satisfy
inequality (22), where Vmax, Vmin are given constants.

Vmin ≤
√

e2
i + f 2

i ≤ Vmax, i ∈ V (22)

For the current flowing through each arc (i, j ) ∈ E , an upper bound is given as (23), where Imax

is a given constant.{
Gi j (ei − e j ) − Bi j ( fi − f j )

}2 + {
Gi j ( fi − f j ) + Bi j (ei − e j )

}2 ≤ (Imax)
2 (23)

On the pairs of nodes that are candidate installation locations, the capacity yi j must be determined
such that inequalities (24) and (25) are satisfied.

y2
i j ≥ (P L PC

i )2 + (QL PC
i )2, (i, j ) ∈ A (24)

y2
i j ≥ (P L PC

j )2 + (QL PC
j )2, (i, j ) ∈ A (25)

Putting these together, we can formulate the mathematical programming problem as a large-scale
non-convex mixed 0 − 1 integer programming problem, shown here as (LPC-installation).

(LPC-installation): min
∑

(i, j)∈A

(αi j xi j + βi j yi j )

subject to (14), (15), i ∈ V̄ \ {N0}
(16), (17)

(9), (i, j ) ∈ A
(18), (19), i ∈ V +, (i, j ) ∈ A

(20), (21), i ∈ V −, (i, j ) ∈ A
(22), i ∈ V
(23), (i, j ), ∈ E

(24), (25), (i, j ) ∈ A
xi j ∈ {0, 1}, (i, j ) ∈ A
yi j ≥ 0, (i, j ) ∈ A

The present model can be used to analyze multiple scenario constraints by introducing vari-
ables for each scenario. Defining all variables exept x and y as stochastic makes this problem a
stochastic programming problem.

Pesquisa Operacional, Vol. 37(3), 2017
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3 SOLUTION ALGORITHM

In this section, we demonstrate a solution using linear approximation. For a network flow prob-
lem with fixed costs, Kim & Pardalos (1999) presented a linear approximation of the objective
function, called slope scaling. This method restricts the range that the variables can take and
adjustments are made at each iteration (Kim & Pardalos, 2000). We have applied a similar linear
approximation method to the optimal installation problem.

We first outline of the linear approximation method. We consider the design problem of a network
with fixed costs. The network N is represented as N = (V , E). Sets V and E represent the nodes
on the network and the arc set, respectively. The demand at each node i ∈ V in set V is bi and
the column vector in which the i-th element is bi is b ∈ 	|V |. The upper bound on the flow
at arc (i, j ) ∈ E, i, j ∈ V is ui j . The incidence matrix for the network is A ∈ 	|V |×|E |. The
variables are the flow on arc (i, j ), vi j ≥ 0 and xi j ∈ {0, 1}, which is the decision variable to
include arc (i, j ) in the solution. The objective function is the sum of the costs in relation to the
flow in each arc and the fixed costs when the flow is positive. For the case in which the fixed cost
fi j is applied when the flow vi j is a positive value, and the cost per flow in arc (i, j ) is ci j , the
following problem (FCNFP) can be formulated.

(FCNFP): min cv + f x
subject to Av = b

0 ≤ vi j ≤ ui j xi j , (i, j ) ∈ E
xi j ∈ {0, 1}, (i, j ) ∈ E

This is a mixed 0 − 1 integer programming problem. If the 0 − 1 variables were not present, the
problem would be one of the the minimium cost flow problems, and a solution could be deter-
mined effectively. The linear approximation method solves the approximate linear programming
problems obtained by adjusting the cost of the original mixed integer programming problem with
fixed costs. The integer program involving variables v and x of (FCNFP) is replaced by an ap-
proximate problem involving only variable v (FCNFP-LP). If a feasible solution (v̄, x̄) to the
problem (FCNFP) is given, then the objective function value in the feasible solution, v̄ of the
approximate linear programming problem (FCNFP-LP), matches the objective function value of
the original problem. Taking c0 = c, we can define the following subproblem (FCNFP-LP) at
iteration k.

(FCNFP-LP): min ckv

subject to Av = b
0 ≤ vi j ≤ ui j , (i, j ) ∈ E

In the optimal solution vk of (FCNFP-LP), if for (i, j ) such that vk
i j > 0 we take xk

i j = 1, and

for (i, j ) such that vk
i j = 0 we take xk

i j = 0, then (vk, xk) is the feasible solution for (FCNFP).

To make the objective function value at v = vk for problem (FCNFP-LP) match the objective
function value at (v, x) = (vk , xk) in problem (FCNFP), we set ck+1

i j as follows, where k is the
current number of iterations.

ck+1
i j =

{
ci j + fi j /v

k
i j if vk

i j > 0

ck
i j if vk

i j = 0
(26)

Pesquisa Operacional, Vol. 37(3), 2017
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In this case, it can be seen from the following equations that the objective function value at
solution v = vk for (FCNFP-LP) matches the objective function value at solution (v, x) =
(vk , xk) in (FCNFP), as shown in Figure 1.∑

(i, j)∈E

ck+1
i j vk

i j =
∑

(i, j)∈E ,vi j >0

ck+1
i j vk

i j

=
∑

(i, j)∈E ,vi j >0

(ci j + fi j /v
k
i j )v

k
i j

=
∑

(i, j)∈E ,vi j >0

(ci j v
k
i j + fi j ) (27)

f

0 vk

v

cv+f
cv

(c+ f
vk)v

Figure 1 – Slope scaling.

The linear approximation method is applied to solve (LPC-installation). Here, we fix all xi j =
1, (i, j ) ∈ A, and solve the next problem (LPC-installation-slope) in which the cost in the objec-
tive function is adjusted.

(LPC-installation-slope): min
∑

(i, j)∈A

βk
i j yi j

subject to (14), (15), i ∈ V̄ \ {N0}
(16), (17)

(18), (19), i ∈ V +, (i, j ) ∈ A
(20), (21), i ∈ V −, (i, j ) ∈ A
(9), (i, j ) ∈ A
(22), i ∈ V

(23), (i, j ), ∈ E
(24), (25), (i, j ) ∈ A
xi j = 1, yi j ≥ 0, (i, j ) ∈ A

Pesquisa Operacional, Vol. 37(3), 2017
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Figure 2 shows the method by which LPC installation problem is solved. The advantage of this
method is that a feasible solution is always obtained. As there is no variable representing the in-
stallation location, a search for the location is not conducted. By approximating the cost function
dynamically, the same cost as the conventional location cost is obtained. It is difficult to prove
the convergence of the algorithm theoretically. According to Kim & Pardalos (1999, 2000), this
algorithm is a quite efficient heuristic approach for solving concave piecewise linear network
flow problems. The numerical experiments show its performance is very stable.

Figure 2 – Algorithm for LPC installation.

• Step 0. (Initial setting): We take the number of iterations k = 0, βk = β . ε > 0 is given.

• Step 1. (Final decision condition): If k ≥ 1, then we halt when
∑

(i, j)∈A(yk
i j − yk−1

i j ) < ε.

The solution yk
i j finally obtained, is the LPC capacity, when yk

i j > 0, xi j = 1 and in all other

cases xi j = 0, the solution for (LPC-installation) is obtained.

• Step 2. (Calculation of (FCNFP-LP)): Problem (LPC-installation-slope)is solved, the solu-

tion y = yk is obtained.

• Step 3. (Update costs):

βk+1
i j =

{
βi j + αi j /yk

i j if yk
i j > 0

βk
i j if yk

i j = 0

• Step 4. (Update number of iterations): Let k = k + 1 and return to Step 1.

4 NUMERICAL EXAMPLE USING A FULL-SCALE MODEL SYSTEM

4.1 Comparison between local search and the linear approximation method

We used a full-system-scale model of a power distribution system to demonstrate the applicability
of this method to the optimization of the installation location and capacity. Figure 3 shows the
model used, representing a 6.6 kV system supplying power from distribution substations at seven
locations, for a standard demand scale of 250 MW per single secondary substation (154/66 kV).
We assumed an urban neighborhood with an approximate area of 15 km × 15 km, based on the
impedance value set at each feeder. The following conditions are used to model the 6.6 kV feeder
structure and load.

• One distribution substation has a three-bank (20MVA*3) structure, with four feeders com-
ing from each transformer bank.

• There is no supply from the same transformer bank into adjacent feeders.

• One feeder is represented as a six-node circuit with two arcs branching off. The distribution
line inductance is 1.2 mH/km.

Pesquisa Operacional, Vol. 37(3), 2017
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• It is possible to loop the end nodes of each feeder (three nodes per feeder) with the adjacent
feeder.

• The above feeder structure is common to all seven distribution substations.

Figure 3 – Power distribution system.

In the calculation, the initial condition was a violation of the operational constraints arising si-
multaneously in multiple nodes at the ends of the feeders due to a voltage increase (number of
nodes where violation occurred: 44), because of the interconnection of the distributed power
sources. This initial condition was used to determine the optimal installation location and capac-
ity of the LPC. Simulations were then carried out using the numerical optimizer NUOPT on a
2.00 GHz Xeon E5507 with two processorsand 12.0 GB memory. Examples of modern portfolio
optimization problems were given by Scherer & Martin (2005).

It was shown that the minimum-cost solution in resolving all voltage violations using linear
approximation had a calculation time 1/10 that of the previously developed local search method.
The results of these calculations are shown in Tables 1 and 2. As can be seen from Table 1 and
2, our linear approximation approach required OPF to be solved only 5 times, in contrast to the
84 times required when local search was used.

Pesquisa Operacional, Vol. 37(3), 2017
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This reduction in searching is because there is no requirement to search the 0−1 variable relating
to the installation when using the linear approximation method. Linear approximation is a tech-
nique that lacks global convergence, and it is not necessary to converge on an optimal solution.
In our simulation, the same solution was obtained when using local search and linear approxi-
mation, in both cases a suitable solution was obtained for the positional relation with constraint
violations in the system.

Although the efficiency of the local search method can be improved by using a set in which
the variables representing the installation descision are fixed, the calculation time remains much
longer than that of the linear approximation method.

Table 1 – Calculation results (local search).

Iterations
Number

Cost
Number of times

of LPCs OPF solved

0 15 17.78 2

1 14 16.92 20
2 13 15.99 20

3 12 15.13 12
4 11 13.75 16

5 11 13.75 14

Total number of times OPF solved 84

Calculation time 15070 (sec)

Table 2 – Calculation results (linear approximation).

Iterations
Number

Cost
Number of times

of LPCs OPF solved

1 16 18.48 1
2 15 17.71 1

3 13 15.71 1
4 11 13.75 1

5 11 13.75 1

Total number of times OPF solved 5

Calculation time 1402 (sec)

4.2 Investigation of multi-scenario optimization

We next investigated multi-scenario optimization by performing a simulation that simultaneously
took into consideration two scenarios with different demand patterns, using the same model. In
the two scenarios, demand increased on a total of eight buses. In both scenarios, six buses had
a demand increase of 2MW, but the locations of buses with a demand increase of 3MW were
different. This is shown in Figures 4, 5 and 6. No account was taken of distributed power sources,
and the optimal installation location and capacity of the LPC was determined from an initial
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condition of voltage constraint violations arising in multiple nodes at the ends of feeders (number
of nodes where violation occurred: 40). This was due to an increase in demand, with violations
of the line thermal capacity constraint arising concurrently in 10 lines. First, we determined the
optimal location for the LPC in each individual scenario.

Table 3 – Calculation results (per scenario).

Scenario Solution method
Calculation Number of

time(s) OPF times

1 local search 4997 48

2 linear approximation 391 4
1 local search 3667 70

2 linear approximation 385 4

As can be seen from Table 3, the calculation time when using the linear approximation method
was much shorter than that of the local search method. The optimal solutions obtained are shown
in Figures 4 and 5.

Figure 4 – Optimal location (scenario 1).
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Figure 5 – Optimal location (scenario 2).

Next, we consider a model that takes multiple scenarios simultaneously into account. In this
model, the variables x and y are defined as deterministic variables and the variables e and f
are defined as stochastic variables representing voltage values. The variables e and f have the
subscript s for the scenario s, and it can vary for each scenario. The stochastic multi-scenario
problem we consider is an extension problem of the original problem (LPC-installation), and
it is defined so that the constraints are satisfied for all scenarios. Figure 6 shows the optimal
locations when both scenarios were considered.

When the single scenarios were resolved separately, 14 LPC units were installed, whereas when
multiple scenarios are considered simultaneously, the number fell to 12 units. As shown in Fig-
ure 6, when the scenarios produce different installation patterns, it is possible to reduce the num-
ber of units by considering multiple scenarios simultaneously. The calculation results are given
in Tables 4 and 5. It can be seen that the LPC installation locations can be determined quickly
using the linear approximation method.
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Figure 6 – Optimal location (multi-scenario).

5 CONCLUSIONS

When adressing the LPC optimal installation problem, conventional methods require repeated
calculations to be performed both when searching for an installation location and for caluculat-
ing the OPF. These approaches require long computational time to produce a solution and make
it difficult to perform optimization under multi-scenario constraints. In the present study, we de-
veloped a more efficient approach for solving practical problems. Using a technique that linearly
approximates the installation cost, it becomes possible to obtain solutions through nonlinear op-
timization of the minimum conditions.

This increases the speed of the process. We investigated the effectiveness of our novel technique
using a full-scale system model, and demonstrated its capacity to minimize the cost of resolving
all voltage violations efficiently, and with a shorter calculation time than conventional techniques
based on local searches.

Our technique was also applied to a problem with multi-scenario flow constraints. When the
demand pattern were different in each scenario, our optimization approach was able to resolve
the multiple scenarios simultaneously. This new technique has potential applications across a
wide range of optimization problems in the electric power filed.
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Table 4 – Calculation results with multiple scenarios (local search).

Iterations
Number

Cost
Number of times

of LPCs OPF solved

0 24 35.78 2

1 22 33.79 2
2 21 32.86 4

3 20 31.94 2
4 16 27.39 4

5 16 27.38 4
6 16 27.26 4

7 14 25.25 4
8 13 24.25 6

9 13 24.23 6
10 13 24.22 6

11 12 23.27 6
12 12 23.27 24

Total number of times OPF solved 74
Calculation time 9530 (sec)

Table 5 – Calculation results with multiple scenarios (slope scaling).

Iterations
Number

Cost
Number of times

of LPCs OPF solved

1 24 35.70 1
2 20 31.79 1

3 16 27.37 1
4 13 24.30 1

5 13 24.27 1

6 12 23.27 1

Total number of times OPF solved 6
Calculation time 886 (sec)
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