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ABSTRACT. We discuss the rationality of burning money behavior from a new perspective: the mixed
Nash equilibrium in 2 x 2 normal form games. We support our argument analyzing the first-order deriva-
tives of the players’ mixed equilibrium expected utility payoffs with respect to their own utility payoffs. We
establish necessary and sufficient conditions that guarantee the existence of negative derivatives. In partic-
ular, games with negative derivatives are the ones that create incentives for burning money behavior since
such behavior in these games improves the player’s mixed equilibrium expected utility payoff. We show
that a negative derivative of some player i’s mixed equilibrium expected utility payoff occurs if, and only
if, he has a strict preference for one of the strategies of the other player. Moreover, negative derivatives
always occur when they are taken with respect to player i’s highest and lowest game utility payoffs. We
also present sufficient conditions that ensure that such derivatives are always non-negative in finite normal

form games.

Keywords: mixed Nash equilibrium, payoff reduction, collaborative dominance, security dilemma.

1 INTRODUCTION

Based on the concept of forward induction proposed by Kohlberg & Mertens (1986) and, espe-
cially, on the idea of iterative elimination of weakly dominated strategies, Van Damme (1989)
and Ben-Porath & Dekel (1992) studied the effects of burning money as a way to signal future
actions allowing (in some games) the player who burned money to achieve his or her preferred
equilibrium point in the game. Ben-Porath & Dekel (1992) proved that in games in which a
player has a strict preference for an equilibrium point, and if this player can self-sacrifice, then,
based on the forward induction rationality and iterative elimination of weakly dominated strate-
gies, such player will achieve his most preferred outcome.
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To test the theoretical prediction that the opportunity of burning money brought an advantage
for the player that can do it, Huck & Miiller (2005) developed an experimental study based on
the Battle of the Sexes game. Initially, the authors considered a sequential burning money game
where, first, player 1 had to choose between two utility payoff matrices, one in which the payoffs
(an aside: in this paper we use the terms utility and payoffs as synonyms since we never refer to
material payoffs) were identical to the original Battle of the Sexes (i.e. without burning money)
and another in which all payoffs of player 1 were reduced (i.e. a game with burning money),
then, player 2 observes the initial choice made by player 1 and, thereafter, both choose their
strategies simultaneously. With this experiment, the authors were able to detect the first mover
advantage (even though the observed frequency was lower than the one expected by the theory,
which completely solves the coordination problem). On the other hand, when the game was
exposed in its reduced normal form representation, the result was very different and no first move
advantage was detected. As an explanation for this divergent result, the authors suggested that
the participants were unable to perform the iterative elimination of weakly dominated strategies.
Other discussions on forward induction and elimination of dominated strategies can be found in
Brandts & Holt (1995).

In a critical analysis of Ben-Porath & Dekel’s ideas, Myerson (1991, p. 194-195) argues that
in the context of sequential equilibrium, player 1’s act of burning money can be interpreted by
player 2 as irrational or as an error and, for this reason, should not be considered in the prediction
of player 1’s future behavior.

In addition, Van Damme (1989) and Ben-Porath & Dekel (1992) recognize that if all players can
signal their intentions by burning money, then the final outcome of the game may be inefficient.
The authors also emphasize that the order in which players can burn money define their power
on the game, since the last one always has the opportunity to make a counter-signal that makes
the early signal invalid. For this reason, the last player to signal has the greater advantage.

Burning money behavior can also occur just for some specific strategy profiles, as discussed in
Fudenberg & Tirole (1991, p. 9). The authors propose the game presented in Figure 1. In this
game, there is a unique (and inefficient) pure equilibrium (U, L).

L R
U | (13 | &0
D | (0,2) | 3,4

Figure 1

But suppose that player 1 can show player 2 (before player 2 chooses her action) that the strategy
U is not strongly dominant for him. For example, suppose that player 1 changes the game and
reduce his payoffs if U occurs by 2 utils. So in this new game, there is also a unique pure
equilibrium point (D, R), which is now efficient. For more details, see the original argumentation
in Fudenberg & Tirole (1991).

It is important to highlight that, as in Fudenberg & Tirole (1991), we focus on burning money
behavior before the beginning of the game, and this is common knowledge among players. One
can think of it as a pre-contract which imposes him a predefined penalty if some specified strategy
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profile is played. Moreover, the existence of such contract is common knowledge among players.
We emphasize that in this paper we do not study burning money behavior in the context of
signaling games, but we see it as a form of self-sacrificing reducing the player’s utility payoft.

Based on the exposed arguments, a burning money behavior may be an important mechanism
of cooperation, and also allow players to achieve efficient outcomes. Moreover, once we assume
that players are capable to self-sacrifice (it is easier to suppose that players can reduce their own
payoff than that they can increase it) it is natural to assume that if the same penalty is imposed
by an external and impartial agent, the same result will emerge.

In this paper, we discuss the rationality of burning money behavior from a new perspective:
the mixed Nash equilibrium in 2 x 2 normal form games. We establish necessary and sufficient
conditions for the existence of negative and non-positive derivatives of some player i’s mixed
equilibrium expected utility with respect to his own payoffs. In particular, games in which neg-
ative derivatives occur are the ones that create incentives for burning money behavior since it
would improve player i’s mixed equilibrium expected utility.

Supported by the concept of collaborative dominance, proposed by Souza & Régo (2013), we
show that a negative derivative of some player i’s mixed equilibrium expected utility occurs if,
and only if, player j has a strictly collaboratively dominant strategy for player i (i.e., if player
i has a strict preference for one of the strategies of player j). Moreover, negative derivatives
always occur with respect to player i’s highest and lowest game utility payoffs. We also evaluate
how player j reacts to the reduction in a payoff made by player i, i.e., how j’s mixed equilibrium
strategy varies given a change in player i’s utility payoffs. We show that if the derivative of player
i’s mixed equilibrium expected utility taken with respect to some of his utility payoff, say a, is
negative, then if player i reduces a, he is inducing player j to choose more often the strategy
that is strongly collaboratively dominant for him, player i. This fact allows player i to achieve
a more desired result. Therefore, player i should reduce utility with respect to the payoff that
provides the greater increase in the probability of player j choosing the strategy that is strongly
collaboratively dominant for him, player i.

We also point out some difficulties to extend the proposed analysis for more general games,
especially regarding how players will react to burning money behavior of the other players. On
the other hand, we present sufficient conditions for the existence of non-negative derivatives of
some player’s equilibrium expected utility taken with respect to one of him payoffs in finite
normal form games; and finally, to illustrate our approach, we revised some of Jervis (1978)
conclusions about what makes cooperation more likely in the security dilemma.

For this purpose, the remaining of the paper is structured as follows: in Section 2, we analyze the
first-order derivative of some player i’s mixed equilibrium expected utility in a 2 x 2 normal form
game with respect to his own utility payoffs; in Section 3, we discuss the necessary and sufficient
conditions that guarantee the existence of negative (or at least non-positive) derivatives of mixed
equilibrium expected utility which would justify the burning money behavior; in Section 4, we
study the problem of finding the best utility reduction strategy. In Section 5, we discuss the
difficulties that prevent the extension of our conclusions to a more general class of games; and in
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Section 6, to illustrate some of the applications of our results, we analyze the security dilemma in
light of our conclusions about burning money behavior in 2 x 2 games. Finally, the conclusions
are presented in Section 7.

2 THE ANALYSIS OF FIRST-ORDER DERIVATIVES

We start presenting some general definitions about normal form games. Let G be a finite normal
form game, where G = (N, (S))ien, (Ui)ien) and N = {1, ..., n} is a finite set of players, S;
is a finite set of (pure) strategies available for playeri € N, and U; : X;enS; — R is the utility
function of playeri € N. A strategy profile s = X;ens; is a collection of pure strategies, one for
each playerin G, and S = x;enS; is the set of all pure strategy profiles. Additionally, let A(Sk)
be the set of all mixed strategies of player k, where oy (si) indicates the probability that k gives to
his pure strategy sx when implementing the mixed strategy ox € A(Sk). The support of a mixed
strategy oy is the subset of the pure strategies, S, that receive positive probability according
to ox. Therefore, player i’s expected utility when the mixed strategy profile o is implemented
is determined by U; (o) = Zses(l_[jeN 0j(s;j))U;(s). Finally, let o_; be the set of all mixed
strategies for players different from k in o.

Consider now the particular structure of a 2 x 2 normal form game, as shown in Figure 2.

L R

U | (a,e) | (b, f)
D | (c,g) | d.,h)

Figure 2

Let p be the probability of player 1 choosing pure strategy U and 1 — p the probability of
choosing pure strategy D. Similarly, let ¢ be the probability of player 2 choosing pure strategy
L and 1 — g the probability of choosing pure strategy R. We want to restrict our attention to the
case where there is only one mixed equilibrium in the non-degenerated sense (no restriction is
made on the number of pure equilibrium). In this case, it is well-known (see, e.g., Rasmusen,
1996) that the mixed equilibrium strategies are given by:

h—g
p=———/——— and 2.1
e—f—g+h
B d—>b 22)
q_a—b—c+d' ’

Thus, we can write the expected utility of the players in the mixed Nash equilibrium as a function
of the utilities payoffs of each player, as follows:

EU ad — be d 2.3)
= an .
! a—b—c+d
h_
Eu,— "= J8 (2.4)
e—f—g+h
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Once the mixed equilibrium expected utilities are written only in terms of each player own utility
payoffs, we can study the variation of the mixed equilibrium expected utility with respect to
changes in a given utility payoff through a first-order derivative analysis.

We restrict our attention to marginal changes in a single utility payoff of the game, i.e., changes
that do not alter more than one payoff simultaneously and do not alter the general order of
player’s preferences. By general order of the payoffs we mean: if u and v are two utility payoffs
of some player in the game and u > v, then, after a marginal change in payoffs, it should
not happen that v > u. There are two main ideas behind marginal changes: the first one is
that the nature of the equilibrium set remains the same, i.e., none mixed or pure equilibrium is
added or removed from the original equilibrium set, and changes only affect the probabilities of
mixed strategies without altering its support (this condition is enough to guarantee this fact in
our restricted domain of 2 x 2 games with a unique mixed equilibrium in the non-degenerate
sense); the second one is that we are assuming that, there is no functional relationship among
two or more utilities payoffs. These assumptions are needed because we use the payoff order
to characterize the games that provide incentives to burning money behavior. Furthermore, for
those readers interested in the discussion about payoff changes that alter the general order of
players’ preferences, we recommend Englemann (1994). Thus, for player 1, we have:

IEU]  (c—d)(b—d)

da z(a—b—c-l-d)z’ o
IEU, _ (c—d)c—a) 2.6
b  (a—b—c+d)? oo
JEU, _ (b—a)(b—d) | 2.7
ac _(a—b—c-l-d)z’ .
0EU, _ b-a)c—a) (2.8)
ad _(a—b—c-l-d)z’ " .

JIEU, _ JIEU, _ JEU, _ JIEU, _0
de — of  9g  oh
On the other hand, for player 2, we have:

AEUy  (g—h)(f —h) (2.9)
oe _(E—f—g+h)2’ .
IEU,  (g—M@g—eo | (2.10)
af (e—f—g+h? .
IEU, _ (f—o(f—h) (2.11)
g _(e—f—g+h)2’ .
0EU, _ (f-olg—0) (2.12)

oh  (e—f—g+h?
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IEU; _ IEU; _ IEU; _ IEU;

da ab ac ad

Through these general expressions, we can evaluate how players’ mixed equilibrium expected
utilities vary, when their respective utility payoffs change, analyzing the sign of the derivatives
in Equations (2.5)-(2.8) and (2.9)-(2.12).

3 ANALYZING THE SIGN OF THE DERIVATIVES

In this section, we discuss necessary and sufficient conditions that guarantee that the derivative
of some player expected utility with respect to one of his utility payoff is negative (or at least
non-positive). Bur first, in Lemma 1, we summarize the conditions that guarantee that a 2 x 2
game has a unique mixed equilibrium in the non-degenerated sense. Before stating this Lemma,
let us present a definition.

Definition 1. /magine a 2 x 2 game in strategic form as stated in Figure 2. We say that player 1
(resp. 2) is always indifferent between strategies U and D (resp. L and R) if Uy (U, ) =
Ui (D, s2) forall s» in {L, R} (resp. if U>(s1, L) = Ua(s1, R) forall sy in {U, D}).

Lemma 1. In any 2 x 2 normal form game, there is a unique mixed Nash equilibrium in the
non-degenerated sense if, and only if, no player is always indifferent between his strategies nor

has a weakly (or strongly) dominant strategy.

Proof. 1Ina?2x2normal form game where no player is always indifferent between his strategies
nor has a weakly (or strongly) dominant strategy, we have two possible scenarios for player 1
(@ >candd > b;orc > aand b > d) and two for player 2 (¢ > fandh > g,or f > e

and g > h). In both scenarios for player 1, player 2 has a unique mixed strategy of the form
d—b

a—b—c+d’

and d > b, then ¢ is in the interval (0, 1), which proves that the mixed equilibrium strategy

(g, 1 —q), where g = that makes player 1 indifferent between U and D. Since a > ¢
for player 2 is unique and non-degenerated. Similarly, in both scenarios for player 2, one can
show that there is a unique non-degenerated strategy for player 1 that makes player 2 indifferent
between L and R. Thus, there is a unique mixed Nash equilibrium in the non-degenerated sense.

Suppose now that a given 2 x2 game has a unique mixed Nash equilibriumin the non-degenerated
sense. Then player 2 has a unique mixed equilibrium strategy (¢, 1 — ¢), with ¢ in the (0, 1)
interval, that makes player 1 indifferent between strategies U and D. An analogous reasoning is
applied for player 1 and therefore will be omitted. The only way to do that is to play a mixed
strategy where

. d—>b . 1
1= b —ctvd 1+ 4=¢
witha — b — ¢ +d # 0. Thus, in order for g belong to the interval (0, 1), we must have that

;:Z > (. Therefore, eithera > cand d > b, or ¢ > a and b > d. In both cases, neither player 1

is indifferent between his strategies nor he has a weakly (or strongly) dominant strategy. 0
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Now analyzing the conditions that guarantee non-positive derivatives and strictly negative deriva-
tives, it will be shown that the negative derivatives occurred only in games in which players have
a preference that the other uses a particular strategy, regardless of his own choice. To make this
idea more formal, consider the concept of collaborative dominance proposed by Souza & Régo
(2013, p. 470). For more details see the original paper.

Weak Collaborative Dominance (or non-strict): For a 2 x 2 normal form game, we say that the
strategy s; from player j is weakly collaborative dominant for player i (with j # i) if there
Ui(si,sj) = Ui(si, S.,/') for all s; in player i’s strategy set, with at least one strict inequality. In
this case we say that s; weakly collaboratively dominates s.’/. for player i.

For a strong version of the collaborative dominance definition, we should use a strict inequality
signal (>) in the definition.

Theorems 1 and 2 show that, in games with a unique mixed equilibrium in the non-degenereted
sense, a non-positive (respectively, negative) derivative of player i’s mixed equilibrium expected
utility with respect to his own utility payoffs occurs if, and only if, player j has a strategy that
is weakly (respectively, strongly) collaboratively dominant for him, player i. Moreover, non-
positive (respectively, negative) derivatives always occur when are taken with respect to player i’s
utility payoffs associated with the strategy that is the best response to the weakly (resp. strongly)
collaboratively dominant strategy of player j (and those are the highest and lowest payoffs of
player i in the game).

Theorem 1. Suppose a 2 x 2 normal form game and that player i does not have a strongly or
a weakly dominant strategy and is not always indifferent between his strategies. Thus there are
two derivatives of player i’s mixed equilibrium expected utility taken with respect to one of his
utility payoffs that are non-positive and two that are positive if, and only if, player j has a weakly
collaboratively dominant strategy for player i. Moreover, the non-positive derivatives are always
with respect to player i’s utility payoffs associated with the strategy that is the best response to
the weakly collaboratively dominant strategy of player j (and those are the highest and lowest
utility payoffs of player i in the game).

Proof. Without loss of generality, assume that i = 1. So, given the assumptions of Theorem 1,
there are two possibilities for partially ordering the payoffs of player 1, as follows: (A) a > ¢
andb <dor(B)a < cand b > d. Let us consider case (A). It follows that % <0< c>d,

%§0<—>czd,%§0<—>bzaand%§0<—>bza,soweshouldconsiderthe

following three sub-cases:

(Al) ¢ > d: Inthiscase, a > ¢ > d > b and strategy L is weakly collaboratively dominant for
0EU; o0 4 JEUL

da ab

are non-positive (a is the highest payoff and b is the lowest), while the other derivatives

player 1. Furthermore, strategy U of player 1 is the best response to L and

are positive.

(A2) b > a: Inthiscase,d > b > a > c, and strategy R is weakly collaboratively dominant for
OEUL 50 QEUL
dac od

player 1. Furthermore, strategy D of player 1 is the best response to R and
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are non-positive (d is the highest payoff and c is the lowest), while the other derivatives
are positive.

(A3) d > c and a > b: In this case, there are no weakly collaboratively dominant strategies and
all derivatives are positive.

The proof of condition (B) is analogous and is left to the reader. 0

Theorem 2. Suppose a 2 x 2 normal form game and that player i does not have a strongly or
a weakly dominant strategy and is not always indifferent between his strategies. Thus there are
two derivatives of player i’s mixed equilibrium expected utility taken with respect to one of his
utility payoffs that are negative and two that are positive if, and only if, player j has a strongly
collaboratively dominant strategy for player i. Moreover, the negative derivatives are always
with respect to player i’s utility payoffs associated with the strategy that is the best response to
the strongly collaboratively dominant strategy of player j (and those are the highest and lowest
utility payoffs of player i in the game).

Proof. Following the same idea of the proof of Theorem 1, we have: (A)a > cand b < d or

(B) a < cand b > d. Suppose that we are in case (A). It follows that aggl
alggl <0< c>d, Mggl <0< b >aand alggl < 0 < b > a. Therefore, consider the

following three sub-cases:

<0<« c>d,

(Al) ¢ > d: In this case, a > ¢ > d > b and strategy L is strongly collaboratively dominant

for player 1. Furthermore, strategy U of player 1 is the best response to L and 9EUL and

da
ag bU L are negative (a is the highest payoff and b is the lowest), while the other derivatives

are positive.

(A2) b > a: Inthis case, d > b > a > c, and strategy R is strongly collaboratively dominant

for player 1. Furthermore, strategy D of player 1 is the best response to R and 9LUL and

ac
Mggl are negative (d is the highest payoff and c is the lowest), while the other derivatives

are positive.

(A3) d > c and a > b. In this case, there are no strongly collaboratively dominant strategies
and all derivatives are non-negative.

Again, the analysis of case (B) is analogous and is left to the reader. 0

4 BEST UTILITY REDUCING STRATEGY

In the previous section, we showed that whenever negative derivatives of some player mixed
equilibrium expected utility happen, they are with respect to the highest and lowest payoffs of
such player. In this section, we answer the following question: assuming that players will play
according to the mixed equilibrium, and there are two negative derivatives for a given player, if
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this player has the opportunity to reduce x units from a given strategy profile, then what is the
best utility reducing strategy that the player can adopt? We prove that he should reduce utility
in the case that he uses a strategy that is a best response to the strategy of the other player that
is strongly collaboratively dominant for him. However, as we show next, for some cases the
player should only reduce utility if the other player indeed chooses the strongly collaboratively
dominant strategy for him (this situation corresponds to reduce utility in his highest utility payoff
in the game), while in other cases the opposite should happen (this situation corresponds to
reduce utility in his lowest utility payoff in the game).

In order to show those results, we should look initially at how the mixed equilibrium strategy of
a given player reacts to changes in the payoffs of the other player. Therefore, for player 2, using
Equation (2.2), we have:

dg ol —q) b—d ' @1
da dc  (a—-b—c+d? ’
ag 9l —q) c—a

ab ad (@—b—c+d)? 4.2)
aq a(l —q) d—>b d 4.3)
—_— = = N an .
dc da (a—b—c+d)?

dg ol —q) a—c 4.4
ad b  (a—b-—c+d? ’

Now, we can rewrite Equations (2.5), (2.6), (2.7) and (2.8), as shown in Equations (4.5), (4.6),
(4.7), (4.8), respectively. From these latter equations, it can be seen that the derivative of the
expected utility of player 1 is a function of the derivative of player 2’s mixed equilibrium strategy.

dEU, ag
=(c—d)—; 4.5
5 (c )Ba (4.5)
dEU, ag
=(—d)—; 4.6
5 (c )8b (4.6)
AEU ad
Lew—-mn, and 4.7
ac ac
dEU, ag
=(a—b)—. 4.8
57 (a )ad (4.8)

Theorem 2 states that negative derivatives of player 1’s mixed equilibrium expected utility taken
with respect to his payoffs occur if, and only if, one of these four orderings of payoffs happens:
Hd>b>a>c;2Qa>c>d>b;3)b>d>c>a;4)c>a>b > d. Letus consider
Case (1).

Case1: d > b > a > c. In this case, strategy R of player 2 is strongly collaboratively domi-
nant for player 1. Thus, it follows that the derivative of the expected utility of player 1 is negative
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with respect to payoffs d and ¢, and % and g—g are positive, implying that a reduction in one of
these payoffs also reduces the chance of player 2 choosing strategy L and therefore increases the
chance of player 2 choosing strategy R, which, in this case, is strongly collaboratively dominant
for player 1. The analyses of the remaining cases are analogous.

Therefore, player 1 should reduce utility with respect to the payoff that provide the greater in-
crease in the probability of player 2 choosing the strategy that is strongly collaboratively domi-
nant for him, player 1.

To emphasize this conclusion, let us analyze the same problem from another perspective. Now
imagine that the player 1 has x > 0 units of utility to reduce in any payoff. Then, assuming that
the general ordering of payoffs in the game is maintained, with respect to what payoff should he
reduce these x units of utility?

Suppose, for example, that we are in Case 1, where d > b > a > c, also suppose that player 1
decided to reduce ax units of utility in ¢ and (1 — «)x units in d, with @ € [0, 1]. To maintain
the order of the payoffs we must ensure that (1 — a)x < d — b. Thus, we have that player 1’s
expected utility is given by:

ald —x(1 —a)) — b(c —xa)
a—b—(c—xa)+(d—-x(1—a))

EU| = 4.9)

We want to find the value of « that maximizes EU;. Differentiating EU; with respect to «, we

have:
EU, x(a—b)Yx+a+b—c—d)

da (a—b—c+d—x+2xa)?’

(4.10)

Based on Equation (4.10), it can be seen that the derivative is positive if 0 < x < (d—b)+(c—a),
and the player should reduce the x units in the lowest payoff, c. On the other hand, if d —b > x >
(d—b)+(c—a), then he should reduce the x units in the highest payoff, d. If x = (d—b)+(c—a),
then the derivative is equal to zero and, consequently, it does not make difference in what payoft
to reduce utility. Note also that for a small value of x, as expected, the conclusions are the same
that we obtained with the analysis of the derivatives made above, that is, player 1 should reduce
utility with respect to c if % > g—g, which is equivalent to d — b > a — c, or reduce utility with
respect to d in the other case. By a similar analysis, we can describe what should be player 1’s
behavior in each of the four cases where he has incentive to reduce utility. Thus, suppose that
player 1 can reduce x units of utility:

Casel:d >b>a>c. Ifx <(d—>b)+ (c — a), then he should reduce the x units of utility
with respect to the payoff ¢, while if d — b > x > (d — b) + (¢ — a), then he should reduce it
ind.

Case2:a>c>d>b. Ifx <(a—c)+ (b—d), then he should reduce the x units of utility
with respect to the payoff b, whileifa — ¢ > x > (a — ¢) + (b — d), then he should reduce it
ina.
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Case3:b>d >c>a. Ifx <(b—d)+ (a— c),then he should reduce the x units of utility
with respect to the payoff a, whileif b —d > x > (b — d) 4+ (a — ¢), then he should reduce it
in b.

Cased:c>a>b>d. Ifx <(c—a)+ (d — b), then he should reduce the x units of utility
with respect to the payoff d, whileif c —a > x > (¢ — a) + (d — b), then he should reduce it

inc.

Thus, if a player has small power and cannot reduce a great amount of utility, then he should
invest all his efforts to reduce his lowest utility payoff in the game. On the other hand, if the
player has a greater power, he should invest all his efforts to reduce highest utility payoff in the
game.

Assume that the conditions of Theorem 2 are satisfied. I7 is interesting to point out that in games
with no pure equilibria and where both players have a strongly collaboratively dominant strategy,
if we measure the value of participating in the game by the mixed equilibrium expected utility,
then we showed that the value of participating in the game decreases as the highest and lowest
utility payoffs of a player increases. Additionally, once a player knows that a reduction in some
of his payoffs increases his mixed equilibrium expected utility, he may be tempted to lie about his
true utility and that can cause a serious problem for utility elicitation in strategic settings and/or
game modeling. However, it is beyond the scope of this paper to go deeper into this discussion.

5 DISCUSSIONS

Until this section, we restricted our analysis of mixed equilibrium (and the problem of payoff
reduction) only to 2 x 2 games with a single mixed equilibrium. This type of analysis is relevant in
game theory, and an important example is the work of Engelmann & Steiner (2007), that studied
the effects of risk preferences in mixed-strategy equilibria of 2 x 2 games. Now, we present
numerical examples that help us understand the fundamental limitations that prevent us from
extending the results already exposed to more general games. We finish this section presenting
sufficient conditions that guarantee that derivatives of some player’s equilibrium expected utility
taken with respect to one of his payoffs are always non-negative.

5.1 Games with Mixed Equilibrium with 2 x 2 Support

We begin the discussion by analyzing the game shown in Figure 3, for which the conclusions of
Section 3 are still valid (with the appropriate adjustments). The game in Figure 3 has only one
mixed equilibrium ((1/3, 2/3), (1/3, 0, 2/3)) and its support is {U, D} x {L, R}. Moreover, the
expected utility of the players are (13/3, 17/3). Also note that in this game, the strategy L is
strongly collaboratively dominant with respect to strategy R for player 1 and, removing M, since
it is outside the equilibrium support, the strategy D is strongly collaboratively dominant with
respect to U, for player 2. So for this game, we can use the results of Theorem 2 which indicates,
for example, that a reduction in utility U; (U, L) in two utils would increase the expected utility
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of player 1 to 5 and a reduction of utility U> (D, L) in one util would increase the expected utility
of player 2 to 6, i.e., both players would like to reduce utility if they could.

L M R
U | (3 | &7 | @G5
D | (57 | (6,2) | (4,6)

Figure 3

However, in this particular case, the game has a unique mixed equilibrium, whose support is
composed of two pure strategies of each player, making it similar to a 2 x 2 game.

5.2 Games with Mixed Strategy Equilibrium with More than 2 Pure Strategies in the
Support

Now, we analyze a game in which all three pure strategies of player 2 are in the equilibrium
support, as shown in Figure 4.

L M R
U | @0 | @31 (205
D | (6,1) | 4,00 | (5,0.5)

Figure 4

Before calculating the mixed equilibrium of this game, let us define some notation. Let o (U)
be the probability of player 1 choosing U (hence o (D) = 1 — o (U) is the probability that he
chooses D) and let o (L) be the probability of player 2 choosing L and o (M) be the probability
of choosing M (indeed, 6(R) = 1 — o(L) — o(M)). Thus we can characterize the mixed
equilibrium of this game as follows:

QUZUD«%@L3_&“U &NU—1>)

2 ’ 2

where o (L) € [1/3,3/5]. Moreover, the expected utility of the mixed equilibrium for player 1
is given by EU; = w
EU; =[14/3,28)/5].

, and depending on the value of o (L), it can vary in the range

Now, consider the mixed equilibrium ((1/2, 1/2), (1/2, 1/4,1/4)). In this case, the expected
utility of player 1 is 5.25. Note that in this game, strategy L of player 2 is strongly collaboratively
dominant (with respect to all others of player 2) for player 1. Thus, we may be tempted to apply
our previous results and think that player 1 could reduce, for example, his highest payoff to
induce player 2 to choose L more frequently. Suppose that player 1 reduces Uy (U, L) from 8 to
7. Then, we can characterize the mixed equilibrium of the new game as follows:

3—do(L) 20(L)—1
T =)

((1/2, 1/2), (6(L),
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where o (L) € [1/2,3/4]. Indeed, player 1’s mixed equilibrium expected utility is EU; =
Mz)”’ and depending on the value of o (L), it can vary in the range EU; € [5,23/4]. In
this case, it is easy to see that player 2 may, for example, keep o (L) fixed (just changing the
values of (M) and o(R)). In such situation, player 1’s expected utility reduces by o (L)/2.
Since player 2 has a range of values (o (L) € [1/2, 3/4]) for which he can manipulate o (L), in

general, it is impossible to say how he will react to any change in payoffs made by player 1.

Formally, this problem always happens every time that we are unable to establish a well defined
functional form of how the mixed strategy chosen by player j depends on player i’s payoffs.
In fact this could also happen in 2 x 2 games, for example: Based on Figure 2, suppose that
player 1 has a strongly dominant strategy, say strategy U. Moreover, for player 2, assume that
e = f. If this condition occurs, then the game has two pure equilibria, (U, L) and (U, R), and
infinitely many mixed equilibria on the form (M, N), where M = (1,0) and N = (¢*, 1 — ¢*)
for g* € [0, 1]. Thus, the expected utility of player 1 is EU; = aq™ + b(1 — ¢™). Now suppose
that player 2 chooses ¢* depending on a. Thus the derivative of player 1’s mixed equilibrium
expected utility with respect to payoff a varies accordingly to the functional form that ¢* depends
on a and may assume either negative or positive values.

5.3 Games with 3 Players and 2 Pure Strategies Each

Now consider a game with three players each one with two strategies, as shown in Figure 5.
Admit that the payoff a from the strategy profile (U, L, L) is a value between 6 and 9, a € [6, 9).
Thus, this game has two pure equilibria, (U, L, L) and (D, R, R) and one mixed equilibrium.

L R L L R R
Ul (a8,8) | (5,7,5) U | ©,3,7)| (1,4,6)
D | (3,53 | (6,6,1) D | 41,4 | (2,2,2)
Figure 5

By making the payoff a vary between 6 and 9, we can analyze how the mixed equilibrium ex-
pected utility of player 1 reacts. In particular, we are interested if the expected utility is a increas-
ing or a decreasing function of a. Player 1’s expected utility of is given by:

2
V354 V314
3+v3+da a) +3<73+ + “>+1. (5.1)

EU =(@—4) (
2a + 2 2a +2
Thus, for any value of a higher than 61/9 and lower then 9, a reduction in a will lead to an
increase in the expected utility of player 1. On the other hand, for any value of a lower than
61/9 and higher than 6, a reduction in a will also lead to a reduction in the mixed equilibrium
expected utility of player 1. Furthermore, if we assume that, initially, a is equal 6, any reduction
in any payoff of player 1 will also lead to a reduction in his expected utility. But if, for example,
we assume an initial value of 8, a small reduction in any payoff of player 1 related to the pure
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strategy U, will lead to an increase of player’s 1 mixed equilibrium expected utility, even though
none of the players 2 or 3 has a strategy that is collaboratively dominant for player 1.

Consequently, in more general class of games, the existence of negative derivatives does not
depend on the existence of collaboratively dominant strategies. Moreover, since a is always the
highest payoff of player 1, the existence of negative derivatives does not depend only on the order
of the payoffs.

Finally, based on Figure 5, assume that the payoff of player 2 from the strategy profile (D, R, L)
was reduced from 6 to 4, and a is equal to 8, as shown in Figure 6.

L R L L R R
Ul 8,8,8) | (5,7,5) U | 0,3,7) | (1,4,6)
D | (3,53) | (6,4,1) D | 41,4 (2,2,2)
Figure 6

This new game also has two pure equilibria, (U, L, L) and (D, R, R) and one mixed equilib-
rium, ((3/4; 1/4), (2/3; 1/3); (1/2, 1/2)). However, in this new game, when we make a small
reduction in any payoff of player 1, then the expected utility from the mixed equilibrium also
reduces. This example shows us that in a more general class of games, the existence of negative
derivatives of the expected utility of a given player with respect to one of his payoff may depend
on the payoffs of other players, as opposed to the result of the 2 x 2 games. Thus these facts
prevent us to make extensions of Theorems 1 and 2 to a more general class of games.

5.4 Sufficient conditions for the existence of non-negatives derivatives

On the above subsections, we presented numerical examples indicating difficulties to extend our
earlier results from Theorem 1 and 2 about the conditions that guarantee the existence of negative
derivatives of some player equilibrium expected utility with respect to one of his payoffs. On the
other hand, we now present sufficient conditions that guarantee that such derivatives are always
non-negative in finite normal form games.

Proposition 1. In a finite normal form game G, if every player j in N\{i} uses an equilibrium
strategy that does not depend on player i’s payoffs, then none of the derivatives of player i’s
equilibrium expected utility taken with respect to one of his utility payoffs is negative.

Proof. Let o be a Nash equilibrium that satisfies that hypothesis of Proposition 1. It is well
known that if every player j in N\{i} follows his mixed equilibrium strategy o’ (s;), then for any
pure strategy ¢#; in the support of o, it follows that

Ui(o) =U;(tj,0-;) = Z (l_[jeN\{j} Uj(sj)) Ui(ti, s—i) .

S_;€S_;
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Taking the derivatives of player i’s mixed equilibrium expected utility with respect to one of his
utility payoffs, say U; (s"), with s’ in S, then we have:

Wi(o) 0 es_ UTjenviy i GiNUi (i, s-i)

Ui (s") Ui(s') '

Since none of the o (s;) for every player j in N\{i} depends on U; (s") and there is no functional
relationship between the payoffs of a given player, then for every non-zero term on the sum, the
multiplicand term are non-negative constants, so the sign of the derivative will depend only on

the sign of the sum of %’(’;&") ,forall s_; in S_;. Since we are assuming only marginal changes
when we take derivatives, we have that %’(’;&") is equal to one if (¢;, s—;) = s’ and equal to
zero otherwise. Thus gg’_' E;’,; must be always non-negative. 0

Finally, it is easy to see that any pure Nash equilibrium satisfies the hypothesis of Proposition 1,
then an increase in some of the payoffs of any player will never reduce his expected utility in that
pure equilibrium.

6 SOME THOUGHTS ON JERVIS (1978)

Aumann (1990) proposed a discussion on when a Nash equilibrium can be considered self-
enforcing based on a verbal agreement among players, i.e. how we can ensure that players will
choose a given Nash equilibrium since they announced that they will. To develop his argument,
Aumann uses as his main example the Stag-Hunt game.

For Aumann, there are two ways to encourage a player to perform a given choice. The first one
is related to a change in the information available to the player and the second one is related
to a change in payoffs. Aumann decided to dedicate his analysis to the first case. Thus, based
on the Stag-Hunt game, he concludes that even if the players claim that they will play (U, L)
it does not increase the incentive of them actually choosing this strategy profile. For example,
when player 1 declares that he will play U, it does not add any information to player 2, because,
since L is a strongly collaboratively dominant strategy for player 1, player 2 knows that player 1
prefers that he (player 2) plays L. Thus, player 2 knows that player 1 would state that consents
to any agreement in which player 2 plays L, but this fact does not guarantee that player 1 will
really fulfill the agreement and play U. For example, player 1 may prefer to play D, since this is
a safer option. Similar reasoning also applies to player 2.

Now, we discuss an application of our results by exploiting the gap left by Aumann (1990),
i.e., we evaluate how to encourage players to make a given choice based on changes in the
payoffs. For this, we also illustrate our argumentation with the Stag-Hunt game which is used in
international politics literature to discuss the security dilemma as done by Jervis (1978).

It is important to point out that Jervis’s work is one o the most influential paper in interna-
tional politics and an essential reading for those interested in the security dilemma (see, e.g.,
Glaser, 1997 and Tang, 2009) and his canonical model is still used for theoretical game theory
modeling about the security dilemma (Acharya & Ramsay, 2013). But our purpose is not to dis-
cuss exhaustively Jervis’s (1978) work. In fact, we aim to critically analyze some passages from
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Jervis (1978) regarding to what makes cooperation more likely (which is the title of section 2
of his work) in the security dilemma, revisiting the author’s conclusions with a game theoretic
perspective.

To summarize the main idea of the security dilemma, imagine two nations that go through a
period of international tension. They have two strategic options, namely: do not make investment
in weapons (cooperate, C) or perform military investment (non-cooperate, D — defecting). The
order of preferences for the possible strategies profiles is equivalent to that of the stag-hunt game,
as stated before. However, Jervis (1978) states that nations will only cooperate if they believe
that the other will too and points out some possible explanations for the players to sacrifice the
most desired option (CC), namely: the fear of being attacked and not being able to defend itself,
political uncertainty in the neighboring nations and even coercion opportunities and participation
in international affairs because of the military power (reputation).

Jervis starts studying what could make mutual cooperation more likely by listing a set of condi-
tions. For the author, the chance of achieving cooperation would increase by:

“(1) anything that increases incentives to cooperate by increasing the gains of mutual
cooperation (CC) and/or decreasing the cost the actor will pay if he cooperates and
the other does not (CD); (2) anything that decreases the incentives for defecting by
decreasing the gains of taking advantage of the other (DC) and/or increasing the cost
of mutual noncooperation (DD); (3) anything that increases each side’s expectation
that other will cooperate.” (Jervis, 1978, p. 171).

We will now evaluate the effects of these affirmations, especially regarding conditions (1) and
(2). The idea of what makes cooperation more likely can raise various interpretations, e.g., we
may think about the concept of equilibrium selection or focal point, but to apply these concepts, it
is not necessary to make any changes in payoffs, i.e., if the players were determined to apply any
equilibrium selection criterion (or identify a focal point), then a marginal change in some payoff
should not alter the original decision, except if the change in payoffs is such that it modifies the
original equilibrium set of the game (see Englemann, 1994). Therefore, we must analyze this
idea from the perspective of the mixed equilibrium.

Based on Figure 2, the order of the payoffs for the Stag-hunt game (security dilemma) isa > ¢ >
d > b (for player 1) and e > f > h > g (for player 2). Thus, by condition (1) Jervis suggests
that cooperation would be more likely if the players were able to increase the payoffs a and e or
if they were able to increase the payoffs b and g. However, by Case 2 in Section 4, we saw that
dq/da and dq/db are negative (the same holds for dp/de and dp/dg) and, thereby, any increase
in these payoffs, in fact, would make cooperation less likely. In turn, condition (2) states that
cooperation would be more likely to occur if the players would reduce the payoffs ¢ and f or
reduce the payoffs d and &: but, since dg/dc and dq/dd are positive, the effect is reversed and
cooperation, again, would be less likely. In particular, by condition (2), the cooperation would
only become more likely if, for example, the reduction in payoffs d and & were of such intensity
that turn them in the lowest payoff of the game and, consequently, the new game will have a
unique Nash equilibrium (CC).
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Later in his study, Jervis discusses what a player (nation) should do to increase the likelihood
that the other player will cooperate, stating:

“The variables discussed so far influence the payoff for each of the four possible out-
comes. To decide what to do, the state has to go further and calculate the expected
value of cooperating or defecting. Because such calculations involve estimating the
probability that the other will cooperate, the state will have to judge how the vari-
ables discussed so far act on the other. To encourage the other to cooperate, a state
may try to manipulate these variables. It can lower the other’s incentives to defect
by decreasing what it could gain by exploiting the state (DC) [...]” (Jervis, 1978,
p. 179).

The author follows his argument by pointing another example:

“The state can also try to increase the gains that will accrue to the other from mutual
cooperation (CC). Although the state will of course gain if it receives a share of any
new benefits, even an increment that accrues entirely to the other will aid the state
by increasing the likelihood that the other will cooperate.” (Jervis, 1978, p. 180).

Again, we must focus on players’ mixed strategies. As it was shown in Section 2, the mixed equi-
librium strategy of a given player depends only on the utility payoffs of the other player. Thus,
increasing the utility payoff from mutual cooperation of a given player does not change the mixed
equilibrium strategy of such player. In fact, what happens is a change in the mixed equilibrium
strategy of the other player, which will now choose to cooperate less likely, as opposed to what
was expected by Jervis.

We recognize that the problems of international cooperation are far more complex than as ex-
posed above, because they involve aspects of reputation, long-term relationship and uncertainty,
for example. However, we hope that our approach can contribute to the better understanding of
some aspects of the problem.

7 FINAL REMARKS

In this paper, we propose a new approach to analyze payoff reduction behavior through the
analysis of the mixed Nash equilibriumin 2 x 2 normal form games. We provide a necessary and
sufficient condition for the existence of negative derivatives of the expected utility that justify
a (pre-commitment) payoff reduction behavior. In particular, games with negative derivatives
are the ones that create incentives for payoff reduction behavior since such behavior improves
player’s mixed equilibrium expected utility. We show that a negative derivative for the mixed
equilibrium expected utility of a given player i occurs if, and only if, he has a strict preference
for one of the strategies of the other player. Moreover, negative derivatives always occur when
they are taken with respect to player i’s highest and lowest game utility payoffs. Additionally,
we pointed out the difficulty to extend our results for a more general class of games. On the
other hand, we present sufficient conditions for the existence of non-negative derivatives of some
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player’s equilibrium expected utility taken with respect to one of his payoffs in finite normal form
games. Nevertheless, we showed the relevance of the present study using our insights to analyze
the security dilemma, revisiting some conclusions made by Jervis (1978).

In another related study, Souza & Régo (2014) experimentally studied if those theoretical state-
ments were true when played by real subjects. As one of the results, authors concluded that
the payoff reduction opportunity was overlooked by the players because they do not played ac-
cording to the mixed equilibrium and, therefore, to reduce utility could not bring benefits. Other
interesting experimental results about related subjects can be found in Goeree & Holt (2001).
In this paper the authors pointed that in some strategic situations, subjects are unable to achieve
the theoretical result because these results are sometimes unintuitive, as the payoff reduction
behavior (in mixed equilibrium) seems to be.
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