
Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -

5

MINIMIZING FLOWTIME SUBJECT TO OPTIMAL MAKESPAN ON TWO
IDENTICAL PARALLEL MACHINES

Jatinder N. D. Gupta a

Johnny C. Ho b

 a Department of Management, Ball State University,
Muncie, IN 47306-0350, USA

 b Abbott Turner College of Business, Columbus State
University, Columbus, GA 31907-5645, USA

Abstract

We consider the problem of scheduling jobs on two parallel identical machines where an optimal
schedule is defined as one that gives the smallest total flowtime (the sum of the completion time of all
jobs) among the set of schedules with optimal makespan (the completion time of the latest job).
Utilizing an existing optimization algorithm for the minimization of makespan, we propose an
algorithm to determine optimal schedules for this problem. We empirically show that the proposed
algorithm can quickly find optimal schedules for problems containing a large number of jobs.

Keywords: Parallel machine scheduling; Hierarchical criteria; Flowtime minimization

 - Pesquisa Operacional Vol. 20, No. 1, junho de
2000

 6

1. Introduction

Consider the following scheduling problem: a set },,2,1{ nN K= of n jobs available at time
zero is to be processed on m identical parallel machines. Each job Ni ∈ is to be processed
without interruption on one of the m machines with processing time ip . Each machine can

process only one job at a time and no job may be processed by more than one machine. Setup
time, if any, is included in the processing time. It is desired to minimize the makespan (maximum
completion time) as the primary objective and minimize total flow-time (sum of the completion
times of all jobs) as the secondary objective. Thus, it is required to find a schedule for which the
total flowtime time is minimized, subject to the constraint that no reduction in the total makespan
is possible. Both makespan and flowtime performance measures have significant impact on a
schedule’s cost, since the former generally represents the amount of resources tied to a set of
jobs; while the latter is a useful indicator of the amount of work-in-process. Parallel-machine
scheduling problems often arise in practice as in the scheduling of jobs to a number of computer
processors or the scheduling of jobs to a set of identical lathes.

The need to consider multiple criteria in scheduling is widely recognized. Either a simultaneous
or a hierarchical approach can be adopted. For simultaneous optimization, there are two
approaches. First, all efficient schedules can be generated, where an efficient schedule is one in
which any improvement to the performance with respect to one of the criteria causes a
deterioration with respect to one of the other criteria. Second, a single objective function can be
constructed, for example by forming a linear combination of the various criteria, which is then
optimized. Under a hierarchical approach, the criteria are ranked in order of importance; the first
criterion is optimized first, the second criterion is then optimized, subject to achieving the
optimum with respect to the first criterion, and so on. Surveys of algorithms and complexity
results in this area are given by Chen and Bulfin (1993), Lee and Vairaktarakis (1993) and
Nagar, Haddock, and Heragu (1995). Clearly, the above described problem is one of
hierarchical multi-criteria scheduling.

Following the three field notation of scheduling problems, we will designate the identical parallel
machine problem to minimize makespan subject to minimum total flowtime as a

)(|| max∑ CCFP ih problem where P designates the identical parallel machines, maxC denotes

the maximum completion time (makespan), ∑ iC represents the total flowtime, and the

functional notation)(max∑ CCF ih designates that we hierarchically minimize total flowtime

subject to minimum makespan.

The ∑ iCP || problem can be optimally solved using the extension of McNaughton’s algorithm

(1959). As discussed by Conway et al (1967), this algorithm involves two steps: (1) order all n
jobs in smallest processing time (SPT) order; and (2) assign the jobs from the SPT list to the m
parallel machines in rotation. On the other hand, as shown by Bruno, Coffman, and Sethi (1974)
and Garey and Johnson (1979), max|| CP problem is known to be NP-hard. In view of the above

results, it follows that the)(|| max∑ CCFP ih problem is also NP-hard.

Little work has been published on parallel machine scheduling under flowtime and makespan
performance measure. Eck and Pinedo (1993) consider the problem of finding the minimum
makespan schedule among the set of schedules that are optimal with respect to the minimum total
flowtime measure. They propose a heuristic method and, for the two-machine case, show that it
gives a minimum flowtime schedule with makespan that is guaranteed to be no more than

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -

7

3.7037% above the makespan of the optimal schedule. Eck and Pinedo's algorithm generates the
schedule by arranging the differences according to LPT rule.

This paper proposes an optimization algorithm to minimize total flowtime among the set of
makespan-optimal schedules for the two parallel machines problem, represented as a

)(||2 max∑ CCFP ih problem. The rest of the paper is organized as follows: Section 2

introduces the assumptions and notation used to define and represent the)(|| max∑ CCFP ih

problem. Section 3 discusses the proposed optimization algorithm for the)(||2 max∑ CCFP ih

problem and provides numerical examples to demonstrate the proposed algorithm. The
simulation experiment and computational results are given in Section 4. Finally, we conclude the
paper in Section 5 with some fruitful directions for future research.

2. Problem Definition and Representation

The shop environment we consider consists of a set of n jobs to be processed by m parallel
identical machines. Each job requires one operation, and each operation can be processed by
either one of the available m machines. The objective is to minimize total flowtime subject to
minimum total makespan.

Without loss of generality, we assume that the jobs are sorted according to the LPT order and
that enough artificial jobs with zero processing time are added to the set of jobs if the total
number of jobs n is not an integer multiple of the number of machines m . In other words, we
assume that the total number of jobs n is an integer multiple of the number of machines m and
that jobs are so numbered that .,21 nppp ≥≥≥ K The major assumptions used in this paper

are listed below:

• Job’s processing time is known and deterministic.

• Job preemption is not allowed, i.e., once a job starts processing on a machine, it must finish
processing on that machine without interruption.

• All jobs have the same ready time at zero.

• No precedence relationships among jobs.

• Each machine can process only one job at a time.

• Setup time is included in processing time.

We use the following notation in the problem formulation.

maxC optimal makespan.

ip processing time for job .i

ijx a binary variable which has a value of 1 if job i is assigned to machine ,j and 0

otherwise.

f total flowtime.

iq the weight assigned to job i when computing flowtime.

We now formulate the)(|| max∑ CCFP ih problem as a following bi-level binary integer

programming problem. The first level of the integer programming model finds the optimal

 - Pesquisa Operacional Vol. 20, No. 1, junho de
2000

 8

makespan, ,maxC while the second level of the model minimizes the flowtime subject to the

optimal makespan found in the first level.

First Level Integer Program

Minimize maxC (1)

subject to:

∑
=

≥−
n

i
iji xpC

1
max ;0 mj ,,2,1 K= (2)

;1
1

=∑
=

m

j
ijx ni ,,2,1 K= (3)

;1or0=ijx mjni ,,2,1;,,2,1 KK == (4)

Second Level Integer Program

Minimize ∑ ∑
= = 






=

m

j

n

i
iiji qxpf

1 1
 (5)

subject to:

∑
=

≥−
n

i
iji xpC

1
max ;0 mj ,,2,1 K= (6)

;1
1

=∑
=

m

j
ijx ni ,,2,1 K= (7)

0
1

=






− ∑

=
ij

i

k
kji xxq mjni ,,2,1;,,2,1 KK == (8)

;1or0=ijx mjni ,,2,1;,,2,1 KK == (9)

The above problem formulation in relations (1) through (9) is a bi-level non-linear integer
program which is very difficult to solve. While it can be simplified for the two-machine case (by
defining a binary variable 1=ix if job i is assigned to machine 1 and 0 otherwise); it still

remains a bi-level non-linear integer program. Hence, we need to develop some alternative
optimization methods for its solution. In this paper, we develop a lexicographic search based
algorithm to solve)(||2 max∑ CCFP ih problem.

3. The Proposed Optimization Algorithm

Ho and Wong (1995) developed a lexicographic search based algorithm for optimally solving the

max||2 CP problem. While the computational complexity of this algorithm is exponential,

empirical results show that this algorithm is quite efficient in solving the max||2 CP problem.

Therefore, we modify and extend this algorithm to develop an optimization algorithm for the
)(||2 max∑ CCFP ih problem.

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -

9

The development of the optimization algorithm is pursued in two parts. In the first part, we
assume that we know the optimal makespan schedule S with makespan value *α where the jobs
on each of the two machines are processed in an SPT order giving a total flowtime β . Our first
algorithm, obtained by a modification of the TMO algorithm developed by Ho and Wong (1995)
finds a schedule with a minimum possible total flowtime given that its makespan is *α . In the
second part, we use the TMO algorithm to find a schedule with optimal makespan value and also
find a schedule which has a minimum makespan given optimal total flowtime value.

3.1. Solving the)(||2 *
max α=∑ CCFP ih Problem

To describe an optimization algorithm for the)(||2 *
max α=∑ CCFP ih problem, we define

the following additional notations.

Sum the sum of the processing time of all jobs.

lrest the sum of the processing time of the set of jobs with indices l> .

iN the node at level l .

iV the value of node iN .

Z the current incumbent total flowtime.

S ′′ the schedule defined as follows: the path from the root node to the node that generates
*α makespan represents the set of jobs assigned to machine 1, the rest of the jobs are

assigned to machine 2 where jobs on each machine are in SPT order.

β ′′ the total flowtime of schedule S ′′

For solving the)(||2 *
max α=∑ CCFP ih problem, we use a binary tree to develop a

lexicographic search based algorithm. The root node at level 0 has a value of 0. At each level,
,,,2,1 nl K= in the tree, a given job is added to the partial schedule developed at the previous

level. Any node at level l takes on one of two possible values as follows. If iN is its parent’s

left child, which means that job l is assigned to machine 1, then the value of iN is its parent’s

value plus the processing time of job l . If it is the right child, which indicates job l is assigned
to machine 2, then the node has the same value as its parent’s. The makespan for machine 1 is
denoted by the value of the leaf; while the makespan for the schedule equals to the larger of the
makespan of machine 1 and the sum of the processing time of all jobs minus the makespan of
machine 1. The paths from the root node to the nodes with makespan *α constitute the set of
schedules that need to be evaluated. Following the above reasoning, the steps of the modified
TMO algorithm are as follows:

Algorithm M: (Modified TMO Algorithm)

Input: n even, ip where ,,21 nppp ≥≥≥ K schedule S with makespan *α and total

flowtime β where jobs on each machine in schedule S are processed in an SPT order.

Step 1: Set β=Z and SS =′′ . Calculate ∑= =
n
i ipSum 1 and ∑= +=

n
li il prest 1 , for

1,,2,1 −= nl K ; and 0=nrest . If *
1 α=p , set SS ′′=* , and go to step 3;

 - Pesquisa Operacional Vol. 20, No. 1, junho de
2000

 10

otherwise mark the right child of the root node dead (because of the symmetry between
the two machines).

Step 2: • If there is no living node, go to step 3. (Note that searching starts from the current
node through a depth-first searching scheme.)

• Find the first living node through depth-first search, if it is at level n , then restart
Step 2.

• Expand this node. If it doesn't have a left child, then its left child, iN , is generated;

otherwise, its right child, iN , is generated.

• If iN is its parent’s right child, then mark parent dead.

• If *)}(,max{ α=− ii VSumV and β ′′<Z , set β ′′=Z and SS ′′=* .

If *)}(,max{ α=− ii VSumV , restart Step 2.

• If *α>iV , mark iN dead and restart Step 2.

• Let l be the level which iN is on.

• If *α−<+ SumrestV li , mark iN dead.

• Restart Step 2.
Step 3: Stop. The schedule *S yields the minimum total flowtime schedule Z given makespan =

.*α

The algorithm M described above is designed to determine all schedules with makespan = *α .

Hence, it terminates only if *
1 α=p (Step 1) or there is no living node (Step 2). Whenever a

makespan schedule with makespan = *α is found, algorithm M updates Z and *S if the total
flowtime of the optimal makespan schedule is less than Z . To avoid the unnecessary search of
nodes, the criteria used in the TMO algorithm to mark dead nodes are also applied in algorithm
M.

3.2 Solving the)(||2 max ∑ ih CCFP Problem

In our solution to the)(||2 max∑ CCFP ih problem, we will need to solve another hierarchical

criteria problem of minimizing makespan subject to minimum total flowtime, the
)(||2 max ∑ ih CCFP problem. From the analysis of the ∑ iCP ||2 problem by Conway,

Maxwell, and Miller (1967), it follows that if jobs are arranged in the LPT (longest processing
time) order, then, a pair of jobs at sequence positions 12 −i and i2 are processed on different
machines. Therefore, arranging the jobs in the LPT order, Eck and Pinedo (1993) defined an
alternative max||2 CP problem where the processing time of job i , iii ppd 212 −= − (equals the

difference of the processing times of the pair of jobs at sequence positions 12 −i and i2) and
the total number of jobs 2ns = . This problem can be optimally solved by the TMO algorithm.

Suppose the final solution for this alternative max||2 CP problem is))(,),1((kπππ K= as the

assignment of jobs to machine 1 and))(,),1((qρρρ K= as the assignment of jobs to machine
2. Then, for the original problem, the assignment of jobs to machines 1 and 2 are given by

}|;|{)(21)(21 qrkrS rr ≤≤= − ρπ σσ and }|;|{ 1)(2)(22 qrkrS rr ≤≤= −ρπ σσ respectively.

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -

11

Processing the jobs in 1S and 2S in the SPT (shortest processing time) order optimally solves

the)(||2 max ∑ ih CCFP problem.

3.3 Solving the)(||2 max∑ CCFP ih Problem

We now propose an optimization algorithm to optimally solve the)(||2 max∑ CCFP ih

problem. To do so, we first use the TMO algorithm to find a schedule S with an optimal

makespan value *α and a corresponding value of total flowtime β when jobs in S are

processed in an SPT order. We then formulate an alternative max||2 CP problem to optimally

solve the)(||2 max ∑ ih CCFP problem. If the optimal makespan value α for the

)(||2 max ∑ ih CCFP problem equals the optimal makespan value of the unconstrained

max||2 CP problem, then the solution of the)(||2 max ∑ ih CCFP problem is an optimal

solution of the)(||2 max∑ CCFP ih problem. If not, we use algorithm M developed above to

find a minimum total flowtime schedule given an optimal makespan value *α . The steps of the
extended TMO algorithm to optimally solve the)(||2 max∑ CCFP ih problem, therefore, are

as follows:

Algorithm E: (Extended TMO Algorithm)

Input: n even, ip where nppp ≥≥≥ ,21 K .

Step 1: Apply the TMO algorithm to find the optimal makespan schedule, S , and arrange the

jobs processed on each machine in the SPT order. Let *α and β be the makespan and
total flowtime of S , respectively.

Step 2: Create an alternative problem by setting array id)2,,2,1(ni K= , such that

iii ppd 212 −= − . Sort the id values in the descending order. Apply the TMO algorithm

to the alternative problem. Transform the TMO solution into the corresponding schedule
S ′ for the original problem with n jobs, where jobs processed at each machine are

processed in an SPT order. Let α and *β be the makespan and total flowtime of S ′ . If
αα = , set SS ′= and go to Step 4; otherwise enter step 3.

Step 3: Apply algorithm M to the original problem with makespan = *α and schedule S to find

the optimal schedule *S with total flowtime .Z Enter step 4.

Step 4: Stop. The schedule *S is the minimum total flowtime schedule given the optimal

makespan *α .

Step 1 applies the TMO algorithm to determine the optimal makespan, *α . Step 2 constructs an
alternative max||2 CP problem by creating job processing times (array id) which are equal to

differences in processing times among consecutive pairs of jobs in the original problem. It
applies the TMO algorithm to the alternative problem and transforms the TMO solution into the
corresponding solution for the original problem. The corresponding solution possesses the
optimal total flowtime, *β . If the makespans of the schedules obtained in Step 1 and 2 are
equal, then the optimal solution is found since the schedule obtained in Step 2 possesses both

 - Pesquisa Operacional Vol. 20, No. 1, junho de
2000

 12

optimal makespan (*α) and optimal total flowtime (*β). Otherwise, we proceed with Step 3

and apply algorithm M to find a solution with minimum total flowtime with makespan = *α , and
update the current best total flowtime if a lower total flowtime is found. Lastly, Step 4 outputs
the optimal schedule)(*S and terminates the proposed algorithm.

3.4 Numerical Examples

Two numerical examples are employed to demonstrate the proposed algorithm. The first example
has nine jobs and their processing times are: 37, 16, 44, 39, 11, 29, 25, 50, and 12. Let iS be

the sequences of jobs assigned to machine i of schedule S . To solve this problem using the
proposed Algorithm E, we first order the jobs in an LPT order and get 1p = 50, 2p = 44, 3p =

39, 4p = 37, 5p = 29, 6p = 25, 7p = 16, 8p = 12, 9p = 11, and 10p = 0. Using the TMO

algorithm, we find),,,(124101 JJJJS = ,),,,,,(3567892 JJJJJJS = , *α = 132, and β =

611. We find the processing times of the alternative problem as id = {6, 2, 4, 4, 11} and using

the procedure outlined in Section 3.2, we obtain an optimal schedule of the
)(||2 max ∑ ih CCFP problem as),,,,(236891 JJJJJS =′ ,),,,,(1457102 JJJJJS =′ , α

=132, and *β = 575. Since *αα = , we set SS ′=* , and terminate the search as optimal
solution has been found. The proposed algorithm returns a total flowtime of 575, which is 6.26%
lower than that of the TMO algorithm.

Table 1. Example 2: Schedules where 105* =α

Schedule β ′′
1S ′′ 2S ′′ Z

1 488 },,{ 124 JJJ },,,,,,{ 35678910 JJJJJJJ 488

2 474 },,,{ 12610 JJJJ },,,,,{ 345789 JJJJJJ 474

3 472 },,,{ 1279 JJJJ },,,,,{ 3456810 JJJJJJ 472

4 466 },,,{ 1349 JJJJ },,,,,{ 2567810 JJJJJJ 466

5 462 },,,{ 1358 JJJJ },,,,,{ 2467910 JJJJJJ 462

6 460 },,,,{ 136910 JJJJJ },,,,{ 24578 JJJJJ 460

7 460 },,,,{ 137810 JJJJJ },,,,{ 24569 JJJJJ 460

8 462 },,,{ 1467 JJJJ },,,,,{ 2358910 JJJJJJ 460

Example 2 consists of ten jobs and their processing times are: 8, 46, 30, 19, 4, 36, 21, 23, 6, and
17. We arrange the jobs in LPT order to 1p = 46, 2p = 36, 3p = 30, 4p = 23, 5p = 21, 6p =

19, 7p = 17, 8p = 8, 9p = 6, and 10p = 4. Solving the problem using TMO gives

),,(1241 JJJS = , 2S =),,,,,,(35678910 JJJJJJJ , *α = 105, and β = 488. We formulate

the alternative problem with id = {10, 7, 2, 9, 2} and using the procedure in Section 3.2, we

solve the)(||2 max ∑ ih CCFP problem to get its optimal solution as

),,,,(145891 JJJJJS =′ ,),,,,(2367102 JJJJJS =′ , α =106, and *β = 458.

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -

13

Since *αα ≠ , we use algorithm M to find an optimal solution. The schedules generated by the

application of algorithm M are shown in Table 1 and result in an optimal schedule with *β =

460 when makespan *α = 105.

Table 2. Mean and maximum percent deviations using the TMO algorithm

)50,1(U)100,1(U)200,1(U
n Mean Max Mean Max Mean Max
9 1.62 9.85 1.08 12.63 1.38 12.59

10 2.44 9.23 1.59 8.03 1.51 9.64
11 3.52 13.68 2.34 10.54 2.14 13.08
12 4.04 10.81 3.14 10.85 1.92 9.79
13 4.60 17.09 3.42 9.49 2.56 9.84
14 5.20 15.45 4.49 15.68 3.83 15.60
15 5.72 13.80 4.98 11.25 4.05 10.93
16 6.51 14.79 5.71 14.57 5.02 13.69
17 6.25 15.75 5.83 12.77 5.04 11.70
18 6.52 13.70 5.94 10.85 5.43 10.74
19 7.19 13.67 6.30 14.87 5.76 15.00
20 7.43 16.15 6.90 14.40 5.95 11.75
30 8.93 15.61 8.78 15.15 8.44 15.42
40 9.80 16.52 9.67 16.08 9.47 15.84
50 10.41 15.25 10.33 14.91 10.21 14.72

100 11.26 14.17 11.27 13.27 11.24 13.82

4. Computational Results

A simulation experiment was performed to evaluate the effectiveness of the proposed
algorithm by comparing the value of its total flowtime to that found by using the TMO
algorithm. The TMO algorithm was selected since it guarantees the optimal makespan, which is
a requirement of the problem considered in this paper. In addition, we also compared the optimal
values of the total flowtime for the)(||2 max∑ CCFP ih and ∑ iCP ||2 problems.

We considered two factors in the simulation study: the number of jobs and the variability of
processing times. The number of jobs was set in 16 levels: 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 30, 40, 50, and 100. The processing times were generated from a uniform distribution,

),(baU , and set at three levels:),50,1(U),100,1(U and).200,1(U The uniform
distribution was chosen because it is commonly used in the literature. These two factors give a
total of 48 sets of problems. For each set of problems, 100 replications are made. Hence, a total
of 4,800 problems are solved. All algorithms were programmed in Microsoft FORTRAN
running on an Intel Pentium-based microcomputer.

4.1. Effectiveness of the Proposed Algorithm

 - Pesquisa Operacional Vol. 20, No. 1, junho de
2000

 14

For each problem, we computed the percentage deviation of the total flowtime obtained using the
TMO algorithm from the optimum total flowtime value found by algorithm E. For each set of
problems, we report the mean and maximum percent deviations for TMO. Moreover, we tabulate
the percentage of the time that the proposed algorithm E outperforms TMO for each set of
problems.

Table 2 gives the mean and maximum percent deviations of the total flowtime using the TMO
algorithm from the optimal total flowtime. From Table 2, it is clear that as the number of jobs
increases, both mean and maximum percent deviations tend to increase. The three largest mean
percent deviations occur when n = 100. Moreover, results in Table 2 show that as the
variability of processing times decreases, the mean percent deviation figures increase in every
case except the following two cases: when n = 9 and from)200,1(U to),100,1(U and n =

100 and from)100,1(U to).50,1(U The averages of the mean percent deviation figures for

),50,1(U),100,1(U and)200,1(U are 6.34%, 5.74%, 5.25%, respectively. The maximum
percent deviation figures also tend to increase as variability of processing times decreases,
though not as pronounced as the mean percent deviation. In summary, results in Table 2 show
that the use of proposed algorithm E significantly improves the total flowtime of the minimum
makespan schedule obtained by the TMO algorithm.

Table 3 reports the percentage of problems that the proposed algorithm outperforms the TMO.
Similar to the conclusions obtained from Table 2, Table 3 shows that as the number of jobs
increases or/and variability of processing times decreases, the proposed algorithm E becomes
more effective since the percent of problems for which TMO fails to find optimal total flowtime
schedules increases. The proposed algorithm E always returns a smaller total flowtime than the
TMO when n = 14. On average, the proposed algorithm outperforms the TMO algorithm for

),50,1(U),100,1(U and)200,1(U in 96.1%, 93.6%, and 91.3% of the problems,
respectively.

Table 3. Percentage of problems the TMO algorithm yields a larger total flowtime

n)50,1(U)100,1(U)200,1(U
9 62 47 48

10 83 64 57
11 92 87 75
12 100 100 86
13 100 99 95
14 100 100 100
15 100 100 100
16 100 100 100
17 100 100 100
18 100 100 100
19 100 100 100
20 100 100 100
30 100 100 100
40 100 100 100
50 100 100 100

100 100 100 100
Mean 96.1 93.6 91.3

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -

15

4.2. Optimal Flowtimes for the)(||2 max∑ CCFP ih and ∑ iCP ||2 Problems

For each problem size and dataset, the mean and maximum percentage deviations of the optimal
flowtime value for the)(||2 max∑ CCFP ih problem from that for the ∑ iCP ||2 problem are

shown in Table 4

Table 4. Mean and maximum percent deviations of the optimal flowtime value for the
)(||2 max∑ CCFP ih problem from that for the ∑ iCP ||2 problem

)50,1(U)100,1(U)200,1(U
n Mean Max Mean Max Mean Max
9 0.287 3.044 0.677 7.730 0.882 7.726

10 0.367 5.791 0.622 5.882 0.936 6.500
11 0.089 1.206 0.156 1.613 0.248 1.690
12 0.049 0.708 0.107 1.407 0.267 2.281
13 0.038 0.620 0.049 0.656 0.105 1.680
14 0.026 0.593 0.052 0.861 0.088 0.760
15 0.002 0.207 0.006 0.159 0.016 0.417
16 0.000 0.000 0.003 0.110 0.005 0.137
17 0.002 0.147 0.004 0.214 0.005 0.199
18 0.002 0.080 0.002 0.159 0.002 0.046
19 0.001 0.084 0.001 0.086 0.001 0.065
20 0.001 0.067 0.001 0.049 0.001 0.051
30 0.000 0.000 0.000 0.000 0.000 0.000
40 0.000 0.000 0.000 0.000 0.000 0.000
50 0.000 0.000 0.000 0.000 0.000 0.000

100 0.000 0.000 0.000 0.000 0.000 0.000

Table 5. Percentage of problems the proposed algorithm is sub-optimal for the ∑ iCP ||2
problem

n)50,1(U)100,1(U)200,1(U
9 33 53 63

10 41 58 72
11 17 31 39
12 16 35 61
13 17 25 35
14 9 22 37
15 1 5 15
16 0 4 5
17 2 4 7
18 2 2 5

 - Pesquisa Operacional Vol. 20, No. 1, junho de
2000

 16

19 1 2 3
20 1 3 3
30 0 0 0
40 0 0 0
50 0 0 0

100 0 0 0
Mean 8.8 15.2 21.6

In addition, Table 5 shows the percentage of the problems for which this percentage deviation
was greater than zero. From these results, it is clear that the total flowtime for the two problems
can be quite different. Hence, use of the proposed algorithm E is useful.

Table 6 Set CPU time (in seconds)

)50,1(U)100,1(U)200,1(U
n TMO Proposed TMO Proposed TMO Proposed
9 0.10 0.15 0.00 0.10 0.10 0.10

10 0.10 0.15 0.05 0.10 0.05 0.20
11 0.05 0.10 0.05 0.20 0.10 0.25
12 0.05 0.15 0.00 0.20 0.00 0.40
13 0.05 0.20 0.15 0.35 0.10 0.30
14 0.05 0.25 0.00 0.35 0.10 0.55
15 0.10 0.20 0.00 0.20 0.05 0.55
16 0.10 0.15 0.05 0.25 0.15 0.35
17 0.10 0.30 0.25 0.50 0.25 0.76
18 0.05 0.47 0.20 0.57 0.05 1.05
19 0.05 0.47 0.10 0.69 0.10 1.28
20 0.05 1.07 0.05 1.88 0.20 1.83
30 0.15 0.20 0.10 0.20 0.15 0.20
40 0.15 0.25 0.25 0.35 0.25 0.40
50 0.10 0.40 0.20 0.45 0.25 0.40

100 0.65 1.25 0.60 1.25 0.65 1.30
Mean 0.12 0.36 0.13 0.48 0.16 0.62

Vol. 20, No. 1, junho de 2000 Pesquisa Operacional -

17

4.3 Efficiency of the Proposed Algorithm

For each problem set, Table 6 gives CPU time for the TMO and the proposed algorithms. It
shows that the solution of 100 problems in each set, the TMO and proposed algorithms on
average require 0.135 and 0.486 seconds, respectively. Nonetheless, the proposed algorithm is
very fast and can be used to solve both large and small size problems. For example, the largest
set CPU time of the proposed algorithm is just 1.88 seconds when n = 20. One very interesting
observation concerning the number of jobs factor is the fact that the CPU time of the proposed
algorithm increases as n increases from 9 to 20, then it decreases when n increases from 20 to
30 and increases again when n increases from 30 to 100. This is because when 20 < n < 30,
the probability that the proposed algorithm terminates in Step 2, due to the condition that

*αα = , becomes very high (almost 100%) and remains stable. Thus, the CPU time therefore
goes down. When n > 30, the increase in CPU time is purely due to the increase in the number
of jobs. Furthermore, results in Table 6 show a positive correlation between processing time
variability and CPU time.

5. Conclusions

This paper considered the two-identical-parallel-machine problem to minimize total flowtime
subject to minimum makespan and proposed an optimization algorithm for its solution.
Computational results of a simulation study with randomly generated problems show that the
proposed optimization algorithm E is quite efficient in optimizing large-sized problems. On the
average, for the three cases of processing times variability),50,1(U),100,1(U and

),200,1(U the total flowtime value obtained by proposed algorithm E are 6.34%, 5.74%,
5.25% less than those found using the TMO algorithm, respectively. The computational results
also indicate that the proposed algorithm, which finds optimal total flowtime, outperforms the
TMO in all 48 sets of problems. Furthermore, the proposed algorithm returns a smaller total
flowtime than that of TMO in 93.65% of the 4,800 test problems. In terms of CPU time, both
algorithms are very efficient, the mean CPU time per set of 100 problems for the proposed and
TMO algorithms are 0.486 and 0.135 second, respectively.

Several issues are worthy of future investigations. First, extension of results to the m-identical-
parallel-machine case (m > 2) will be worthwhile. Second, the solution of the problem with the
reverse hierarchical optimality criteria, namely, the identical-parallel-machine scheduling
problem where the primary criterion is the minimization of the total flow-time and the secondary
criterion is the minimization of the maximum completion time (makespan) is both interesting and
useful. Third, the development of algorithms for other secondary criteria such as the total
tardiness subject to the minimum makespan is a fruitful area of research. Finally, extension of
our results to more complex machine environments, such as multi-stage flowshop and job-shop
problems, is important for application in industry.

References

(1) Bruno, J., Coffman, E.G., & Sethi, R. (1974). Scheduling independent tasks to reduce mean
finishing time. Communications of the ACM, 17, 382-387.

(2) Chen, C. & Bulfin, R.L. (1993). Complexity of single machine, multi-criteria scheduling
problems. European Journal of Operational Research, 70, 115-125.

 - Pesquisa Operacional Vol. 20, No. 1, junho de
2000

 18

(3) Conway, R.W., Maxwell, W.L., & Miller, L.W. (1967). Theory of Scheduling. Addison
Wesley, Reading, MA.

(4) Eck, B.T., & Pinedo, M. (1993). On the minimization of the makespan subject to flowtime
optimality. Operations Research, 41, 797-800.

(5) Garey, M.R. & Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA.

(6) Ho, J.C., & Wong, J.S. (1995). Makespan minimization for parallel identical processors.
Naval Research Logistics, 42, 935-948.

(7) Lee, C.-Y. & Vairaktarakis, G.L. (1993). Complexity of single machine hierarchical
scheduling: a survey. In: Complexity in Numerical Optimization [edited by P.M. Pardalos],
World Scientific Publishing Company, 269-298.

(8) McNaughton, R. (1959). Scheduling with deadlines and loss functions, Management
Science, 6, 1-12.

(9) Nagar, A., Haddock, J., & Heragu S. (1995). Multiple and bicriteria scheduling: A literature
survey. European Journal of Operational Research, 81, 88-104.

