
versão impressa ISSN 0101-7438 / versão online ISSN 1678-5142

Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003 443

EFFICIENT POLYNOMIAL ALGORITHMS FOR SPECIAL CASES OF
WEIGHTED EARLY/TARDY SCHEDULING WITH RELEASE DATES AND

A COMMON DUE DATE

Jorge M. S. Valente *
Rui A. F. S. Alves
Faculdade de Economia
Universidade do Porto
Porto – Portugal
jvalente@fep.up.pt

* Corresponding author / autor para quem as correspondências devem ser encaminhadas

Recebido em 02/2003; aceito em 11/2003 após 1 revisão
Received February 2003; accepted November 2003 after one revision

Abstract

In this paper we consider a single machine scheduling problem with integer release dates and a
common due date. The objective is to minimise the weighted sum of the jobs’ earliness and tardiness
costs. We present an efficient polynomial algorithm for the unit processing time case. We also show
how to calculate, for the general case, the minimum non-restrictive due date.

Keywords: scheduling; early/tardy; release dates.

Resumo

Neste artigo consideramos um problema de sequenciamento com um único processador no qual
existem datas de disponibilidade inteiras e uma data de entrega comum. O objectivo consiste em
minimizar a soma ponderada dos custos de posse e de atraso. Um algoritmo polinomial é apresentado
para o caso no qual os tempos de processamento são iguais a um. É também desenvolvido um
algoritmo que permite determinar, para o caso geral, o menor valor não restritivo da data de entrega.

Palavras-chave: sequenciamento; early/tardy; datas de disponibilidade.

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

444 Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003

1. Introduction

In this paper we consider the following scheduling problem. A set of n independent jobs
{ 1 2, ,..., nJ J J }, each with a possibly different integer release date jr , processing time jp ,
and a common integer due date d, has to be scheduled without preemptions on a single
machine that can handle at most one job at a time. The objective is to minimise

1{ () () }n
j jj h d C w C d+ +

= − + −∑ , where jC is the completion time of jJ and h and w are,

respectively, the earliness and tardiness cost per unit time. The earliness and tardiness costs
are therefore different, although they are identical for all jobs. In the classification scheme
proposed by Lawler, Lenstra, Rinnooy Kan & Shmoys (1993), this problem can be
represented as 1| jd = d, jr | { () () }j jh d C w C d+ +− + −∑ . Scheduling models with both
earliness and tardiness costs are particularly appealing, since they are compatible with the
philosophy of just-in-time production. The earliness and tardiness costs are allowed to differ
(even though they are assumed to be identical for all jobs), and the model is also made more
realistic by the existence of different release dates, since in most production settings the
orders are released to the shop floor over time (and not all simultaneously). Therefore, the
problem considered has several potential practical applications.

To the best of our knowledge, this specific problem has not yet been analysed in the
literature, although models with identical release dates, as well as some related problems
with different release dates, have been previously considered. The problem with identical
release dates and h=w=1, i.e., 1| jd = d | jC d−∑ , has been considered by several authors.
Kanet (1981) and Bagchi, Sullivan & Chang (1986) presented O(nlog n) algorithms for
solving the non-restrictive due date version of this problem. The common due date is non-
restrictive when it does not constrain the optimal schedule cost. The restrictive case,
however, has been proved NP-hard by Hall, Kubiak & Sethi (1991). Sundararaghavan &
Ahmed (1984) present a branch-and-bound (B&B) algorithm and a heuristic procedure for
the special case of the restrictive version in which all sequences must start at time 0. This
special case was also considered by Bagchi, Sullivan & Chang (1986) and Szwarc (1989).
Bagchi, Sullivan & Chang (1986) propose a branching procedure, while Szwarc (1989)
develops several dominance conditions that are used in a B&B algorithm. Szwarc (1989)
also presents a sufficient condition for an optimal sequence to start at time 0. The general
restrictive version has also been analysed by several authors. Baker & Chadowitz (1989)
presented a modified version of the heuristic proposed by Sundararaghavan & Ahmed
(1984). Hall, Kubiak & Sethi (1991) develop several dominance conditions and a dynamic
programming algorithm that obtains an optimal solution in pseudopolynomial time. Ventura
& Weng (1995) improve the efficiency of this algorithm by remarking that some of its
subroutines are unnecessary and can therefore be eliminated. Hoogeveen, Oosterhout & Van
de Velde (1994) present a B&B algorithm that uses lagrangean relaxation to calculate both
lower and upper bounds.

The identical release dates version of our problem, i.e., 1| jd = d | { () () }j jh d C w C d+ +− + −∑ ,
has also been previously considered. Bagchi, Chang & Sullivan (1987) present an O(nlog n)
algorithm for solving the non-restrictive case. The restrictive case is necessarily NP-hard,
since even the problem with h=w=1 is NP-hard, as noted above. The special case of the
restrictive version in which all sequences must start at time 0 was considered by Bagchi,
Chang & Sullivan (1987) and Baker & Chadowitz (1989). Bagchi, Chang & Sullivan (1987)

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003 445

present some dominance properties and a branching algorithm, while Baker & Chadowitz
(1989) propose a heuristic method. The general case of the restrictive version was analysed
by Mondal & Sen (2001), who present an algorithm that obtains an optimal solution through
the use of a graph search space. The computational results show that this approach is faster
than both dynamic programming or B&B algorithms that use a depth-first search strategy.

Models with unequal release dates have been addressed in Nandkeolyar, Ahmed &
Sundararaghavan (1993), Sridharan & Zhou (1996), Bank & Werner (2001) and Cheng,
Chen & Shakhlevich (2002). Nandkeolyar, Ahmed & Sundararaghavan (1993) consider the
single machine problem with the objective of minimising 1

n
j j jj c d C= −∑ , where jc and

jd are, respectively, the cost per unit time and the due date of jJ . They present several
heuristics developed using a novel approach. These heuristics were developed in a modular
fashion, with different modules providing lookahead features, sequence generation and the
determination of the specific schedule. The performance of the heuristics, as well as that of
the different modules, was tested on several classes of problems. Sridharan & Zhou (1996)
present a heuristic based on a decision theory approach for a more general problem where the
cost per unit time is allowed to be different according to whether the job is early or tardy.
Bank & Werner (2001) consider a model with unrelated parallel machines, a common due
date and earliness and tardiness costs that may differ between jobs. They derive several
structural properties that are useful when searching for an approximate solution and present
several constructive and iterative heuristics. Cheng, Chen & Shakhlevich (2002) analyse a
model where all jobs have a common due date that needs to be determined. The problem is to
determine both a due date and a schedule in order to minimize a total penalty that depends on
the earliness, the tardiness and the due date. They show that the problem is strongly NP-hard
and give an efficient algorithm that finds an optimal due date and schedule when either the
job sequence is predetermined or all jobs have identical processing times. They also present
three approximation algorithms for both the general and some special cases. It should be
pointed out that there are a large number of papers considering earliness and tardiness
penalties. For more information on problems with earliness and tardiness costs, the interested
reader is referred to Baker & Scudder (1990), who present a comprehensive survey of
early/tardy scheduling.

The remainder of this paper is organized as follows. In section 2 we consider the special case
of our problem where all jobs have unit processing times, i.e., 1| jd = d, jp = 1,

jr | { () () }j jh d C w C d+ +− + −∑ . We present an algorithm that obtains an optimal solution
in O(nlog n) time, therefore establishing the polynomial solvability of this particular case. In
section 3 we consider the general problem 1| jd = d, jr | { () () }j jh d C w C d+ +− + −∑ and
develop an algorithm, again with complexity O(nlog n), for determining the minimum non-
restrictive value of the common due date d. In this section we remark that the due date is
non-restrictive when the optimal schedule for the non-restrictive version of the problem with
equal release dates is feasible. This implies that the non-restrictive version of our problem
can be solved in polynomial time using the algorithm proposed by Bagchi, Chang & Sullivan
(1987) for the problem with identical release dates. The restrictive version, however, is then
NP-hard, since even the restrictive version of 1| jd = d | jC d−∑ is NP-hard, as noted
above. Finally, we provide some concluding remarks in section 4.

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

446 Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003

2. An algorithm for the problem with unit processing times

In this section we propose an O(nlog n) algorithm for the problem with unit processing
times. Several lemmas and theorems that characterize the structure of an optimal solution are
first developed. The algorithm then simply schedules the jobs in such a way that the lemmas
and theorems are satisfied (hence optimally).

Lemma 1 There exists an optimal sequence where each jC is integer.

Proof. Any feasible schedule with non integer jC ’s can be transformed into a feasible
sequence, of lower or equal cost, where all jC ’s are integer. Starting from d and scanning
left, take the first job, if any, with a non integer jC < d such that there exists idle time to the
right of that job. Move that job to the right until it is blocked by another job or it completes at
an integer time, whichever occurs first. Any such movement will decrease the cost of the
schedule. Repeat until no such jobs exist. Perform a similar scan to the right of d, this time
moving jobs to the left (such a move is always feasible because each job has an integer jr
and we stop as soon as an integer start time is reached, if the job is not blocked before).
Again, any such movement decreases the schedule cost (see Figure 1). At this time, at most
one group of jobs performed consecutively with no idle time in between (or possibly just a
single job) starts and completes at non integer times that encompass d. Let A and B denote
the sets of jobs in that group that complete after and before d, respectively, and let |X|
denote the cardinality of set X. If w|A| > h|B|, move the block backwards until an integer
start time is reached. The earliness of each job in B will increase by the amount of
backwards movement but the tardiness of each job in A will decrease by that same amount.
Since w|A| > h|B| the decrease in the weighted tardiness exceeds the increase in weighted
earliness, so the schedule cost will decrease. If w|A| < h|B|, move the block forward instead.
If w|A| = h|B|, move either forward or backward. The new schedule has all integer jC ’s and
its cost is lower or the same.■

a) schedule with non-integer Cj's

b) lower cost schedule with all integer Cj's

d

d

Figure 1 – Lemma 1 example

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003 447

This lemma is useful because it allows us to focus on unit time slots that begin at integer
times (even though all parameters are integers, jobs are allowed to start at non integer times),
since there exists an optimal sequence where jobs are scheduled in n of those slots. This
result also indicates that the problem could be formulated as a weighted bipartite matching
problem, and therefore solved in O(n3) time, but a more efficient approach is possible. The
next lemma identifies the best possible time slots.

Lemma 2 Any feasible sequence in which the jobs are scheduled in the n consecutive time

slots in the time range [,w hd n d n
h w h w

   − +   + +   
] is also optimal.

Proof. Any slot not in this range has a cost that is at least as high as the cost of the most
expensive slot in the range. The cost of any slot inside the time range is not higher than

hwn
h w+

, since the most expensive early and tardy slots have a cost of (1)wh n
h w

 − + 
 and

()hw n
h w

 
 + 

, respectively. Any slot not in the time range has a cost of at least hwn
h w+

,

since the least expensive early and tardy slots have a cost of ()wh n
h w

 
 + 

 and

(1)hw n
h w

  + + 
, respectively.■

Assume, for the remainder of this section, that jobs have been renumbered in non-decreasing
order of their release dates. Let jEC be the earliest possible completion time of job j when
jobs are considered for processing in increasing order of their index j. Let EC = nEC denote
the earliest possible completion time of the job with the largest index. The next lemma
indicates when it is feasible to schedule the jobs in the best possible slots.

Lemma 3 It is possible to schedule the jobs in the n consecutive time slots in the time range

[,w hd n d n
h w h w

   − +   + +   
] if and only if EC ≤ d + hn

h w
 
 + 

.

Proof. If EC > d + hn
h w

 
 + 

 then obviously at least one job cannot be completed up to

d + hn
h w

 
 + 

. If EC ≤ d + hn
h w

 
 + 

, any job with jEC > d – wn
h w

 
 + 

 can be scheduled to

complete at its jEC , while the remaining jobs can be arbitrarily assigned to the still empty
time slots in the optimal range. That assignment is clearly feasible, since we are delaying the
start time of each of those jobs.■

The next theorem provides a condition for classifying a due date as restrictive or non-
restrictive.

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

448 Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003

Theorem 4 The due date d is non-restrictive when d ≥ EC – hn
h w

 
 + 

.

Proof. Lemma 2 identifies the best possible schedule. From lemma 3, that schedule is only

feasible when d ≥ EC – hn
h w

 
 + 

.■

The next lemmas provide further characteristics of an optimal solution that will be used in
the algorithm.

Lemma 5 If EC > d + hn
h w

 
 + 

, all jobs will be scheduled in the time range [d – wn
h w

 
 + 

,

EC] in an optimal sequence.

Proof. It is clear that all slots in the range have a lower cost than any slot that starts at or

later than EC. Also we can once again schedule jobs with jEC > d – wn
h w

 
 + 

 to complete

at their jEC , while the remaining jobs can be arbitrarily assigned to the still empty time slots

in the range [,w hd n d n
h w h w

   − +   + +   
], thereby decreasing their cost.■

Lemma 6 There exists an optimal schedule in which all jobs with jEC ≥ d are scheduled to
complete at their jEC .

Proof. Consider the slots with a completion time equal to jEC , for jEC ≥ d. If a job with

jEC ≥ d is completed later than its jEC , and the slot with a completion time equal to jEC
is free, one can simply move that job into this slot (thereby decreasing its cost, since it will
be completed earlier). Also, any feasible schedule in which any slot with a completion time
equal to jEC , for jEC ≥ d, is occupied by a job with jEC < d (an offending job) can be
converted into an equal cost sequence in which all such slots are filled with jobs with

jEC ≥ d. For each of those slots, we simply swap any offending job with the job whose jEC
is equal to that slot’s completion time. These swaps do not change the schedule cost and
feasibility is maintained (the release date of the offending job in not larger than that of the
job with which it is swapped, since its jEC is lower, so it can also be feasibly scheduled in
its destination slot). After all such swaps are performed, only jobs with jEC ≥ d use those
slots, though they are not necessarily in jEC order (jobs are considered in increasing order
of their indexes when calculating the jEC ’s, so some jobs can feasibly be scheduled before
their jEC). If that is the case, reordering the jobs according to their jEC will not alter cost
nor feasibility. Therefore, all jobs with jEC ≥ d can be optimally scheduled to complete at
their jEC . An example is presented in Figure 2; assume d = 8, 1EC = 4, 2EC = 5, 3EC = 9
and 4EC = 11.■

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003 449

a) initial schedule

b) schedule with all jobs with ECj = d finishing at their ECj

10 11 12

4

5 6 7 9

4

1 3 2

5

1 2 3

9 10 11 12d = 8

d = 8

6 7

Figure 2 – Lemma 6 example

Lemma 6 assigns optimal slots for jobs with jEC ≥ d, so all that remains is to optimally
schedule the remaining jobs in the available slots. The next lemma considers those jobs.

Lemma 7 Given that jobs with jEC ≥ d are scheduled according to lemma 6, the remaining
jobs should be scheduled in the available slots that are closest to d (i.e., the lowest cost slots).

Proof. We simply need to prove that such a schedule is feasible, since it’s clearly optimal.
Let |B| be the number of jobs with jEC < d (and therefore of necessary slots). The earliest
possible completion times of the available slots that are closest to d are d – 1, d – 2,…, d – |B|.
The latest possible jEC ’s of the remaining jobs are also d – 1, d – 2,…, d – |B|, so they can
be feasibly assigned to the least cost slots. Since any other case involves later slots and/or
earlier jEC ’s, it’s always feasible to schedule the remaining jobs in the least cost available
slots. An easy way for an algorithm to ensure feasibility is to simply consider jobs in
decreasing order of their jEC .■

We now present an algorithm that solves the problem with unit processing times. The
algorithm schedules the jobs in such a way that the previous lemmas are satisfied (hence
optimally). The algorithm uses a min heap of free time slot ranges and their associated
minimum cost (the cost of the best slot in that range), which serves as the key for pushing
and popping elements from the heap.

Algorithm 1

Step 1: Sort and renumber jobs in non-decreasing order of jr .

Step 2: Calculate jEC for all jobs.

Step 3: If EC < d + hn
h w

 
 + 

, push range [EC, d + hn
h w

 
 + 

] on heap.

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

450 Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003

Step 4: For each job, in decreasing order of jEC , do:

 If jEC ≥ d

 schedule j to complete at its jEC ;

 if j > 1, push range [1jEC − , jEC – 1] on heap;

 Else
 schedule j to complete at its jEC or at the best available free time slot on
the heap (whichever has a lower cost; ties can be broken arbitrarily); in the latter case update
the range that included that slot and re-insert it on the heap;

 if j > 1, push on heap:

range [1jEC − , jEC – 1] if j completes at its jEC ;

range [1jEC − , jEC] if j was scheduled at the best available free
time slot on the heap.

In the previous algorithm ranges are obviously only pushed on the heap when the upper limit
is higher than the lower limit. Updating a time range that ends at or before d simply involves
decreasing its finish time by one time unit (thereby eliminating its previously best slot) and
increasing its cost by h. Similarly, updating a time range that starts at or after d consists of
increasing its start time by one time unit and increasing its cost by w. Only one range that
contains d as an interior point can be generated. When such a range is updated, it’s divided
into the two separate ranges that result from eliminating the time slot which finishes at d.
Step 1 takes O(nlog n) time and Step 2 O(n) time. Step 3 can be done in constant time. In
Step 4, the For loop is executed n times. At each iteration pushing or popping the heap takes
O(log n) time and scheduling the job and updating time ranges (when necessary) takes O(1)
time. Therefore, the complexity of the algorithm is O(nlog n).

Theorem 8 Algorithm 1 generates an optimal schedule.

Proof. The theorem follows from the previous lemmas. Jobs with jEC ≥ d are scheduled as
in lemma 6. The algorithm pushes all available time slots with completion time not later than

max(EC, d + hn
h w

 
 + 

) on the heap and jobs with jEC < d are scheduled on the best of

those slots, as established in lemma 7. Note that when EC ≤ d + hn
h w

 
 + 

, jobs with

jEC ≥ d are scheduled to finish inside the optimal range [,w hd n d n
h w h w

   − +   + +   
]. The

remaining jobs will also be scheduled inside this range, since the algorithm will push its slots

into the heap (note that range [EC, d + hn
h w

 
 + 

] is pushed on the heap).■

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003 451

Table 1 – Algorithm 1 example

Index 1 2 3 4 5

jr 0 3 3 6 8

In Table 1 we present an example for Algorithm 1; assume d = 7, h = 2 and w = 1. The jobs
are already renumbered in non-decreasing order of jr . In step 2 the following jEC ’s are
calculated: 1EC = 1; 2EC = 4; 3EC = 5; 4EC = 7 and 5EC = EC = 9. The due date is in this

case non-restrictive, since EC ≤ d + hn
h w

 
 + 

 (9 ≤ 7 + 3). In step 3 the range [9, 10] (cost: 3)

is pushed on the heap. In step 4, the jobs are scheduled in decreasing jEC order (which,
given the way the jEC ’s are calculated, is also decreasing index order). Since 5EC ≥ d, job 5
is scheduled in the slot [8, 9] and range [7, 8] (cost: 1) is pushed on the heap. Job 4 is then
considered, and we have 4EC = d, so job 4 is scheduled in the slot [6, 7] and range [5, 6]
(cost: 2) is pushed on the heap. Job 3 is the next job to be scheduled, and 3EC < d. If job 3 is
scheduled to complete at 3EC = 5 its cost will be 4; if it is scheduled in the best slot available
on the heap (slot [7, 8]) its cost is 1. Therefore, job 3 is scheduled in the slot [7, 8] and range
[4, 5] (cost: 4) is pushed on the heap. Jobs 2 and 1 will then be scheduled in the slots [5, 6]
and [9, 10], respectively. The algorithm schedules the jobs in the optimal range

[,w hd n d n
h w h w

   − +   + +   
], in this case [5, 10].

3. Calculating the minimum non-restrictive common due date

With different release dates, the due date d will be non-restrictive when the optimal schedule
for the non-restrictive version of the problem with equal release dates is feasible, since
clearly no better schedule can be generated. Therefore, we must find the minimum value of
the common due date d for which that schedule is feasible. Throughout this section assume
that the jobs have been renumbered in shortest processing time (SPT) order, i.e., in non-
decreasing order of jp . An optimal schedule for the non-restrictive version of the problem
with equal release dates can be determined by the following procedure presented by Bagchi,
Chang & Sullivan (1987). Let B be a sequence of jobs to be scheduled without idle time such
that the last job in B is completed at d . Let A be a sequence of jobs to be scheduled without
idle time such that the first job in A starts at d . An optimal schedule for the problem with
identical release dates consists of B followed by A, given that those sets are generated by the
following rule: assign jobs, in their index order, to the beginning of B if h |B| < w(|A| + 1),
and to the end of A otherwise. The minimum non-restrictive common due date for the
problem with equal release dates, which will be denoted as 0r=∆ , is then 0r jj B p= ∈∆ = ∑ .

We will now consider the minimum non-restrictive due date when different release dates are
allowed. If all jobs shared a common release date r , the smallest non-restrictive common due
date would simply be 0r=∆ + r. If jobs have different release dates, and also different

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

452 Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003

processing times, then we could determine the start time of each job in the schedule
generated by Bagchi, Chang & Sullivan’s procedure (assuming all release dates equal to 0)
and calculate the maximum violation of a release date (i.e., the maximum positive difference
between a job’s release date and its start time in Bagchi, Chang & Sullivan’s schedule). The
minimum non-restrictive common due date could then be obtained by adding that maximum
violation to 0r=∆ . When processing times occur more than once, the situation is more
complicated. Since processing times are not unique, ties occur when renumbering the jobs in
non decreasing order of jp , and several different Bagchi, Chang & Sullivan schedules may
be generated, each leading to a possibly different maximum violation of a release date.
Therefore, when renumbering jobs, we need to break ties in such a way that the resulting
Bagchi, Chang & Sullivan schedule minimizes the maximum violation of a release date. The
following algorithm generates the minimum non-restrictive value of the common due date d
(denoted by ∆) when release dates are allowed to be different, and processing times may
occur more than once. Let Ap and Bp , respectively, be the sum of the processing times of the
jobs currently assigned to A and B. Jobs are added to the beginning of B and to the end of A.

Algorithm 2

Step 1: Sort and renumber jobs in non-decreasing order of jp ; break ties by choosing job
with lower jr .

Step 2: Set Ap , Bp and ∆ to 0, set A and B to ∅ .

Step 3: Consider jobs in increasing index order:

 If jp is unique
 assign j to B if h|B| < w(|A| + 1) and to A otherwise.
 If j is added to B
 let j∆ = jr + jp + Bp ;
 If j∆ > ∆, set ∆ = j∆ ;
 Bp = Bp + jp ;
 Else
 let j∆ = jr – Ap ;
 If j∆ > ∆, set ∆ = j∆ ;
 Ap = Ap + jp ;
 Else

use the rule above to determine the number of jobs, from all those that
share the same jp , that are to be assigned to B and to A;

the jobs assigned to B are those with lower jr , and are assigned in non-
increasing order of jr ;

the jobs assigned to A are those with higher jr , and are assigned in non-
decreasing order of jr ;

 update j∆ , ∆ , Ap and Bp as above.

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003 453

The complexity of the algorithm is O(nlog n), since Step 1 takes O(nlog n) time, Step 2 takes
constant time and Step 3 requires O(n) time.

Theorem 9 Algorithm 2 generates the minimum non-restrictive value for d.

Proof. The algorithm clearly generates a sequence that is optimal for the problem with equal
jr , and any d < ∆ leads to an infeasible schedule, since at least one job will not be available

at its optimal start time. However, when several jobs have identical jp , several optimum
sequences exist for the problem with equal jr (those jobs will have to go into certain

positions, but several assignments are possible). When this happens, the algorithm assigns
the jobs with lower jr to the earlier slots. Therefore, we need to show that any other
assignment does not lead to a lower ∆. Take any pair of jobs i and j such that ir < jr but j is

scheduled before i. Let 1
k∆ be the value of k∆ when j is scheduled before i and 2

k∆ be the
value of k∆ after those jobs are swapped, so that i then precedes j. Assume that both j and i

are in set B. We have 1
i∆ = ir + ip + Bp and 1

j∆ = jr + jp + Cp + ip + Bp , where C is the

(possibly empty) set of jobs scheduled between j and i. 1
j∆ is the larger of the two values.

After swapping i and j we have 2
j∆ = jr + jp + Bp and 2

i∆ = ir + ip + Cp + jp + Bp . Since
2
i∆ < 1

j∆ and 2
j∆ < 1

j∆ , the value of ∆ cannot be higher after the swap. When both j and i are

in set A, a similar conclusion can be reached. Finally, assume that j is in set B and i is in set
A. When ∆ is being calculated, we have 1

j∆ = jr + jp + Bp and 1
i∆ = ir – Ap , and 1

j∆ > 1
i∆ .

After swapping those jobs we would have 2
i∆ = ir + ip + Bp and 2

j∆ = jr – Ap . Since
2
i∆ < 1

j∆ and 2
j∆ < 1

j∆ , the value of ∆ once again cannot be higher after the swap. Therefore,
when several jobs have the same jp , assigning the jobs with lower jr to the earlier slots

leads to a value of ∆ that cannot be higher than the value generated by any other
assignment.■

Table 2 – Algorithm 2 example

Index 1 2 3 4 5

jp 6 8 8 9 11

jr 1 7 9 8 6

In Table 2 we present an example for Algorithm 2; assume h = 2 and w = 1. Jobs have
already been renumbered in non-decreasing order of jp , with ties broken by lower jr .
In step 3 the jobs are considered in increasing index order. The first job’s jp is unique and

job 1 is assigned to B, since h|B| < w(|A| + 1) (2 * 0 < 1 * (0 + 1)). The algorithm then

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

454 Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003

calculates 1∆ = 1 + 6 + 0 = 7. Since 1∆ > ∆ = 0, the algorithm sets ∆ = 1∆ = 7 and then
updates Bp = 6. Jobs 2 and 3 have identical processing times. We must then determine the
number of jobs assigned to A and B. Since we have h|B| > w(|A| + 1) (2 * 1 > 1 * (0 + 1))
for the first job to be assigned and h|B| = w(|A| + 1) (2 * 1 = 1 * (1 + 1)) for the second job,
both jobs are assigned to A in non-decreasing order of jr . The algorithm then calculates

2∆ = 7 – 0 = 7. Since 2∆ = ∆ , ∆ is not changed, while Ap is set to 8. When job 3 is
assigned to A, we have 3∆ = 9 – 8 = 1. The value of ∆ once again does not change, and Ap
is updated to 8 + 8 = 16. The processing time of job 4 is unique and this job is assigned to B,
since h|B| < w(|A| + 1) (2 * 1 < 1 * (2 + 1)). The algorithm calculates 4∆ = 8 + 9 + 6 = 23.
Since 4∆ > ∆ , the algorithm sets ∆ = 4∆ = 23 and then updates Bp = 6 + 9 = 15. Finally,
job 5 is assigned to set A and 5∆ = 6 – 16 = –10 <∆ . Therefore, ∆ is not changed and the
minimum non-restrictive due date is equal to 23.

4. Conclusion

In this paper we considered a single machine weighted earliness/tardiness scheduling
problem with different release dates and a common due date. We presented a O(nlog n)
algorithm for optimally solving the special case where all jobs have unit processing times,
therefore establishing its polynomial solvability. We also developed an algorithm that
determines, in O(nlog n) time, the minimum non-restrictive value of the common due date.
We remarked that the due date is non-restrictive when the optimal schedule for the
non-restrictive version of the problem with equal release dates is feasible. This implies that
the non-restrictive version of our problem can be solved in polynomial time using the
algorithm proposed for the problem with identical release dates. The restrictive version,
however, is NP-hard, since even the restrictive case of the problem with identical release
dates is NP-hard. The restrictive version offers ample opportunities for future research, since
no exact or heuristic algorithms have yet been proposed. The algorithm given for the
problem with unit processing times provides some insights that might be useful in
developing heuristic algorithms for the general case. Even though it cannot be directly
applied, without changes, to the general problem, since jobs have different processing times
and may require more than one time unit to process, some of its ideas can be incorporated in
a heuristic algorithm for the general case. For instance, jobs whose earliest possible
completion time is greater than or equal to the common due date might be scheduled to
complete at their earliest completion times, with empty time ranges still being pushed into a
heap of available time periods. A schedule could also be constructed by scheduling all jobs
to complete at their earliest completion times. Jobs that finish their processing before the
common due date, as well as possibly the whole schedule, could then be moved forward in
time to try to reduce the total cost.

Acknowledgements

The authors thank the anonymous referees for several helpful comments that were used to
improve this paper.

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003 455

References

(1) Bagchi, U.; Chang, Y. & Sullivan, R. (1987). Minimizing absolute and squared
deviations of completion times with different earliness and tardiness penalties and
common due date. Naval Research Logistics Quarterly, 34, 739-751.

(2) Bagchi, U.; Sullivan, R. & Chang, Y. (1986). Minimizing mean absolute deviation of
completion times about a common due date. Naval Research Logistics Quarterly, 33,
227-240.

(3) Baker, K. & Chadowitz, A. (1989). Algorithms for minimizing earliness and tardiness
penalties with a common due date. Working Paper 240, Amos Tuck School of Business
Administration, Dartmouth College, Hanover, N.H.

(4) Baker, K. & Scudder, G.D. (1990). Sequencing with earliness and tardiness penalties:
A review. Operations Research, 38, 22-36.

(5) Bank, J. & Werner, F. (2001). Heuristic algorithms for unrelated parallel machine
scheduling with a common due date, release dates, and linear earliness and tardiness
penalties. Mathematical and Computer Modelling, 33, 363-383.

(6) Cheng, T.C.E.; Chen, Z.-L. & Shakhlevich, N.V. (2002). Common due date assignment
and scheduling with ready times. Computers & Operations Research, 29, 1957-1967.

(7) Hall, N.; Kubiak, W. & Sethi, S. (1991). Earliness-tardiness scheduling problems, II:
Deviation of completion times about a restrictive common due date. Operations
Research, 39, 847-856.

(8) Hoogeveen, J.; Oosterhout, H. & Van de Velde, S.L. (1994). New lower and upper
bounds for scheduling around a small common due date. Operations Research, 42,
102-110.

(9) Kanet, J. (1981). Minimizing the average deviation of job completion times about a
common due date. Naval Research Logistics Quarterly, 28, 643-651.

(10) Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G. & Shmoys, D.B. (1993). Sequencing
and scheduling: Algorithms and complexity. In: Logistics of Production and Inventory,
Handbooks in Operations Research and Management Science [edited by S.C. Graves,
A.H.G. Rinnooy Kan and P.H. Zipkin], North-Holland, 445-522.

(11) Mondal, S.A. & Sen, A.K. (2001). Single machine weighted earliness-tardiness penalty
problem with a common due date. Computers & Operations Research, 28, 649-669.

(12) Nandkeolyar, U.; Ahmed, M.U. & Sundararaghavan, P.S. (1993). Dynamic single-
machine weighted absolute deviation problem: Predictive heuristics and evaluation.
International Journal of Production Research, 31, 1453-1466.

(13) Sridharan, V. & Zhou, Z. (1996). A decision theory based scheduling procedure for
single machine weighted earliness and tardiness problem. European Journal of
Operational Research, 94, 292-301.

(14) Sundararaghavan, P. & Ahmed, M. (1984). Minimizing the sum of absolute lateness in
single machine and multimachine scheduling. Naval Research Logistics Quarterly, 31,
325-333.

Valente & Alves – Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date

456 Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003

(15) Szwarc, W. (1989). Single machine scheduling to minimize absolute deviation of
completion times from a common due date. Naval Research Logistics, 36, 663-673.

(16) Ventura, J.A. & Weng, M.X. (1995). An improved dynamic programming algorithm
for the single machine mean absolute deviation problem with a restrictive common due
date. Operations Research Letters, 17, 149-152.

