
versão impressa ISSN 0101-7438 / versão online ISSN 1678-5142 

Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003 443 

 

 

 

 

 

 

 

 

EFFICIENT POLYNOMIAL ALGORITHMS FOR SPECIAL CASES OF 
WEIGHTED EARLY/TARDY SCHEDULING WITH RELEASE DATES AND 

A COMMON DUE DATE 
 
 

Jorge M. S. Valente * 
Rui A. F. S. Alves 
Faculdade de Economia 
Universidade do Porto 
Porto – Portugal 
jvalente@fep.up.pt 

 
* Corresponding author / autor para quem as correspondências devem ser encaminhadas 

 
Recebido em 02/2003; aceito em 11/2003 após 1 revisão 
Received February 2003; accepted November 2003 after one revision 

 
 

Abstract 
 
In this paper we consider a single machine scheduling problem with integer release dates and a 
common due date. The objective is to minimise the weighted sum of the jobs’ earliness and tardiness 
costs. We present an efficient polynomial algorithm for the unit processing time case. We also show 
how to calculate, for the general case, the minimum non-restrictive due date. 
 
Keywords:  scheduling; early/tardy; release dates. 
 
 

Resumo 
 
Neste artigo consideramos um problema de sequenciamento com um único processador no qual 
existem datas de disponibilidade inteiras e uma data de entrega comum. O objectivo consiste em 
minimizar a soma ponderada dos custos de posse e de atraso. Um algoritmo polinomial é apresentado 
para o caso no qual os tempos de processamento são iguais a um. É também desenvolvido um 
algoritmo que permite determinar, para o caso geral, o menor valor não restritivo da data de entrega. 
 
Palavras-chave:  sequenciamento; early/tardy; datas de disponibilidade. 
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1.  Introduction 

In this paper we consider the following scheduling problem. A set of n independent jobs 
{ 1 2, ,..., nJ J J }, each with a possibly different integer release date jr , processing time jp , 
and a common integer due date d, has to be scheduled without preemptions on a single 
machine that can handle at most one job at a time. The objective is to minimise 

1{ ( ) ( ) }n
j jj h d C w C d+ +

= − + −∑ , where jC  is the completion time of jJ  and h and w are, 

respectively, the earliness and tardiness cost per unit time. The earliness and tardiness costs 
are therefore different, although they are identical for all jobs. In the classification scheme 
proposed by Lawler, Lenstra, Rinnooy Kan & Shmoys (1993), this problem can be 
represented as 1| jd = d, jr | { ( ) ( ) }j jh d C w C d+ +− + −∑ . Scheduling models with both 
earliness and tardiness costs are particularly appealing, since they are compatible with the 
philosophy of just-in-time production. The earliness and tardiness costs are allowed to differ 
(even though they are assumed to be identical for all jobs), and the model is also made more 
realistic by the existence of different release dates, since in most production settings the 
orders are released to the shop floor over time (and not all simultaneously). Therefore, the 
problem considered has several potential practical applications. 

To the best of our knowledge, this specific problem has not yet been analysed in the 
literature, although models with identical release dates, as well as some related problems 
with different release dates, have been previously considered. The problem with identical 
release dates and h=w=1, i.e., 1| jd = d | jC d−∑ , has been considered by several authors. 
Kanet (1981) and Bagchi, Sullivan & Chang (1986) presented O(nlog n) algorithms for 
solving the non-restrictive due date version of this problem. The common due date is non-
restrictive when it does not constrain the optimal schedule cost. The restrictive case, 
however, has been proved NP-hard by Hall, Kubiak & Sethi (1991). Sundararaghavan & 
Ahmed (1984) present a branch-and-bound (B&B) algorithm and a heuristic procedure for 
the special case of the restrictive version in which all sequences must start at time 0. This 
special case was also considered by Bagchi, Sullivan & Chang (1986) and Szwarc (1989). 
Bagchi, Sullivan & Chang (1986) propose a branching procedure, while Szwarc (1989) 
develops several dominance conditions that are used in a B&B algorithm. Szwarc (1989) 
also presents a sufficient condition for an optimal sequence to start at time 0. The general 
restrictive version has also been analysed by several authors. Baker & Chadowitz (1989) 
presented a modified version of the heuristic proposed by Sundararaghavan & Ahmed 
(1984). Hall, Kubiak & Sethi (1991) develop several dominance conditions and a dynamic 
programming algorithm that obtains an optimal solution in pseudopolynomial time. Ventura 
& Weng (1995) improve the efficiency of this algorithm by remarking that some of its 
subroutines are unnecessary and can therefore be eliminated. Hoogeveen, Oosterhout & Van 
de Velde (1994) present a B&B algorithm that uses lagrangean relaxation to calculate both 
lower and upper bounds. 

The identical release dates version of our problem, i.e., 1| jd = d | { ( ) ( ) }j jh d C w C d+ +− + −∑ , 
has also been previously considered. Bagchi, Chang & Sullivan (1987) present an O(nlog n) 
algorithm for solving the non-restrictive case. The restrictive case is necessarily NP-hard, 
since even the problem with h=w=1 is NP-hard, as noted above. The special case of the 
restrictive version in which all sequences must start at time 0 was considered by Bagchi, 
Chang & Sullivan (1987) and Baker & Chadowitz (1989). Bagchi, Chang & Sullivan (1987) 
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present some dominance properties and a branching algorithm, while Baker & Chadowitz 
(1989) propose a heuristic method. The general case of the restrictive version was analysed 
by Mondal & Sen (2001), who present an algorithm that obtains an optimal solution through 
the use of a graph search space. The computational results show that this approach is faster 
than both dynamic programming or B&B algorithms that use a depth-first search strategy. 

Models with unequal release dates have been addressed in Nandkeolyar, Ahmed & 
Sundararaghavan (1993), Sridharan & Zhou (1996), Bank & Werner (2001) and Cheng, 
Chen & Shakhlevich (2002). Nandkeolyar, Ahmed & Sundararaghavan (1993) consider the 
single machine problem with the objective of minimising 1

n
j j jj c d C= −∑ , where jc  and 

jd  are, respectively, the cost per unit time and the due date of jJ . They present several 
heuristics developed using a novel approach. These heuristics were developed in a modular 
fashion, with different modules providing lookahead features, sequence generation and the 
determination of the specific schedule. The performance of the heuristics, as well as that of 
the different modules, was tested on several classes of problems. Sridharan & Zhou (1996) 
present a heuristic based on a decision theory approach for a more general problem where the 
cost per unit time is allowed to be different according to whether the job is early or tardy. 
Bank & Werner (2001) consider a model with unrelated parallel machines, a common due 
date and earliness and tardiness costs that may differ between jobs. They derive several 
structural properties that are useful when searching for an approximate solution and present 
several constructive and iterative heuristics. Cheng, Chen & Shakhlevich (2002) analyse a 
model where all jobs have a common due date that needs to be determined. The problem is to 
determine both a due date and a schedule in order to minimize a total penalty that depends on 
the earliness, the tardiness and the due date. They show that the problem is strongly NP-hard 
and give an efficient algorithm that finds an optimal due date and schedule when either the 
job sequence is predetermined or all jobs have identical processing times. They also present 
three approximation algorithms for both the general and some special cases. It should be 
pointed out that there are a large number of papers considering earliness and tardiness 
penalties. For more information on problems with earliness and tardiness costs, the interested 
reader is referred to Baker & Scudder (1990), who present a comprehensive survey of 
early/tardy scheduling. 

The remainder of this paper is organized as follows. In section 2 we consider the special case 
of our problem where all jobs have unit processing times, i.e., 1| jd = d, jp = 1, 

jr | { ( ) ( ) }j jh d C w C d+ +− + −∑ . We present an algorithm that obtains an optimal solution 
in O(nlog n) time, therefore establishing the polynomial solvability of this particular case. In 
section 3 we consider the general problem 1| jd = d, jr | { ( ) ( ) }j jh d C w C d+ +− + −∑  and 
develop an algorithm, again with complexity O(nlog n), for determining the minimum non-
restrictive value of the common due date d. In this section we remark that the due date is 
non-restrictive when the optimal schedule for the non-restrictive version of the problem with 
equal release dates is feasible. This implies that the non-restrictive version of our problem 
can be solved in polynomial time using the algorithm proposed by Bagchi, Chang & Sullivan 
(1987) for the problem with identical release dates. The restrictive version, however, is then 
NP-hard, since even the restrictive version of 1| jd = d | jC d−∑  is NP-hard, as noted 
above. Finally, we provide some concluding remarks in section 4. 
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2. An algorithm for the problem with unit processing times 

In this section we propose an O(nlog n) algorithm for the problem with unit processing 
times. Several lemmas and theorems that characterize the structure of an optimal solution are 
first developed. The algorithm then simply schedules the jobs in such a way that the lemmas 
and theorems are satisfied (hence optimally). 

Lemma 1  There exists an optimal sequence where each jC  is integer. 

Proof. Any feasible schedule with non integer jC ’s can be transformed into a feasible 
sequence, of lower or equal cost, where all jC ’s are integer. Starting from d and scanning 
left, take the first job, if any, with a non integer jC < d such that there exists idle time to the 
right of that job. Move that job to the right until it is blocked by another job or it completes at 
an integer time, whichever occurs first. Any such movement will decrease the cost of the 
schedule. Repeat until no such jobs exist. Perform a similar scan to the right of d, this time 
moving jobs to the left (such a move is always feasible because each job has an integer jr  
and we stop as soon as an integer start time is reached, if the job is not blocked before). 
Again, any such movement decreases the schedule cost (see Figure 1). At this time, at most 
one group of jobs performed consecutively with no idle time in between (or possibly just a 
single job) starts and completes at non integer times that encompass d. Let A and B denote 
the sets of jobs in that group that complete after and before d, respectively, and let |X| 
denote the cardinality of set X. If w|A| > h|B|, move the block backwards until an integer 
start time is reached. The earliness of each job in B will increase by the amount of 
backwards movement but the tardiness of each job in A will decrease by that same amount. 
Since w|A| > h|B| the decrease in the weighted tardiness exceeds the increase in weighted 
earliness, so the schedule cost will decrease. If w|A| < h|B|, move the block forward instead. 
If w|A| = h|B|, move either forward or backward. The new schedule has all integer jC ’s and 
its cost is lower or the same.■ 

 

a) schedule with non-integer Cj's

b) lower cost schedule with all integer Cj's

d

d

 

Figure 1 – Lemma 1 example 
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This lemma is useful because it allows us to focus on unit time slots that begin at integer 
times (even though all parameters are integers, jobs are allowed to start at non integer times), 
since there exists an optimal sequence where jobs are scheduled in n of those slots. This 
result also indicates that the problem could be formulated as a weighted bipartite matching 
problem, and therefore solved in O(n3) time, but a more efficient approach is possible. The 
next lemma identifies the best possible time slots. 

Lemma 2  Any feasible sequence in which the jobs are scheduled in the n consecutive time 

slots in the time range [ ,w hd n d n
h w h w

   − +   + +   
] is also optimal. 

Proof.  Any slot not in this range has a cost that is at least as high as the cost of the most 
expensive slot in the range. The cost of any slot inside the time range is not higher than 

hwn
h w+

, since the most expensive early and tardy slots have a cost of ( 1 )wh n
h w

 − + 
 and 

( )hw n
h w

 
 + 

, respectively. Any slot not in the time range has a cost of at least hwn
h w+

, 

since the least expensive early and tardy slots have a cost of ( )wh n
h w

 
 + 

 and 

( 1)hw n
h w

  + + 
, respectively.■ 

Assume, for the remainder of this section, that jobs have been renumbered in non-decreasing 
order of their release dates. Let jEC  be the earliest possible completion time of job j when 
jobs are considered for processing in increasing order of their index j. Let EC = nEC  denote 
the earliest possible completion time of the job with the largest index. The next lemma 
indicates when it is feasible to schedule the jobs in the best possible slots. 

Lemma 3  It is possible to schedule the jobs in the n consecutive time slots in the time range 

[ ,w hd n d n
h w h w

   − +   + +   
] if and only if EC ≤ d + hn

h w
 
 + 

. 

Proof.  If EC > d + hn
h w

 
 + 

 then obviously at least one job cannot be completed up to 

d + hn
h w

 
 + 

. If EC ≤ d + hn
h w

 
 + 

, any job with jEC  > d – wn
h w

 
 + 

 can be scheduled to 

complete at its jEC , while the remaining jobs can be arbitrarily assigned to the still empty 
time slots in the optimal range. That assignment is clearly feasible, since we are delaying the 
start time of each of those jobs.■ 

The next theorem provides a condition for classifying a due date as restrictive or non-
restrictive. 
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Theorem 4  The due date d is non-restrictive when d ≥ EC – hn
h w

 
 + 

. 

Proof.  Lemma 2 identifies the best possible schedule. From lemma 3, that schedule is only 

feasible when d ≥ EC – hn
h w

 
 + 

.■ 

The next lemmas provide further characteristics of an optimal solution that will be used in 
the algorithm. 

Lemma 5  If EC > d + hn
h w

 
 + 

, all jobs will be scheduled in the time range [d – wn
h w

 
 + 

, 

EC] in an optimal sequence. 

Proof.  It is clear that all slots in the range have a lower cost than any slot that starts at or 

later than EC. Also we can once again schedule jobs with jEC  > d – wn
h w

 
 + 

 to complete 

at their jEC , while the remaining jobs can be arbitrarily assigned to the still empty time slots 

in the range [ ,w hd n d n
h w h w

   − +   + +   
], thereby decreasing their cost.■ 

Lemma 6  There exists an optimal schedule in which all jobs with jEC  ≥ d are scheduled to 
complete at their jEC . 

Proof.  Consider the slots with a completion time equal to jEC , for jEC  ≥ d. If a job with 

jEC  ≥ d is completed later than its jEC , and the slot with a completion time equal to jEC  
is free, one can simply move that job into this slot (thereby decreasing its cost, since it will 
be completed earlier). Also, any feasible schedule in which any slot with a completion time 
equal to jEC , for jEC  ≥ d, is occupied by a job with jEC  < d (an offending job) can be 
converted into an equal cost sequence in which all such slots are filled with jobs with 

jEC  ≥ d. For each of those slots, we simply swap any offending job with the job whose jEC  
is equal to that slot’s completion time. These swaps do not change the schedule cost and 
feasibility is maintained (the release date of the offending job in not larger than that of the 
job with which it is swapped, since its jEC  is lower, so it can also be feasibly scheduled in 
its destination slot). After all such swaps are performed, only jobs with jEC  ≥ d use those 
slots, though they are not necessarily in jEC  order (jobs are considered in increasing order 
of their indexes when calculating the jEC ’s, so some jobs can feasibly be scheduled before 
their jEC ). If that is the case, reordering the jobs according to their jEC  will not alter cost 
nor feasibility. Therefore, all jobs with jEC  ≥ d can be optimally scheduled to complete at 
their jEC . An example is presented in Figure 2; assume d = 8, 1EC  = 4, 2EC  = 5, 3EC  = 9 
and 4EC  = 11.■ 
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a) initial schedule

b) schedule with all jobs with ECj = d finishing at their ECj

10 11 12

4

5 6 7 9

4

1 3 2

5

1 2 3

9 10 11 12d = 8

d = 8

6 7

 

Figure 2 – Lemma 6 example 

 
Lemma 6 assigns optimal slots for jobs with jEC  ≥ d, so all that remains is to optimally 
schedule the remaining jobs in the available slots. The next lemma considers those jobs. 

Lemma 7  Given that jobs with jEC  ≥ d are scheduled according to lemma 6, the remaining 
jobs should be scheduled in the available slots that are closest to d (i.e., the lowest cost slots). 

Proof.  We simply need to prove that such a schedule is feasible, since it’s clearly optimal. 
Let |B| be the number of jobs with jEC  < d (and therefore of necessary slots). The earliest 
possible completion times of the available slots that are closest to d are d – 1, d – 2,…, d – |B|. 
The latest possible jEC ’s of the remaining jobs are also d – 1, d – 2,…, d – |B|, so they can 
be feasibly assigned to the least cost slots. Since any other case involves later slots and/or 
earlier jEC ’s, it’s always feasible to schedule the remaining jobs in the least cost available 
slots. An easy way for an algorithm to ensure feasibility is to simply consider jobs in 
decreasing order of their jEC .■ 

We now present an algorithm that solves the problem with unit processing times. The 
algorithm schedules the jobs in such a way that the previous lemmas are satisfied (hence 
optimally). The algorithm uses a min heap of free time slot ranges and their associated 
minimum cost (the cost of the best slot in that range), which serves as the key for pushing 
and popping elements from the heap. 

 
Algorithm 1 

Step 1:  Sort and renumber jobs in non-decreasing order of jr . 

Step 2:  Calculate jEC  for all jobs. 

Step 3:  If EC < d + hn
h w

 
 + 

, push range [EC, d + hn
h w

 
 + 

] on heap. 
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Step 4:  For each job, in decreasing order of jEC , do: 

 If jEC  ≥ d 

  schedule j to complete at its jEC ; 

  if j > 1, push range [ 1jEC − , jEC  – 1] on heap; 

 Else 
  schedule j to complete at its jEC  or at the best available free time slot on 
the heap (whichever has a lower cost; ties can be broken arbitrarily); in the latter case update 
the range that included that slot and re-insert it on the heap; 

  if j > 1, push on heap: 

range [ 1jEC − , jEC  – 1] if j completes at its jEC ; 

range [ 1jEC − , jEC ] if j was scheduled at the best available free 
time slot on the heap. 

 
In the previous algorithm ranges are obviously only pushed on the heap when the upper limit 
is higher than the lower limit. Updating a time range that ends at or before d simply involves 
decreasing its finish time by one time unit (thereby eliminating its previously best slot) and 
increasing its cost by h. Similarly, updating a time range that starts at or after d consists of 
increasing its start time by one time unit and increasing its cost by w. Only one range that 
contains d as an interior point can be generated. When such a range is updated, it’s divided 
into the two separate ranges that result from eliminating the time slot which finishes at d. 
Step 1 takes O(nlog n) time and Step 2 O(n) time. Step 3 can be done in constant time. In 
Step 4, the For loop is executed n times. At each iteration pushing or popping the heap takes 
O(log n) time and scheduling the job and updating time ranges (when necessary) takes O(1) 
time. Therefore, the complexity of the algorithm is O(nlog n). 

Theorem 8  Algorithm 1 generates an optimal schedule. 

Proof.  The theorem follows from the previous lemmas. Jobs with jEC  ≥ d are scheduled as 
in lemma 6. The algorithm pushes all available time slots with completion time not later than 

max(EC, d + hn
h w

 
 + 

) on the heap and jobs with jEC  < d are scheduled on the best of 

those slots, as established in lemma 7. Note that when EC ≤ d + hn
h w

 
 + 

, jobs with 

jEC  ≥ d are scheduled to finish inside the optimal range [ ,w hd n d n
h w h w

   − +   + +   
]. The 

remaining jobs will also be scheduled inside this range, since the algorithm will push its slots 

into the heap (note that range [EC, d + hn
h w

 
 + 

] is pushed on the heap).■ 
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Table 1 – Algorithm 1 example 

Index 1 2 3 4 5 

jr  0 3 3 6 8 

 

In Table 1 we present an example for Algorithm 1; assume d = 7, h = 2 and w = 1. The jobs 
are already renumbered in non-decreasing order of jr . In step 2 the following jEC ’s are 
calculated: 1EC  = 1; 2EC  = 4; 3EC  = 5; 4EC  = 7 and 5EC  = EC = 9. The due date is in this 

case non-restrictive, since EC ≤ d + hn
h w

 
 + 

 (9 ≤ 7 + 3). In step 3 the range [9, 10] (cost: 3) 

is pushed on the heap. In step 4, the jobs are scheduled in decreasing jEC  order (which, 
given the way the jEC ’s are calculated, is also decreasing index order). Since 5EC  ≥ d, job 5 
is scheduled in the slot [8, 9] and range [7, 8] (cost: 1) is pushed on the heap. Job 4 is then 
considered, and we have 4EC  = d, so job 4 is scheduled in the slot [6, 7] and range [5, 6] 
(cost: 2) is pushed on the heap. Job 3 is the next job to be scheduled, and 3EC  < d. If job 3 is 
scheduled to complete at 3EC  = 5 its cost will be 4; if it is scheduled in the best slot available 
on the heap (slot [7, 8]) its cost is 1. Therefore, job 3 is scheduled in the slot [7, 8] and range 
[4, 5] (cost: 4) is pushed on the heap. Jobs 2 and 1 will then be scheduled in the slots [5, 6] 
and [9, 10], respectively. The algorithm schedules the jobs in the optimal range 

[ ,w hd n d n
h w h w

   − +   + +   
], in this case [5, 10]. 

 

3. Calculating the minimum non-restrictive common due date 

With different release dates, the due date d  will be non-restrictive when the optimal schedule 
for the non-restrictive version of the problem with equal release dates is feasible, since 
clearly no better schedule can be generated. Therefore, we must find the minimum value of 
the common due date d  for which that schedule is feasible. Throughout this section assume 
that the jobs have been renumbered in shortest processing time (SPT) order, i.e., in non-
decreasing order of jp . An optimal schedule for the non-restrictive version of the problem 
with equal release dates can be determined by the following procedure presented by Bagchi, 
Chang & Sullivan (1987). Let B be a sequence of jobs to be scheduled without idle time such 
that the last job in B is completed at d . Let A be a sequence of jobs to be scheduled without 
idle time such that the first job in A starts at d . An optimal schedule for the problem with 
identical release dates consists of B followed by A, given that those sets are generated by the 
following rule: assign jobs, in their index order, to the beginning of B if h |B| < w(|A| + 1), 
and to the end of A otherwise. The minimum non-restrictive common due date for the 
problem with equal release dates, which will be denoted as 0r=∆ , is then 0r jj B p= ∈∆ = ∑ . 

We will now consider the minimum non-restrictive due date when different release dates are 
allowed. If all jobs shared a common release date r , the smallest non-restrictive common due 
date would simply be 0r=∆ + r. If jobs have different release dates, and also different 
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processing times, then we could determine the start time of each job in the schedule 
generated by Bagchi, Chang & Sullivan’s procedure (assuming all release dates equal to 0) 
and calculate the maximum violation of a release date (i.e., the maximum positive difference 
between a job’s release date and its start time in Bagchi, Chang & Sullivan’s schedule). The 
minimum non-restrictive common due date could then be obtained by adding that maximum 
violation to 0r=∆ . When processing times occur more than once, the situation is more 
complicated. Since processing times are not unique, ties occur when renumbering the jobs in 
non decreasing order of jp , and several different Bagchi, Chang & Sullivan schedules may 
be generated, each leading to a possibly different maximum violation of a release date. 
Therefore, when renumbering jobs, we need to break ties in such a way that the resulting 
Bagchi, Chang & Sullivan schedule minimizes the maximum violation of a release date. The 
following algorithm generates the minimum non-restrictive value of the common due date d 
(denoted by ∆) when release dates are allowed to be different, and processing times may 
occur more than once. Let Ap  and Bp , respectively, be the sum of the processing times of the 
jobs currently assigned to A and B. Jobs are added to the beginning of B and to the end of A. 

 
Algorithm 2 

Step 1: Sort and renumber jobs in non-decreasing order of jp ; break ties by choosing job 
with lower jr . 

Step 2: Set Ap , Bp  and ∆ to 0, set A and B to ∅ . 

Step 3: Consider jobs in increasing index order: 

 If jp  is unique 
  assign j to B if h|B| < w(|A| + 1) and to A otherwise. 
  If j is added to B 
   let j∆  = jr  + jp  + Bp ; 
   If j∆  > ∆, set ∆ = j∆ ; 
   Bp  = Bp  + jp ; 
  Else 
   let j∆  = jr  – Ap ; 
   If j∆  > ∆, set ∆ = j∆ ; 
   Ap  = Ap  + jp ; 
 Else 

use the rule above to determine the number of jobs, from all those that 
share the same jp , that are to be assigned to B and to A; 

the jobs assigned to B are those with lower jr , and are assigned in non-
increasing order of jr ; 

the jobs assigned to A are those with higher jr , and are assigned in non-
decreasing order of jr ; 

  update j∆ ,  ∆ , Ap  and Bp  as above. 
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The complexity of the algorithm is O(nlog n), since Step 1 takes O(nlog n) time, Step 2 takes 
constant time and Step 3 requires O(n) time. 

Theorem 9  Algorithm 2 generates the minimum non-restrictive value for d. 

Proof.  The algorithm clearly generates a sequence that is optimal for the problem with equal 
jr , and any d < ∆ leads to an infeasible schedule, since at least one job will not be available 

at its optimal start time. However, when several jobs have identical jp , several optimum 
sequences exist for the problem with equal jr  (those jobs will have to go into certain 

positions, but several assignments are possible). When this happens, the algorithm assigns 
the jobs with lower jr  to the earlier slots. Therefore, we need to show that any other 
assignment does not lead to a lower ∆. Take any pair of jobs i and j such that ir  < jr  but j is 

scheduled before i. Let 1
k∆  be the value of k∆  when j is scheduled before i and 2

k∆  be the 
value of k∆  after those jobs are swapped, so that i then precedes j. Assume that both j and i 

are in set B. We have 1
i∆  = ir  + ip  + Bp  and 1

j∆  = jr  + jp  + Cp  + ip  + Bp , where C is the 

(possibly empty) set of jobs scheduled between j and i. 1
j∆  is the larger of the two values. 

After swapping i and j we have 2
j∆  = jr  + jp  + Bp  and 2

i∆  = ir  + ip  + Cp  + jp  + Bp . Since 
2
i∆  < 1

j∆  and 2
j∆  < 1

j∆ , the value of ∆ cannot be higher after the swap. When both j and i are 

in set A, a similar conclusion can be reached. Finally, assume that j is in set B and i is in set 
A. When ∆ is being calculated, we have 1

j∆  = jr  + jp  + Bp  and 1
i∆  = ir  – Ap , and 1

j∆  > 1
i∆ . 

After swapping those jobs we would have 2
i∆  = ir  + ip  + Bp  and 2

j∆  = jr  – Ap . Since 
2
i∆  < 1

j∆  and 2
j∆  < 1

j∆ , the value of ∆ once again cannot be higher after the swap. Therefore, 
when several jobs have the same jp , assigning the jobs with lower jr  to the earlier slots 

leads to a value of ∆ that cannot be higher than the value generated by any other 
assignment.■ 

 
Table 2 – Algorithm 2 example 

Index 1 2 3 4 5 

jp  6 8 8 9 11 

jr  1 7 9 8 6 

 

In Table 2 we present an example for Algorithm 2; assume h = 2 and w = 1. Jobs have 
already been renumbered in non-decreasing order of jp , with ties broken by lower jr . 
In step 3 the jobs are considered in increasing index order. The first job’s jp  is unique and 

job 1 is assigned to B, since h|B| < w(|A| + 1) (2 * 0 < 1 * (0 + 1)). The algorithm then 



Valente & Alves  –  Efficient polynomial algorithms for special cases of weighted early/tardy scheduling with release dates and a common due date 

454 Pesquisa Operacional, v.23, n.3, p.443-456, Setembro a Dezembro de 2003 

calculates 1∆  = 1 + 6 + 0 = 7. Since 1∆ > ∆  = 0, the algorithm sets ∆ = 1∆  = 7 and then 
updates Bp  = 6. Jobs 2 and 3 have identical processing times. We must then determine the 
number of jobs assigned to A and B. Since we have h|B| > w(|A| + 1) (2 * 1 > 1 * (0 + 1)) 
for the first job to be assigned and h|B| = w(|A| + 1) (2 * 1 = 1 * (1 + 1)) for the second job, 
both jobs are assigned to A in non-decreasing order of jr . The algorithm then calculates 

2∆  = 7 – 0 = 7. Since 2∆  = ∆ , ∆  is not changed, while Ap  is set to 8. When job 3 is 
assigned to A, we have 3∆  = 9 – 8 = 1. The value of ∆  once again does not change, and Ap  
is updated to 8 + 8 = 16. The processing time of job 4 is unique and this job is assigned to B, 
since h|B| < w(|A| + 1) (2 * 1 < 1 * (2 + 1)). The algorithm calculates 4∆  = 8 + 9 + 6 = 23. 
Since 4∆  > ∆ , the algorithm sets ∆ = 4∆  = 23 and then updates Bp  = 6 + 9 = 15. Finally, 
job 5 is assigned to set A and 5∆  = 6 – 16 = –10 <∆ . Therefore, ∆  is not changed and the 
minimum non-restrictive due date is equal to 23. 

 

4. Conclusion 

In this paper we considered a single machine weighted earliness/tardiness scheduling 
problem with different release dates and a common due date. We presented a O(nlog n) 
algorithm for optimally solving the special case where all jobs have unit processing times, 
therefore establishing its polynomial solvability. We also developed an algorithm that 
determines, in O(nlog n) time, the minimum non-restrictive value of the common due date. 
We remarked that the due date is non-restrictive when the optimal schedule for the 
non-restrictive version of the problem with equal release dates is feasible. This implies that 
the non-restrictive version of our problem can be solved in polynomial time using the 
algorithm proposed for the problem with identical release dates. The restrictive version, 
however, is NP-hard, since even the restrictive case of the problem with identical release 
dates is NP-hard. The restrictive version offers ample opportunities for future research, since 
no exact or heuristic algorithms have yet been proposed. The algorithm given for the 
problem with unit processing times provides some insights that might be useful in 
developing heuristic algorithms for the general case. Even though it cannot be directly 
applied, without changes, to the general problem, since jobs have different processing times 
and may require more than one time unit to process, some of its ideas can be incorporated in 
a heuristic algorithm for the general case. For instance, jobs whose earliest possible 
completion time is greater than or equal to the common due date might be scheduled to 
complete at their earliest completion times, with empty time ranges still being pushed into a 
heap of available time periods. A schedule could also be constructed by scheduling all jobs 
to complete at their earliest completion times. Jobs that finish their processing before the 
common due date, as well as possibly the whole schedule, could then be moved forward in 
time to try to reduce the total cost. 
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