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Abstract 
 
Let nK  be the complete undirected graph with n vertices. A 3-cycle is a cycle consisting of 3 edges. 
The 3-cycle polytope is defined as the convex hull of the incidence vectors of all 3-cycles in nK . In 
this paper, we present a polyhedral analysis of the 3-cycle polytope. In particular, we give several 
classes of facet defining inequalities of this polytope and we prove that the separation problem 
associated to one of these classes of inequalities is NP-complete. Finally, it is proved that the 3-cycle 
polytope is a 2-neighborly polytope. 
 
Keywords:  polytope; cycle; facet; NP-completeness. 
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1.  Introduction 

A 3-cycle is a cycle with three edges. Consider the following minimum weighted 3-cycle 
problem: given a graph ( , )G V E=  and a ‘weight’ function : ,w E →  find a 3-cycle C  of 
G  such that ( )w C  is as small as possible. This problem can easily be solved in polynomial 
time by complete enumeration of the triangles G.  

Let P(G)  be the polytope defined as the convex hull of the incidence vectors of the 3-cycles 
of G , that is 

( ) conv.hull{ {0,1}:  is a 3-cycle of }.CP G C Gχ= ∈  

The minimum weighted 3-cycle problem is clearly equivalent to the linear program 

max{ : ( )},wx x P G∈  

as every minimum weighted 3-cycle yields an optimal vertex solution of the linear program 
and vice versa. Since the minimum weighted 3-cycle problem is solvable in polynomial time, 
it follows from the work of Grötschel, Lovász & Schrijver (1981, 1993) that there exists a 
polynomial time algorithm that solves the following problem: 

Separation problem (SEP): given a graph ( , )G V E=  and a vector ,Ey∈  decide 

whether y belongs to ( )P G  or not, in the later case, find a vector Ea∈  such that 
ax ay<  for all ( ).x P G∈  

This algorithm for problem SEP provides an implicit description for ( )P G . Motivated by the 
existence of an implicit description for ( )P G , we attempt to find an explicit description of 

( )nP K  by a minimal system of linear inequalities. In this paper, we present several classes of 
facet-defining linear inequalities for ( )nP K , we prove that it is NP-hard to solve the separation 
problem for one of these classes, we show that the diameter of ( )nP K  is one. Unfortunately, 
we did not succeed in our pursuit for a complete description of ( )nP K  by a reasonable 
number of classes of linear inequalities. Using a computer we were able to verify that the 
facet-defining inequalities presented provide a complete description for 6( )P K  (70 facets) 
and 7( )P K  (896 facets). See Barahona & Grötschel (1986),  Coullard & Pulleyblank (1989) 
and Seymour (1979) for related studies concerning other cycle polytopes. 

Let us introduce some definitions and notations. For a cycle C, define its incidence vector 
C Eχ ∈  by letting 1C

eχ =  if  e C∈  and 0 otherwise. Throughout this paper, we will confuse 
a cycle C with its incidence vector, e.g. we will say that a cycle C satisfies an inequality. Let 

( , )G V E=  be an undirected graph. For any two adjacent vertices u and v, denote by uv the 
edge between u and v. A cycle C of G will be viewed as a set of edges but denoted by an 
ordered list of vertices; e.g. 1 2 3 4( , , , )v v v v  denotes the cycles containing edges 

1 2v v , 2 3v v , 3 4v v , 4 1v v . A 3-cycle is a simple cycle of length 3. For two subsets U and W of V, 
we define the subset of edges (U:W) as follows 

{ }( : ) : :  and U W uw E u U w W= ∈ ∈ ∈  
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and ( ) : ( : ).U U V Uδ = −  For a subset X of vertices, let E(X) be the set of edges in uv with 
,u v X∈ , and vice versa, for a subset F of edges, let V(F) be the set of end-vertices of edges 

in F. A cycle C is called tight with respect to an inequality ax b≤  if .Ca bχ =  Finally, for a 

given subset of edges F and a given vector ,Ex∈  we adopt the following notation 
( ) : .e

e F
x F x

∈
= ∑  

In the next section, we present a few basic properties of ( )nP K  and we establish an auxiliary 
lemma which will be used several times in the rest of the paper for proving that an inequality 
defines a facet of ( )nP K . In Section 3, we provide a complete description of ( )nP K  for 

6n ≤  employing three classes of facet defining inequalities. Then, three new classes of facet 
defining inequalities are introduced. Altogether, they allows to describe completely 7( ).P K  
We prove that it is NP-hard to solve the separation problem for one of these classes. Next, 
we present a class of facet defining inequalities that generalizes four classes introduced 
before and give an additional classes of facets for ( )nP K  with 9.n ≥  Finally, in Section 4 
we prove that ( )nP K  is a 2-neighborly polytope for all 4.n ≥  

 

2. Basic results 

Let us start with some observations which will be useful later. 

 
Lemma 1.  If all 3-cycles of a 4K  induced by the subset of vertices { }, , ,u v w t V⊆  satisfy an 
equality ax b=  then 

1

2

3

,
,
,

.

uv wt

vw ut

uw vt

uv vw uw

a a a
a a a
a a a

a a a β

= =
= =
= =

+ + =

 

Proof.  Let us consider all 3-cycles of a 4K  

,
,
,
.

uv vw wu

vw wt tv

uw wt tu

uv vt tu

a a a
a a a
a a a
a a a

β
β
β
β

+ + =
+ + =
+ + =
+ + =

 

Summing up any two of these equalities and subtracting the two others, we get 

0,
0,
0.

uv wt

uw vw

ut vw

a a
a a
a a

− =
− =
− =
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Lemma 2.  If all 3-cycles of a 5K  induced by a subset of vertices S V⊆  satisfy an equality 
ax b= , then / 3uva β=  for all , .u v S∈  

Proof.  Applying Lemma 1 to all 4-cliques defined on ,S  we deduce / 3uva β=  for all 
, .u v S∈  

 
Proposition 1.  For 5n ≥ , { }: ( ) 3Ex x E∈ =  is the affine hull of  ( ).nP K  

Proof.  Suppose that all 3-cycles of nK  satisfy an equality .ax β=  By scaling, we may 
assume that 3β =  and by Lemma 2 ax β=  is precisely ( ) 3.x E =  

Remark 1.  For 5,n ≥  the dimension of ( )nP K  is 1.
2
n 

− 
 

 For 5,n =  this dimension is 9. 

The incidence vectors of the ten 3-cycles of 5K  are linearly independent. The polytope 

5( )P K  is a 9-dimensional simplex which is defined ( ) 3x E =  and 

( ( )) 2x Xδ ≤  for each , 2.X V X⊆ =  (1) 

Moreover, these inequalities define facets of 5( ).P K  Indeed, nine of the ten 3-cycles of 5K  
are tight with respect to a given inequality from (1). 

 

3. Facet defining inequalities 

In the rest of the paper, in order to prove that a valid inequality I defines a facet of ( )nP K , 
we proceed as follows. Consider the linear variety defined by ( ) 3x E =  and I, if the set of 
3-cycles that are tight with respect to I does not span this variety, then they belong to a 
proper subvariety, i.e. they satisfy another equality J ax β≡ =  such that I, J and ( ) 3x E =  are 
independent. By adding an appropriate linear combination of ( ) 3x E =  and I to J we can fix 
two coefficients of J to 0. Finally, using the fact that all tight 3-cycles with respect to I 
satisfy J we derive that 0ea β= =  for all .e E∈  

 
Proposition 2.  For each edge uv E∈ , the linear inequality 

 0ex ≥  (2) 

defines a facet of ( )nP K  whenever 6.n ≥  

Proof.  Suppose that all tight 3-cycles with respect to (2) (that is, all 3-cycles not containing 
the edge uv) satisfy an inequality .ax β=  Applying Lemma 2 to all 5K  not containing the 
edge uv we deduce that / 3ea β=  for all { }e E uv∈ − . Finally, fixing 0β =  and 0uva =  we 
get 0ea β= =  for all .e E∈  
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Lemma 3.  Let ,u v V∈  and 6n ≥  if all tight with respect to 

 ( ( ) ) 0uvx u uv xδ − − ≥  (3) 

3-cycles of nK  satisfy ax β=  then 

1

1 2

3

,
2 / 3 , for all { , },
/ 3 , for all ( ).

uv

vw

e

a a
a a a w V u v
a a e E u

β
β δ

=
= − = ∈ −
= = ∈ −

 

Proof.  The 3-cycles of 1nK −  not containing u are tight with respect to (3), thus they satisfy 
.ax β=  Using Lemma 2 we derive 3/ 3ea aβ= =  for all ( )e E uδ∈ − . Now, all 3-cycles 

( , , )u v w  with { , }w V u v∈ −  are tight with respect to (3) yielding 2 / 3uw uva aβ= −  for all 
{ , }w V u v∈ − .  

 
Proposition 3.  For each edge ,uv E∈  the inequality (3) defines a facet of nK  whenever 

6.n ≥  

Proof.  First apply Lemma 3, then fix two coefficients 1 0,aβ = =  yielding 2 3 0.a a= =   

The set of all integer solutions of the system ( ) 3x E = , (2) and (3) is exactly the set of all 
3-cycles of .nK  

 
Proposition 4.  For each subset X V⊆  such that 2 | | | | / 2,X V≤ ≤  the inequality 

 ( ( )) 2x Xδ ≤  (4) 

defines a facet of ( )nP K  whenever 6.n ≥  
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Proof.  Let us suppose that all tight 3-cycles with respect (4) belong to a proper subvariety 
defined by ( ) 3,x E =  (4) and .ax β=  Note that all 3-cycles of a 4K  containing two vertices 

,u v X∈  and two other ,u v V X∈ −  are tight with respect to (4). Applying Lemma 1 to 
these 4 ,K  we obtain 

1

2

for all ,  and ,
for all  and 

uv wt

uw

a a a u v X w t V X
a a u X w V X

= = ∈ ∈ −
= ∈ ∈ −

 

with 1 22 .a a β+ =  By fixing 1 2 0,a a= =  we get 0β =  and 0,ea =  for all edge .e E∈  

Using a computer code, we have been able to enumerate all facets of 6( ).P K  This polytope 
has 70 facets and is completely defined by inequalities (2), (3), (4) and ( ) 3.x E =  

 
Proposition 5.  Let ( , )G V E=  be a graph and let 

 { }( ) : ( ( )) 2 for all , 2 | | | | 2 .EQ G x x X X V X Vδ= ∈ ≤ ⊆ ≤ ≤ −  

The separation problem for ( )Q G  is NP-complete. 

Proof.  We provide a polynomial reduction from the problem MAXCUT which is proved to 
be NP-hard (Garey, Johnson & Stockmeyer, 1976). Its formulation follows. Given an 
undirected graph ( , )H V F=  and a positive integer k, find a subset of vertices X V⊆  such 
that | ( ) | .X kδ >  One can transform an instance of the MAXCUT problem in an instance of 
the separation problem for ( )nQ K  as follows. Suppose without loss of generality. that no 
vertex of H has a degree larger than k (otherwise one can find a cut of cardinality larger than 
k in linear time). Then, consider a real valued vector Ex∈  defined as follows 

2 /   if  
0 if e

k e F
x

e E F
∈

=  ∈ −
 

Clearly, there is a subset X V⊆  such that (4) separates x from ( )nQ K  if and only if there is 
a cut of cardinality larger than k in H. This concludes the proof of Proposition 5.  

 
Proposition 6.  For each subset of four vertices { , , , } ,u v w t V⊆  the inequality 

 ( ( ) { , }) ( ( ) { , }) 0uv wtx u uv uw x x w wt uw xδ δ− − + − − ≥  (5) 

defines a facet of ( )nP K  whenever 7.n ≥  

Proof.  Consider the complete subgraph 1nK −  which does not contain the vertex v. Since it 
has at least 6 vertices, as in the proof of Proposition 3, we can show that 0ea =  for each 
edge e of this subgraph, and thus 0β = . Analogously, one can show that the same equality 
holds for all edges of the subgraph 1nK −  which does not contain w. It remains to fix .uwa  
Note that 0β =  and consider one of the two 3-cycles containing the edge vw and which is 
tight with respect to (5), namely (u,v,w) or (u,t,w). We obtain 0.uwa =  
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(7)(6)(5)  

Proposition 7.  For each subset of three vertices { , , } ,u v w V⊆  the inequality 

 ( ( ) { , }) 2 0vw uv uwx u uv uw x x xδ − + − − ≥  (6) 

defines a facet of nK  whenever 7.n ≥  

Proof.  The proof is similar to that of Proposition 3. First, consider the complete subgraph 
1nK −  which does not contain the vertex v and then the one which does not contain w. Finally, 

consider the 3-cycle ( , , )u v w  which is tight with respect to inequality (6) and contains the 
edge .vw  

 
Proposition 8.  For a pair of vertices { , } ,u v V⊆  and each simple cycle C containing all 
vertices of V-{u,v} the inequality 

 ( ( ) { }) ( ( ) { }) 2 ( ) 2x u uv x v uv x Cδ δ− + − + ≥  (7) 

defines a facet of 7( )P K . 

Proof.  Consider a 4K  induced by u,v and any two non consecutive vertices w and t of the 
cycle C. Using Lemma 1 we derive 1wt uva a a= =  and 2uw vta a a= =  for each , .v w C∈  It 
remains to fix the coefficients of the edges of the cycle C. Let us consider a 3-cycle ( , , )v w t  
which contains only one edge wt of C. This 3-cycle is tight with respect to (7) implying 

12 .wta aβ= −  Finally, we fix 1 2 0.a a= =  and by considering a tight 3-cycle ( , , )u v w , we 
deduce 0β =  and 0ea =  for each edge .e C∈  

Using a computer code, we have been able to enumerate all 896 facets of 7( )P K . This 
polytope is completely defined by inequalities (2)-(7) and equality ( ) 3.x E =  Note that six 
classes of inequalities are necessary to describe completely 7( )P K . Note that, for 8n ≥ , the 
inequality (7) is not valid since it is violated by any 3-cycle consisting of vertices of C and 
not containing any edge of C. 
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(

........

........

........

T1 T2 Tk

S1 S2 S3

H

 

Now, we present a class of facet defining inequalities that generalizes the classes (3), (5) and 
(6). Given a positive integer k, a list , ,  ( 1,..., )i iS T i k=  of disjoint subsets of V, we define the 
following subsets of edges 

, ,
1

, , ,

,  ( : ),   ( : ),  

( : ),  ( : ),  ( : ).

k

i i S T i i i jS T
i i i j

S S i i T T i i H S i i
i i i

H V S T E S T E S T

E S S E T T E T T
= ≠

= − ∪ = =

= = =

∪ ∪ ∪

∪ ∪ ∪
 

Consider the following inequality 
 , , , ,,2( ( ) ( )) ( ) ( ) ( ) 0S S T T S T H SS Tx E x E x E x E x E+ − + + ≥  (8) 

 
Proposition 9.  If 5,n ≥  | | 5,H k+ ≥  and at least one of the following conditions holds: 

1

1

1. 2
2. |S | 1
3. |T | 2

k ≥
=
≥

 

then (8) defines a facet of ( ).nP K  

Proof.  We distinguish two cases. 

Case 1: k ≥ 2.  

Consider one after another all K4 obtained by picking a vertex in each subset 
, ,  and i i j jS T S T  for i,j=1,...,k, i≠j. By applying Lemma 1 for each of these K4 we get 

the following equalities 

1

2

3

1 2 3

for each ,  
for each ,  with 

for each , , ,  with 

i i

i j

i j i j

s t i i i i

s t i i j j

s s t t i i j j i i j j

a a s S t T
a a s S t T i j

a a a s S s S t T t T i j

a a a β

= ∈ ∈

= ∈ ∈ ≠

= = ∈ ∈ ∈ ∈ ≠

+ + =
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Let {s1,...,sk} and {t1,...,tk} be two subsets of vertices such that sj∈Tj and tj∈Tj for 
all j=1,...,k. For i=1,…,k, define Pi := H ∪ {si} ∪ {t1,t2,...,tk}. By hypothesis 
|Pi| = |H|+k+1 ≥ 6, hence by applying Lemma 3 to the complete subgraph induced 
by Pi we derive 

2 1

3

2 / 3

, {1,..., },  ,  , .
i

j j l

s v

vw t v t t

a a a v H

a a a a j l k j l v w H

β= = − ∈

= = = ∈ ≠ ∈
 

Note that any 3-cycle with two vertices in Ti and one in Si (or the reverse) satisfy 
(8), therefore 

12 for each 1,..., , , , , . 
i i i ir s q t i i i i i ia a a i k r s S q t Tβ= = − = ∈ ∈  

Fixing two coefficients β=a1=0, we get a2=a3=a4=0. This concludes Case 1. 

 
Case 2: k=1. We distinguish two subcases. 

|S1|=1. 

If |T1|=1 then the proof of Proposition 3 applies. Otherwise, let t1,q1 be two 
vertices in T1. We can apply Lemma 1 on the subgraphs induced respectively by 
the subsets of vertices P1= {s1} ∪ {t1} ∪ H and Q1= {s1} ∪ {q1} ∪ H and 
derive 

1 1

1

1

1 1

1

1

1

1 2

3

1

1 2

3

2 / 3 for each 

/ 3 for each ,

and
' for each 

2 / 3 ' ' for each ,

/ 3 '

s t

s v

vw t v

s q

s v

vw q v

a a

a a a v H

a a a v w H

a a v H

a a a v w H

a a a

β

β

β

β

=

= − = ∈

= = = ∈

= ∈

= − = ∈

= = =

 

Hence, a'2=a2, a'3=a3, and we deduce that a'1=a1. These equalities do not 
depend on the choice of the vertices t1, q1. Finally, note that all 3-cycles having 
two vertices in T1 and one in S1 satisfy (8), hence 

1 1 1 4 1 1 12 for each  ,t qa a a t q Tβ= − = ∈  

By fixing β=a1=0, we get a2=a3=a4=0. 

|S1| ≥ 2. 

In this subcase, |T1|≥ 2 because one of the three conditions of the proposition 
must hold. Choose two vertices s1,s'1∈S1. For each of them we can provide the 
same proof as in the case |S1|=1 and show that 
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1 1

1

1

1 1

1 1

1

1

1 1 1

1 2

3

1 4 1 1 1

1 1 1

' 1 2

3 1

for each 

2 / 3 for each 

/ 3 for each ,

2 for each ,

and
' for each 

2 / 3 ' ' for each 

/ 3 ' for each , ,

s t

s v

vw t v

t q

s q

s v

vw q v

a a t T

a a a v H

a a a v w H

a a a t q T

a a t T

a a a v H

a a a v w H t T

β

β

β

β

β

= ∈

= − = ∈

= = = ∈

= − = ∈

= ∈

= − = ∈

= = = ∈ ∈

1 1

1

1 4 1 1 12 ' ' for each ,t qa a a t q Tβ= − = ∈

 

We get a'3=a3 and a'4=a4, and deduce a'1=a1 and a'2=a2. Fixing β=a1=0, we 
concludes a2=a3=a4=0.  

 
Proposition 10.  Let C and C' be two simple cycles covering all vertices of Kn and such that 
if uv and vw belongs to C, then uw belong to C’. The inequality 

 ( ) ( ') 1x C x C− ≤  (9) 

defines a facet of P(Kn) whenever n is odd and n≥9. 

Proof.  Let e=uv, e'=wt∈C be two edges such that the K4 induced by the subset of vertices 
{u,v,w,t} has only the edges uv and wt in common with C and C'. Every 3-cycles of this K4 
are tight with respect to inequality (9). Using Lemma 1 for every such K4, we show that 

1

2

1 2

for each 
for each { '}

2 .

e

e

a a e C
a a e E C C

a a β

= ∈
= ∈ − ∪

+ =
 

Next, consider the 3-cycles (e,e',e'') with e,e'∈ C and e''∈ C’. They are also tight with respect 
to inequality (9), yielding that ae''+2a2=β and ae''=a3. Hence, the following equalities holds 

a1+2a2=β  and  a3+2a1=β 

Finally, we fix a1=a2=0, and concludes β =a3=0.  

 

4. Neighbourhood relation on P(Kn) 

A polyhedron P is said to be k-neighborly if each k-subset S ⊆ vert(P) defines a face 
F=conv(S) such that S=vert(F). 

Proposition 11.  P(Kn) is a 2-neighborly polytope whenever n≥4. 

Proof.  Given any two 3-cycles x=(v1v2v3) and x'=(v’1v’2v’3), the incidence vector of the 
subgraph obtained as the union of x' and x'' cannot be written as a convex linear combination 
of any other 3-cycles. Therefore, the intersection of conv(vert(P(Kn)-{x',x''})) and aff({x',x''}) 
is empty. In other words, conv({x',x''}) is a 1-face (an edge) of P(Kn). 
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Following Grünbaum (1967), we conclude that each 3-face of P(Kn) is a simplex, the 
diameter of P(Kn) is equal to 1, and the number of 1-faces of P(Kn) is equal to 

( 1)( 2) / 6
2

n n n− − 
 
 

. 

Furthermore, notice that for a linear program over P(Kn), the problem of finding the best 
neighbour of an extreme point is equivalent to the complete enumeration. 
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