
�

�

“main” — 2014/10/23 — 12:28 — page 395 — #1
�

�

�

�

�

�

Pesquisa Operacional (2014) 34(3): 395-419
© 2014 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
doi: 10.1590/0101-7438.2014.034.03.0395

COMPLEXITY OF FIRST-ORDER METHODS
FOR DIFFERENTIABLE CONVEX OPTIMIZATION

Clóvis C. Gonzaga1 and Elizabeth W. Karas2*

Received December 8, 2013 / Accepted February 9, 2014

ABSTRACT. This is a short tutorial on complexity studies for differentiable convex optimization. A com-

plexity study is made for a class of problems, an “oracle” that obtains information about the problem at a

given point, and a stopping rule for algorithms. These three items compose a scheme, for which we study

the performance of algorithms and problem complexity. Our problem classes will be quadratic minimiza-

tion and convex minimization in Rn . The oracle will always be first order. We study the performance of

steepest descent and Krylov space methods for quadratic function minimization and Nesterov’s approach to

the minimization of differentiable convex functions.

Keywords: first-order methods, complexity analysis, differentiable convex optimization.

1 INTRODUCTION

Due to the huge increase in the size of problems tractable with modern computers, the study
of problem complexity and algorithm performance became essential. This was recognized very
early by computer scientists and mathematicians working on combinatorial problems, and has

recently become a central issue in continuous optimization. Complexity studies for these prob-
lems started in the former Soviet Union, and the main results are described in the book by
Nemirovski & Yudin [14].

The special case of Linear Programming, which will not be tackled in this paper, initiated with

Khachiyan [10], also in Russia in 1978, and had an explosive expansion in the West with the
creation of interior point methods in the 80’s and 90’s.

This paper starts with a brief introduction to the main concepts in the study of algorithm per-
formance and complexity, following Nemirovski and Yudin, and then apply to the study of the

convex optimization problem:
minimize

x∈Rn
f (x), (1)

*Corresponding author.
1Department of Mathematics, Federal University of Santa Catarina, Cx. Postal 5210, 88040-970 Florianópolis, SC,
Brazil. E-mail: clovis@mtm.ufsc.br
2Department of Mathematics, Federal University of Paraná, Cx. Postal 19081, 81531-980 Curitiba, PR, Brazil.
E-mail: ewkaras@ufpr.br; ewkaras@gmail.com

�

�

“main” — 2014/10/23 — 12:28 — page 396 — #2
�

�

�

�

�

�

396 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

where f : Rn → R is a continuously differentiable function.

In Section 2 we introduce the general framework for the study of algorithm performance and

problem complexity and present a simple example.

We dedicate Section 3 to study the special case of convex quadratic functions, because they
are the simplest non-linear functions: if a method is inefficient for quadratic problems, it will
certainly be inefficient for more general problems; if it is efficient, it has a good chance of

being adaptable to general differentiable convex problems, because near an optimal solution the
quadratic approximation of the function uses to be precise. We study the performance of steepest
descent and of Krylov space methods.

Section 4 will describe and analyze a basic method for unconstrained convex optimization de-

vised by Nesterov [15], with “accelerated steepest descent” iterations. This method has become
very popular, and the presentation and complexity proofs will be based on our paper [7].

Finally, we comment in Section 5 on improvements of this basic algorithm, presenting without

proofs its extension to problems restricted to “simple sets” (sets onto which projecting a vector
is easy).

2 SCHEMES, PERFORMANCE AND COMPLEXITY

A complexity study is associated with a scheme (�,O, τε) as follows.

(i) � is a class of problems.
Examples: linear programming problems, unconstrained minimization of convex func-
tions.

(ii) O is an oracle associated to �.
The oracle is responsible for accessing the available informationO(x) about a given prob-
lem in � at a given point x .

Examples: O(x) = { f (x)} (zero order)

O(x) = { f (x), ∇ f (x)} (first order).

(iii) τε is a stopping rule, associated with a precision ε > 0.

Examples: for the minimization problem (1), τε defined by
f (x) − f ∗ ≤ ε,
‖∇ f (x)‖ ≤ ε

‖x − x∗‖ ≤ ε

where x∗ is a solution of the problem and f ∗ = f (x∗).

An instance in a scheme would be for example: Solve a convex minimization problem (�) using
only first order information (O) to a precision ‖∇ f (xk)‖ ≤ 10−6 (τε).

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 397 — #3
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 397

Algorithms. The general problem associated with a scheme (�,O, τε) is to find a point satis-

fying τε, using as information only consultations to the oracle and any mathematical procedures
that do not depend on the particular problem being solved.

The algorithms studied in this paper follow the black box model described now. An algorithm
starts with a point x0 and computes a sequence (xk)k∈N . Each iteration k accesses the oracle at

xk and uses the information obtained by the oracle at x0, x1, . . . xk to compute a new point xk+1.
It stops if xk+1 satisfies τε.

Algorithm 1. Black box model for (�,O, τε)

Data: x0, ε > 0, k = 0, I−1 = ∅
WHILE xk does not satisfy τε

Oracle at xk : O(xk)

Update information set: Ik = Ik−1 ∪ O(xk)

Apply rules of the method to Ik : find xk+1

k = k + 1.

Algorithm performance for (�,O, τε) (worst case performance)

Consider an algorithm for (�,O, τε).

• The iteration performance is a bound on the number of iterations (oracle calls) needed
to solve any problem in the scheme (�,O, τε). This bound will depend on ε and on pa-

rameters associated with each specific problem (initial point, space dimension, condition
number, Lipschitz constants, etc.). In other words, it is the number of iterations needed to
solve the “worst possible” problem in (�,O, τε).

• The numerical performance is a bound on the number of arithmetical operations needed

in the worst case. The numerical performance is usually proportional to the iteration per-
formance for each given algorithm. In this paper we only study the iteration performance
of algorithms.

• The complexity of the scheme (�,O, τε) is the performance of the best possible algorithm
for the scheme. It is frequently unknown, and finding it for different schemes is the main

purpose of complexity studies.

The performance of any algorithm for a scheme gives an upper bound to its complexity. A lower
bound to the complexity may sometimes be found by constructing an example of a (difficult)

problem in � and finding a lower bound for any algorithm based on the same oracle and stopping
rule. This will be the case in the end of Section 3.

If the performance of an algorithm for a scheme matches its complexity or a fixed multiple of it,
it is called an optimal algorithm for the scheme.

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 398 — #4
�

�

�

�

�

�

398 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

First-order algorithms: In most of this paper we study first-order algorithms for solving the

problem
minimize

x∈Rn
f (x)

where f : Rn → R is a differentiable function. The problem classes will be the special cases of
quadratic and convex functions.

A first-order algorithm starts from a given point x0 and constructs a sequence (xk) using the
oracle O(xk) = { f (xk), ∇ f (xk)} or simply O(xk) = {∇ f (xk)}. Each step computes a point
xk+1 using the information set Ik = ∪k

j=0O(x j) so that

xk+1 ∈ x0 + span
{
∇ f (x0), ∇ f (x1), . . . , ∇ f (xk)

}
where span(S) stands for the subspace generates by S.

In particular, the most well-known minimization algorithm is the steepest descent method, in
which

xk+1 = xk − λk∇ f (xk),

where λk is a steplength. Each different choice of steplength (the rules of the method) defines a

different steepest descent algorithm. This will be studied ahead in this paper.

Remark: In our algorithm model we used a single oracle, but there may be more than one.
Typically, O0(x) = { f (x)}, O1(x) = {∇ f (x)}, and O0 may be called more than once in each
iteration. This is the case when line searches are used. The performance evaluation must then be

adapted.

The notation O(·). Given two real positive functions g(·) and h(·), we say that g = O(h)

if there exists some constant K > 0 such that g(·) ≤ K h(·). This notation is very useful in
complexity studies. For example, we shall prove that a certain steepest descent algorithm stops

for k ≤ C
4 log

(
1
ε

)
, where C is a parameter that identifies the problem in � and ε is the precision.

We may write k = CO(log(1/ε)), ignoring the coefficient 1/4.

2.1 Example: root of a continuous function

Here we present a simple example to illustrate how a complexity analysis works. Consider the
following example of (�,O, τε) given by:

�: Given a continuous function f : [0, 1] → R with f (0) ≤ 0 and f (1) ≥ 0, find

x̄ ∈ [0, 1] such that f (x̄) = 0.

O: For x ∈ [0, 1], O(x) = { f (x)}.
τε : For ε > 0, τε is satisfied if |x − x∗| ≤ ε for some root x∗.

Remark: The stopping rule above is obviously not computable. We shall use a practical rule

that implies τε.

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 399 — #5
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 399

Algorithm 2. Bisection

Data: ε ∈ (0, 1), a0 = 0, b0 = 1, k = 0

WHILE bk − ak > ε (stopping rule)
m = (ak + bk)/2
Compute f (m) (oracle)

IF f (m) ≤ 0, set ak+1 = m, bk+1 = bk

ELSE set bk+1 = m, ak+1 = ak

k = k + 1.

Performance: the following facts are straightforward at all iterations:

(i) f (ak) ≤ 0 and f (bk) ≥ 0 and by the intermediate value theorem, τε is implied by
bk − ak ≤ ε.

(ii) bk − ak = 2−k.

If the algorithm does not stop at iteration k, then 2−k > ε, and then k < log2(1/ε). We conclude
that the stopping rule will be satisfied for k = �log2(1/ε)�, where �r� is the smallest integer
above r. Thus that the performance of the scheme above is k = �log2(1/ε)� = O(log(1/ε)).

It is possible to prove that this is the best possible algorithm for this scheme, and hence the

complexity of the scheme is this performance.

Remarks:

(i) Note that the only assumption here was the continuity of f . With stronger assumptions
(Lipschitz constants for instance), better algorithms are described in numerical calculus

textbooks.

(ii) The rules of the method are in the bisection calculation. Only the present oracle informa-

tion O(m) is used at step k.

3 MINIMIZATION OF A QUADRATIC FUNCTION: FIRST-ORDER METHODS

Quadratic functions are the simplest nonlinear functions, and so an efficient algorithm for mini-

mizing nonlinear functions must also be efficient in the quadratic case. On the other hand, near a
minimizer, a twice differentiable function is usually well approximated by a quadratic function.
A quadratic function is defined by

x ∈ Rn → f (x) = cT x + 1

2
xT H x

where c ∈ Rn and H is an n × n symmetric matrix. Then for x ∈ Rn ,

∇ f (x) = c + H x, ∇2 f (x) = H.

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 400 — #6
�

�

�

�

�

�

400 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

If x∗ is a minimizer or a maximizer of f , then

∇ f (x∗) = c + H x∗ = 0,

and hence finding an extremal of f is equivalent to solving the linear system H x∗ = −c, one of

the most important problems in Mathematics.

The behavior of a quadratic function depends on the eigenvalues of its Hessian H . Since H is
symmetric, it is known that H has n real eigenvalues

μ1 ≤ μ2 ≤ . . . ≤ μn ,

which may be associated with n orthonormal (mutually orthogonal with unit norm) eigenvectors
v1, v2, . . . , vn . There are four cases, represented in Figure 1:

(i) If μ1 > 0, then H is a positive definite matrix, f is strictly convex and its unique mini-
mizer is the unique solution of H x = −c.

(ii) If μ1 < 0, then infx∈Rn f (x) = −∞, and f (x) → −∞ along the direction v1.

Consider now the cases in which there are null eigenvalues. Let them be μ1 = μ2 =
. . . = μk = 0. Thus H is a positive semi-definite matrix.

(iii) If cT vi = 0 for i = 1, . . . , k, then f has a k-dimensional set of minimizers.

(iv) If cT vi < 0 for some i = 1, . . . , k, then f is unbounded below.

In this section, we study the following scheme:

�: the class of quadratic functions that are bounded below (cases (i) and (iii) above). A func-

tion in � has at least one minimizer x∗. Without loss of generality, the study of algorithmic
properties (not the implementation) may assume that x∗ = 0, and so the function becomes

f (x) = 1

2
xT H x, with ∇ f (x) = H x and f ∗ = f (x∗) = 0. (2)

O: O(x) = { f (x), ∇ f (x)} (first order).

τε : Given an initial point x0 ∈ Rn , two rules will be used in the analysis:
• Absolute error bound: f (x) − f ∗ ≤ ε,
• Relative error bound: f (x) − f ∗ ≤ ε(f (x0) − f ∗).

These rules are not implementable, because they require the knowledge of x∗, but are very
useful in the performance analysis.

Simplification: As we explained above, we assume that f (·) has a minimizer x∗ = 0. After per-
forming the analysis with this simplification, we substitute x − x∗ for x . A further simplification
may be done by diagonalizing H , also without loss of generality.

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 401 — #7
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 401

Case (i) Case (ii)

Case (iii) Case (iv)

Figure 1 – Quadratic functions.

3.1 Steepest descent algorithms

In the first half of the 19th century, Cauchy found that the gradient ∇ f (x) of a function f is the

direction of maximum ascent of f from x , and stated the gradient method. It is the most basic of
all optimization algorithms, and its performance is still an active research topic.

Algorithm 3. Steepest descent algorithm (model)

Data: x0 ∈ Rn , ε > 0, k = 0
WHILE xk does not satisfy τε

Choose a steplength λk > 0
xk+1 = xk − λk∇ f (xk) = (I − λk H)xk

k = k + 1.

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 402 — #8
�

�

�

�

�

�

402 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

Steplengths: Each different method for choosing the steplengths λk defines a different steepest

descent algorithm. Let us describe the two best known choices for the steplengths:

• The Cauchy step, or exact step,

λk = argmin
λ≥0

f (xk − λ∇ f (xk)), (3)

the unique minimizer of f along the direction −g with g = ∇ f (xk). The steplength is
computed by setting ∇ f (xk − λk g)⊥g and simplifying, which results in

λk = gT g

gT Hg
. (4)

• The short step: λk < 2/μn , a fixed steplength.

Complexity results
Now we study the iteration performance of the steepest descent methods with these two step-
length choices for minimizing a strictly convex quadratic function (case (i)). Given ε > 0 and

x0 ∈ Rn , we consider that τε is satisfied at a given x ∈ Rn if

f (x) − f ∗ ≤ ε (f (x0) − f ∗) (relative error bound). (5)

In both cases the algorithm stops in O(C log(1/ε)) iterations, where C = μn/μ1. At this moment

the following question is open: find a steepest descent algorithm (by a different choice of λk)
with performance O(

√
C log(1/ε)). This performance is achieved in practice for “normal prob-

lems” (but not for particular worst case problems) by Barzilai-Borwein and spectral methods,

described in [3].

Theorem 1. Let C = μn/μ1 ≥ 1 be the condition number of H . The iteration performance of

the steepest descent method with Cauchy steplength for minimizing f starting at x0 ∈ Rn and
with stopping criterion (5) is given by

k ≤
⌈C

4
log

(
1

ε

)⌉
.

Proof. We begin by stating a classical result for the steepest descent step, which is based on
the Kantorovich inequality and is proved for instance in [12, p. 238],

f (xk) ≤
(C − 1

C + 1

)2

f (xk−1).

Using this recursively, we obtain

f (xk)

f (x0)
≤
(C − 1

C + 1

)2k

=
(C − 1

C + 1

) 2k
C C

,

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 403 — #9
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 403

which implies

log

(
f (xk)

f (x0)

)
≤ 2k

C log

(C − 1

C + 1

)C
.

It is known that t ∈ [1, +∞) →
(

t−1
t+1

)t
is an increasing function and that for t > 1,

(
t − 1

t + 1

)t

≤ lim
t→∞

(
t − 1

t + 1

)t

= 1

e2 .

Consequently

log

(
f (xk)

f (x0)

)
≤ 2k

C log

(
1

e2

)
= −4k

C .

If τε is not satisfied at an iteration k, then by (5), f (xk)

f (x0)
> ε or

log(ε) < log

(
f (xk)

f (x0)

)
≤ −4k

C ,

which implies k < C
4 log

(
1
ε

)
, completing the proof. �

Example. In this example we show that the bound obtained in Theorem 1 is sharp, i.e., it cannot
be improved. Take the following problem in R2:

f (x) = 1

2
xT H x with H = diag(1,C) (i.e. μ1 = 1, μ2 = C).

Assume that the initial point of some iteration has the shape x = (C, 1) z, for some z ∈ R. Then

∇ f (x) = (x1,Cx2) = (1, 1) Cz.

Computing the steplength λ by (4), we obtain λ = 2/(C + 1), and then the next iterate will be

x+ = (C, 1) z − 2C
C + 1

(1, 1) z = C − 1

C + 1
(C, −1) z.

It follows that

f (x+) =
(C − 1

C + 1

)2

f (x),

and this will be repeated on all iterations, with the worst possible performance as in Theorem 1.

Theorem 2. Let C = μn/μ1 ≥ 1 be the condition number of H . The iteration performance of
the steepest descent method with short steps λk = 1/μn , for minimizing f starting at x0 ∈ Rn

and with stopping criterion (5) is given by

k ≤
⌈C

2
log

(
1

ε

)⌉
.

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 404 — #10
�

�

�

�

�

�

404 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

Proof. A simplification in the analysis can be made by diagonalizing the matrix H by using the

orthonormal matrix whose columns are the eigenvectors of H . Thus, we can consider, without
loss of generality, that H = diag(μ1, . . . , μn). Given x0 ∈ Rn , by the steepest descent algorithm
with short steps,

xk = xk−1 − 1

μn
∇ f (xk−1) =

(
I − 1

μn
H

)
xk−1.

Thus, for all i = 1, . . . , n,∣∣∣xk
i

∣∣∣ =
(

1 − μi

μn

) ∣∣∣xk−1
i

∣∣∣ ≤
(

1 − 1

C

) ∣∣∣xk−1
i

∣∣∣ .
Consequently, by the definition of f ,

f (xk) ≤
(

1 − 1

C

)2

f (xk−1).

Proceeding like in the proof of Theorem 1, we obtain

log

(
f (xk)

f (x0)

)
≤ 2k

C log

(
lim

t→∞

(
1 − 1

t

)t)
= 2k

C log

(
1

e

)
= −2k

C .

So, if τε is not satisfied at an iteration k, then k < C
2 log

(
1
ε

)
, completing the proof. �

Remarks:

• When the short steps 1/μn are used, the result is that for i = 1, . . . , n, |xk
i | ≤ √

ε |x0
i |,

for k ≥ C
2 log(1/ε). Hence not only f (xk) ≤ ε f (x0), but also ‖xk‖ ≤ √

ε ‖x0‖ and
‖∇ f (xk)‖ ≤ √

ε ‖∇ f (x0)‖.

• The diagonalization of H can be made without loss of generality for the performance

analysis, as we did in the proof of Theorem 2. This leads to an interesting observation
about the constant C, for the case in which there are null eigenvalues (case(iii)). Assuming
that μ1 = μ2 = . . . = μp = 0, we see that for i = 1, . . . , p, (∇ f (x))i = 0, and the

variables xi remain constant forever having no influence on the performance. The bounds
in Theorems 1 and 2 remain valid for C = μn/μp+1.

3.2 Krylov methods

Krylov space methods are the best possible algorithms for minimizing a quadratic function using

only first-order information. Let us describe the geometry of a Krylov space method for the
quadratic (2).

• Starting at a point x0, define the line V1 = {
x0 + θ ∇ f (x0) | θ ∈ R} and

x1 = argmin
x∈V1

f (x) = x0 + θ ∇ f (x0). (P1)

This is actually the Cauchy step. We may write V1 = x0 + span
{

H x0
}
.

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 405 — #11
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 405

• Second step: take the affine space defined by ∇ f (x0) and ∇ f (x1), V2 = x0 +
span

{∇ f (x0), ∇ f (x1)
}

and note that since ∇ f (x1) = H (x0 + θ ∇ f (x0)) = H x0 +
θ H 2x0,

V2 = x0 + span
{

H x0, H 2x0
}

and the next iterate will be
x2 = argmin

x∈V2

f (x). (P2)

This is a two-dimensional problem.

• k-th step: adding ∇ f (xk−1) to the set of gradients, we construct the set

Vk = x0 + span
{

H x0, . . . , H k x0
}

and the next point will be
xk = argmin

x∈Vk

f (x), (Pk)

a k−dimensional problem.

Since ∇ f (xk) ⊥ Vk because of the minimization, either ∇ f (xk) = 0 and the problem is solved,
or Vk+1 is (k + 1)−dimensional. It is then clear that xn is an optimal solution because Vn = R

n .

This gives us a first performance bound k ≤ n for the Krylov space method. This bound is bad
for high-dimensional spaces.

Main question: how to solve (Pk). Without proof (see for instance [15, 20]), it is known that the

directions (xk − xk−1) are conjugate, and any conjugate direction algorithm like Fletcher-Reeves
[4, 18] solves (Pk) at each iteration with about the same work as in the steepest descent method.

From now on we do a performance analysis of the Krylov space method, with stopping criterion

f (xk) − f ∗ ≤ ε (absolute error bound).

A result for the relative error bound will also be discussed in the end of the section. The analysis
is quite technical and will result in (16).

Definition 1. Given x0 ∈ Rn and k ∈ N, define the k-th Krylov space by

Kk = span
{

H x0, H 2x0, . . . , H kx0
}

.

Consider Vk = x0 +Kk and define the sequence (xk) by

xk = argmin
x∈Vk

f (x). (6)

Let Pk be the set of polynomials p : R → R of degree k such that p(0) = 1, i.e,

Pk =
{

1 + a1t + a2t2 + · · · + akt k | ai ∈ R, i = 1, . . . , k
}

. (7)

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 406 — #12
�

�

�

�

�

�

406 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

From now on we deal with matrix polynomials, setting t = H .

Lemma 1. A point x ∈ Vk if, and only if, x = p(H)x0 for some polynomial p ∈ Pk . Further-
more,

f (x) = 1

2
(x0)T H

(
p(H)

)2
x0. (8)

Proof. A point x ∈ Vk if, and only if,

x = x0 + a1H x0 + a2 H 2x0 + · · · + ak H k x0 = p(H)x0,

where p ∈ Pk . Furthermore,

f (x) = 1

2
(x0)T (p(H)

)T
H p(H)x0.

As H is symmetric,
(

p(H)
)T

H = H p(H), completing the proof. �

Lemma 2. For any polynomial p ∈ Pk ,

f (xk) ≤ 1

2
(x0)T H

(
p(H)

)2
x0.

Proof. Consider an arbitrary polynomial p ∈ Pk . From Lemma 1, the point x = p(H)x0

belongs to Vk . As xk minimizes f in Vk , we have f (xk) ≤ f (x). Using (8) we complete the
proof. �

Lemma 3. Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1, λ2, . . . , λn. If q : R → R

is a polynomial, then q(λ1), q(λ2), . . . , q(λn) are the eigenvalues of q(A).

Proof. As A is a symmetric matrix, there exists an orthogonal matrix P such that A = P D PT ,
with D = diag(λ1, λ2, . . . , λn). If q(t) = a0 + a1t + · · · + akt k, then

q(H) = a0 I + a1 P D PT + · · · + ak(P D PT)k = P
(

a0 I + a1 D + · · · + ak Dk
)

PT .

Note that
a0 I + a1D + · · · + ak Dk = diag

(
q(λ1), q(λ2), . . . , q(λn)

)
which completes the proof. �

3.2.1 Chebyshev Polynomials

The Chebyshev polynomials will be needed in the performance analysis of Krylov methods.

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 407 — #13
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 407

Definition 2. The Chebyshev polynomial of degree k, Tk : [−1, 1] → R, is defined by

Tk (t) = cos
(
k arccos(t)

)
.

The next lemma shows that Tk is, in fact, a polynomial (even though it does not look like one).

Lemma 4. For all t ∈ [−1, 1], T0(t) = 1 and T1(t) = t . Furthermore, for all k ≥ 1,

Tk+1(t) = 2t Tk(t) − Tk−1(t).

Proof. The first statements follow from the definition. In order to prove the recurrence rule,
consider θ : [−1, 1] → [0, π], given by θ(t) = arccos(t). Thus,

Tk+1(t) = cos
(
(k + 1)θ(t)

) = cos
(
kθ(t)

)
cos

(
θ(t)

) − sin
(
kθ(t)

)
sin
(
θ(t)

)
and

Tk−1(t) = cos
(
(k − 1)θ(t)

) = cos
(
kθ(t)

)
cos

(
θ(t)

) + sin
(
kθ(t)

)
sin
(
θ(t)

)
.

But cos
(
kθ(t)

) = Tk(t) and cos
(
θ(t)

) = t . So,

Tk+1(t) + Tk−1(t) = 2t Tk(t),

completing the proof. �

Lemma 5. If Tk(t) = akt k + · · · + a2t2 + a1t + a0, then ak = 2k−1. Furthermore,

(i) If k is even, then a0 = (−1)
k
2 and a2 j−1 = 0, for all j = 1, . . . , k

2 ;

(ii) If k is odd, then a1 = (−1)
k−1

2 k and a2 j = 0, for all j = 0, 1, . . . , k−1
2 .

Proof. We prove by induction. The results are trivial for k = 0 and k = 1. Suppose that
the results hold for all natural number less than or equal to k. Using the induction hypothesis,

consider

Tk (t) = 2k−1t k + · · · + a1t + a0 and Tk−1(t) = 2k−2t k−1 + · · · + b1t + b0.

By Lemma 4,

Tk+1(t) = 2t (2k−1t k + · · · + a1t + a0) − (2k−2t k−1 + · · · + b1t + b0), (9)

leading to the first statement. Suppose that (k + 1) is even. Then k is odd and (k − 1) is even.
Thus, by induction hypothesis, Tk has only odd powers of t and Tk−1 has only even powers. In
this way, by (9), Tk+1 has only even powers of t . Furthermore, its independent term is

−b0 = −(−1)
k−1

2 = (−1)
k+1

2 .

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 408 — #14
�

�

�

�

�

�

408 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

On the other hand, if (k + 1) is odd, then k is even and (k − 1) is odd. Again by the induction

hypothesis, Tk only has even powers of t and Tk−1 has only odd powers. Thus by (9), Tk+1 has
only odd powers of t . Furthermore, its linear term is

2ta0 − b1t = 2t (−1)
k
2 − (−1)

k−2
2 (k − 1)t = (−1)

k
2 (k + 1)t,

completing the proof. �

The next lemma discusses a relationship between a Chebyshev polynomial of odd degree and
polynomials of the set Pk , defined in (7).

Lemma 6. Consider L > 0 and k ∈ N. Then there exists p ∈ Pk such that, for all t ∈ [0, L],

T2k+1

(√
t√
L

)
= (−1)k (2k + 1)

√
t√
L

p(t).

Proof. By Lemma 5, for all t ∈ [−1, 1], we have

T2k+1(t) = t
(

22k t2k + · · · + (−1)k (2k + 1)
)

,

where the polynomial in parentheses has only even powers of t . So, for all t ∈ [0, L],

T2k+1

(√
t√
L

)
=

√
t√
L

(
22k

(
t

L

)k

+ · · · + (−1)k (2k + 1)

)
.

Defining

p(t) = 1

(−1)k (2k + 1)

(
22k

(
t

L

)k

+ · · · + (−1)k (2k + 1)

)
,

we complete the proof. �

3.2.2 Complexity results

Now we present the main result about the performance of Krylov methods for minimizing a

convex quadratic function. This result is based on [19, Thm. 3, p. 170].

We use the matrix norm defined by

‖A‖ = sup {‖Ax‖ | ‖x‖ = 1} = max {|λ| | λ is an eigenvalue of A} . (10)

Theorem 3. Let μn be the largest eigenvalue of H and consider the sequence (xk) defined by
(6). Then for k ∈ N

f (xk) − f ∗ ≤ μn ‖x0 − x∗‖2

2(2k + 1)2
, (11)

and f (xk) − f ∗ ≤ ε is satisfied for

k ≤
⌈

1√
8

√
μn ‖x0 − x∗‖√

ε

⌉
. (12)

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 409 — #15
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 409

Proof. Without loss of generality, assume that x∗ = 0. By Lemma 2, for all polynomial

p ∈ Pk ,

f (xk) ≤ 1

2
(x0)T H

(
p(H)

)2
x0 ≤ 1

2
‖x0‖2

∥∥∥H
(

p(H)
)2∥∥∥ . (13)

But, from Lemma 3 and (10),∥∥∥H
(

p(H)
)2∥∥∥ = max

{
μi
(

p(μi)
)2 | μi is an eigenvalue of H

}
.

Considering the polynomial p ∈ Pk given in Lemma 6 and using the fact that all eigenvalues of
H belong to (0, μn], we have∥∥∥H

(
p(H)

)2∥∥∥ ≤ max
t∈[0,μn]

{
t
(

p(t)
)2} = μn

(2k + 1)2
max

t∈[0,μn]

{
T 2

2k+1

(√
t√

μn

)}

≤ μn

(2k + 1)2 ,

(14)

proving (11). If τε is not satisfied at an iteration k, then f (xk) > ε and consequently

ε <
μn ‖x0‖2

2(2k + 1)2
<

μn ‖x0‖2

8k2

which implies (12) and completes the proof. �

Performance of the method for the relative error bound: A similar analysis for τε given by
(5), also using Chebyshev polynomials, can be done using the condition number C. This is done
in [14, 23], and the result is

k ≤
√C

2
log

(
2

ε

)
= O

(√
C log

(
1

ε

))
,

clearly better than the best performance of the steepest descent algorithm for the steplength rules

studied above, and for reasonable values of μ1, better than (12).

Complexity bound. The Krylov space methods uses at each iteration all the information gath-

ered in the previous steps, and hence it seems to be the best possible algorithm based on first
order information. In fact, Nemirovskii & Yudin [14] prove that no algorithm using a first order
oracle can have a performance more than twice as good as the Krylov space method.

For methods based on accumulated first order information there is a negative result described by

Nesterov [15, p. 59]: he constructs a quadratic problem (which he calls “the worst problem in
the world”) for which such methods need at least

k = 3

32

√
μn ‖x0 − x∗‖√

ε
(15)

iterations to reach τε .

We conclude that the best performance for a first order method must be between the bounds (12)

and (15). So the complexity of the scheme is

k = √
μn ‖x0 − x∗‖ O

(
1√
ε

)
. (16)

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 410 — #16
�

�

�

�

�

�

410 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

4 CONVEX DIFFERENTIABLE FUNCTIONS: THE BASIC ALGORITHM

In this section we study the performance of algorithms for the unconstrained minimization of
differentiable convex functions. Quadratic functions are a particular case, and hence the perfor-

mance bounds for first order algorithms will not be better than those found in the former section.

The role played by μn in quadratic functions will be played by a Lipschitz constant L for the
gradient of f (indeed, for a quadratic function the largest eigenvalue is a Lipschitz constant
for the gradient), and we shall see that there are optimal algorithms, i.e., algorithms with the

performance given by (16) with μn replaced by L . These algorithms were developed by Nesterov
[15], and are also studied in our papers [7, 8].

Consider the scheme (�,O, τε) where

�: the class of minimization problems of a convex continuously differentiable function f ,

with a Lipschitz constant L > 0 for the gradient. It means that for all x, y ∈ Rn ,

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖. (17)

O: O(x) = { f (x), ∇ f (x)} (first order)

τε : defined by f (x) − f ∗ ≤ ε where x∗ is a solution of the problem and f ∗ = f (x∗).

Simple quadratic functions. The following definition will be useful in our development: we
shall call “simple” a quadratic function φ : Rn → R with ∇2φ(x) = γ I , γ ∈ R, γ > 0. The
following facts are easily proved for such functions:

• φ(·) has a unique minimizer v ∈ Rn (which we shall refer as the center of the quadratic),
and the function can be written as

x ∈ Rn → φ(v) + γ

2
‖x − v‖2. (18)

• Given x ∈ Rn ,

v = x − 1

γ
∇φ(x), (19)

and

φ(x) − φ(v) = 1

2γ
‖∇φ(x)‖2. (20)

4.1 The algorithm

We now state the main algorithm and then study its properties. We include in the statement of
the algorithm the definitions of the relevant functions (approximations of f (·) and the simple

quadratic defined below).

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 411 — #17
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 411

We begin by summarizing the geometrical construction at an iteration k, represented in Figure 2.

The iteration starts with two points xk, vk ∈ Rn and a simple quadratic function

φk(x) = f (xk) + γk

2
‖x − vk‖2,

whose global minimizer is vk .

Figure 2 – The mechanics of the algorithm.

A point yk = xk + α(vk − xk) is chosen between xk and vk . The choice of α is a central issue,

and will be discussed later. All the action is centered on yk , with the following construction:

• Take a gradient step from yk , generating xk+1.

• Define a linear approximation of f (·)

x ∈ Rn → �(x) = f (yk) + ∇ f (yk)
T (x − yk).

• Compute a value α ∈ (0, 1), and define φα(x) = α�(x) + (1 − α)φk(x), with Hessian
γk+1 I = ∇2φα(x) = (1 − α)γk I , and let vk+1 be the minimizer of this simple quadratic.

The iteration is completed by defining

φk+1(x) = f (xk+1) + γk+1

2
‖x − vk+1‖2.

Now we state the algorithm.

Algorithm 4.

Data: x0 ∈ Rn , v0 = x0, γ0 = L , k = 0
REPEAT

Compute αk ∈ (0, 1) such that Lα2
k = (1 − αk)γk

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 412 — #18
�

�

�

�

�

�

412 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

Set yk = xk + αk(v
k − xk)

Compute f (yk) and g = ∇ f (yk)

Updates
xk+1 = yk − g/L (steepest descent step)

γk+1 = (1 − αk)γk

For the analysis define
x → φk(x) = f (xk) + γk

2 ‖x − vk‖2

x → �(x) = f (yk) + gT (x − yk)

x → u(x) = f (yk) + gT (x − yk) + L
2 ‖x − yk‖2

x → φαk (x) = αk�(x) + (1 − αk)φk(x)

vk+1 = argmin φαk (·) = vk − αk

γk+1
g

k = k + 1.

4.1.1 Analysis of the algorithm

The most important procedure in the algorithm is the choice of the parameter αk , which then
determines yk at each iteration. The choice of αk is the one devised by Nesterov in [15, Scheme

(2.2.6)]. Instead of “discovering” the values for these parameters, we shall simply adopt them
and show their properties.

Once yk is determined, two independent actions are taken:

(i) A steepest descent step from yk computes xk+1.

(ii) A new simple quadratic is constructed by combining φk(·) and the linear approximation
�(·) of f (·) about yk :

φαk (x) = αk�(x) + (1 − αk)φk(x).

Our scope will be to prove two facts:

• At any iteration k, φ∗
αk

≥ f (xk+1).

• For all x ∈ Rn , φk+1(x) − f (x) ≤ (1 − αk)(φk (x) − f (x)).

From these facts we shall conclude that f (xk) → f ∗ with the same speed as γk → 0, which

easily leads to the desired performance result.

The first lemma shows our main finding about the geometry of these points. All the action
happens in the two-dimensional space defined by xk, vk, vk+1. Note the beautiful similarity of
the triangles in Figure 3.

Lemma 7. Consider the sequences generated by Algorithm 4. Then for k ∈ N,

xk+1 − xk = αk(v
k+1 − xk).

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 413 — #19
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 413

g

x
k y

k
v

k

v
k+1

x
k+1

Figure 3 – Geometric properties of the steps.

Proof. By the algorithm, we know that Lα2
k = γk+1, and

αk(v
k+1 − xk) = αk

(
vk − xk − αk

γk+1
g

)

= αk(v
k − xk) − α2

k

γk+1
g

= αk(v
k − xk) − 1

L
g

= yk − xk − 1

L
g

= xk+1 − xk,

completing the proof. �

Lemma 8. Consider the sequences generated by Algorithm 4. Then for k ∈ N,

f (yk) ≤ φαk (v
k).

Proof. By the definition of φαk ,

φαk (v
k) = αk�(v

k) + (1 − αk)φk(v
k).

But, φk(v
k) = f (xk) ≥ �(xk). Using this, the definition of � and the fact that αk ∈ (0, 1), we

have

φαk (v
k) ≥ αk�(v

k) + (1 − αk)�(x
k)

= αk

(
f (yk) + gT (vk − yk)

)
+ (1 − αk)

(
f (yk) + gT (xk − yk)

)
= f (yk) + gT

(
αk(v

k − yk) + (1 − αk)(x
k − yk)

)
. (21)

By the definition of yk in the algorithm, vk −yk = (1−αk)(v
k −xk) and xk −yk = −αk(v

k −xk).
Substituting this in (21), we complete the proof. �

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 414 — #20
�

�

�

�

�

�

414 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

Lemma 9. Consider the sequences generated by Algorithm 4. Then for k ∈ N,

f (xk+1) ≤ u(xk+1) ≤ φαk (v
k+1) = φ∗

αk
, (22)

φk+1(·) ≤ φαk (·). (23)

Proof. The first inequality follows trivially from the convexity of f and the definition of u.

Since xk+1 and vk+1 are respectively global minimizers of u(·) and φαk (·), we have from (18)

that, for all x ∈ Rn ,

u(x) = u(xk+1) + L

2
‖x − xk+1‖2 and φαk (x) = φ∗

αk
+ γk+1

2
‖x − vk+1‖2. (24)

As f (yk) = u(yk) and, from the last lemma, u(yk) ≤ φαk (v
k), we only need to show that

u(yk) − u(xk+1) = φαk (v
k) − φ∗

αk
.

The construction is shown in Fig. 3: since, by Lemma 7, xk+1 = xk + αk(v
k+1 − xk),

yk − xk+1 = αk(v
k − vk+1).

Using this, (24) and the fact that by construction, α2
k = γk+1

L , we obtain

u(yk) − u(xk+1) = Lα2
k

2
‖vk − vk+1‖2 = γk+1

2
‖vk − vk+1‖2 = φαk (v

k) − φ∗
αk

,

proving the second inequality of (22).

By construction,
φk+1(x) = f (xk+1) + γk+1

2
‖x − vk+1‖2.

Comparing to (24) and using the fact that f (xk+1) ≤ φ∗
αk

, we get (23), completing the proof. �

Lemma 10. For any x ∈ Rn and k ∈ N,

φk(x) − f (x) ≤ γk

γ0
(φ0(x) − f (x)) . (25)

Proof. By the definition of φαk and the fact that �(x) ≤ f (x), for all x ∈ Rn ,

φαk (x) ≤ αk f (x) + (1 − αk)φk (x).

Subtracting f (x) in both sides, using (23) and the definition of γk+1, we have

φk+1(x) − f (x) ≤ φαk (x) − f (x)

≤ (1 − αk)(φk (x) − f (x))

= γk+1

γk
(φk(x) − f (x)).

Using this recursively, we get the result and complete the proof. �

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 415 — #21
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 415

4.1.2 Complexity

The following lemma was proved by Nesterov [15, p. 77] with a different notation.

Lemma 11. Consider the sequence (γk) generated by Algorithm 4, i.e., given γ0 > 0,

γk+1 = (1 − αk)γk, Lα2
k = γk+1.

Then, for k ∈ N, γk ≤ 4L/k2.

Proof. As αk = √
γk+1/L,

γk+1 =
(

1 − 1√
L

√
γk+1

)
γk.

Thus, the result follows directly from [7, Lemma 10]. �

Theorem 4. Consider the sequences generated by Algorithm 4 and assume that x∗ is an optimal
solution. Then for k ∈ N,

f (xk) − f ∗ ≤ 4L

k2
‖x∗ − x0‖2, (26)

and f (xk) − f ∗ ≤ ε is satisfied for

k ≤
⌈

2

√
L ‖x0 − x∗‖√

ε

⌉
. (27)

Proof. From Lemma 10, (25) holds in particular at x∗,

φk(x
∗) − f ∗ ≤ γk

γ0

(
φ0(x

∗) − f ∗) .
Using the fact that f (xk) = φk(v

k) ≤ φk(x∗) and the definition of φ0, we get,

f (xk) − f ∗ ≤ γk

γ0

(
f (x0) + γ0

2
‖x∗ − x0‖2 − f ∗) . (28)

Since x∗ is a minimizer of the convex function f ,

f (x0) − f ∗ ≤ L

2
‖x∗ − x0‖2.

Applying this and the result of Lemma 11 in (28),

f (xk) − f ∗ ≤ 2L(L + γ0)

γ0k2 ‖x∗ − x0‖2.

As γ0 = L , we have (26). If τε is not satisfied at an iteration k, then f (xk) − f ∗ > ε and
consequently

ε <
4L

k2
‖x∗ − x0‖2,

which implies (27) and completes the proof. �

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 416 — #22
�

�

�

�

�

�

416 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

So, the iteration performance of Algorithm 4 is

k = √
L ‖x0 − x∗‖ O

(
1/

√
ε
)
,

which corresponds to the complexity (16) for quadratic performance. Then, the algorithm is
optimal.

5 CONVEX DIFFERENTIABLE FUNCTIONS: ENHANCED ALGORITHMS

The algorithm presented in the former section may be extended in several ways: the need for a
previous knowledge of a Lipschitz constant L may be eliminated, a strong convexity constant
akin to the smallest eigenvalue in the quadratic case may be used, and the algorithm may be

extended to problems constrained to so-called simple sets. These extensions are treated in our
paper [8] and in references therein.

In this section we state the extension of the basic algorithm to problems with simple constraints,

without proofs. Consider the scheme (�,O, τε) where

�: the class of problems
minimize f (x)

subject to x ∈ �,

where � ⊂ R
n is a closed convex set and f : Rn → R is convex and continuously

differentiable, with a Lipschitz constant L > 0 for the gradient. We assume that � is a

“simple” set, in the following sense: given an arbitrary point x ∈ Rn , an oracle is available
to compute P�(x) = argmin

y∈�

‖x − y‖, the orthogonal projection onto the set �.

O: O(x) = { f (x), ∇ f (x), P�(x)}.
τε : defined by f (x) − f ∗ ≤ ε where x∗ is a solution of the problem and f ∗ = f (x∗).

We now state the basic algorithm for constrained problems, without proofs. We keep in the
statement the definition of the functions used in the analysis made in [8].

Algorithm 5.

Data: x0 ∈ �, v0 = x0, γ0 = L , k = 0
REPEAT

Compute α ∈ (0, 1) such that Lα2 = (1 − α)γk

yk = xk + α(vk − xk)

Compute f (yk) and g = ∇ f (yk)

Updates
xk+1 = P�(yk − g/L) (projected steepest descent step)
γk+1 = (1 − αk)γk

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 417 — #23
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 417

For the analysis define

x → φk(x) = f (xk) + γk
2 ‖x − vk‖2

x → �(x) = f (yk) + gT (x − yk)

x → u(x) = f (yk) + gT (x − yk) + L
2 ‖x − yk‖2

x → φαk (x) = αk�(x) + (1 − αk)φk (x)

vk+1 = argmin
x∈�

φαk (x) = P�

(
vk − αk

γk+1
g

)
k = k + 1.

Consider the sequences generated by Algorithm 5. Then, as proved in [8, Thm. 2.6], at any
iteration k before stopping,

ε ≤ f (xk) − f ∗ ≤ 4

k2

(
f (x0) − f ∗ + L

2
‖x∗ − x0‖2

)
.

and hence

k ≤ 2√
ε

(
f (x0) − f ∗ + L

2
‖x∗ − x0‖2

)1/2

.

This expression is similar to (27). In fact, if x∗ is a global minimizer, then

f (x0) − f ∗ ≤ L

2
‖x∗ − x0‖2

may be introduced in the last expression, retrieving (27).

Estimations of the Lipschitz constant. Both Algorithms 4 and 5 and the algorithms discussed

by Nesterov in [15, Chapter 2] make explicit use of a Lipschitz constant L for the function gra-
dient. In [16], Nesterov describes a method for a more general problem, easily applied to the
situations studied in this paper. This method includes a scheme for estimating the Lipschitz con-

stant. In [7, 8], the authors eliminate the use of L at the cost of an extra imprecise line search, and
obtain an algorithm which keeps the optimal complexity properties and also inherits the global
convergence properties of the steepest descent method for general continuously differentiable

optimization. Besides this, the algorithm takes advantage of the knowledge of the strong convex-
ity constant for the function and develop in [7] an adaptive procedure for estimating it. In another
context – constrained minimization of non-smooth homogeneous convex functions – Richtárik

[21] uses an adaptive scheme for guessing bounds for the distance between a point x0 and an
optimal solution x∗. This bound determines the number of subgradient steps needed to obtain a
desired precision.

Extensions. Nesterov’s approach is applied to penalty methods by Lan, Lu & Monteiro [11], and
interior descent methods based on Bregman distances are described by Auslender & Teboulle [1].
This method has been generalized to a non-interior method using projections by Rossetto [22].

Results for higher order methods are discussed in Nesterov & Polyak [17]. Accelerated versions
of first-order algorithms following Nesterov’s approach were developed by Monteiro, Ortiz &
Svaiter [13] and by Beck & Teboulle [2], with improved performance for benchmark problems.

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 418 — #24
�

�

�

�

�

�

418 COMPLEXITY OF FIRST-ORDER METHODS FOR DIFFERENTIABLE CONVEX OPTIMIZATION

6 CONCLUSIONS

In this paper we described what we believe to be the basic results in the study of algorithm per-
formance and problem complexity for the minimization of convex functions, both unconstrained

and with simple constraints.

Algorithms with proved low worst-case performance are not necessarily efficient for practical
problems. Khachiyan’s algorithm [10] for linear programming is very inefficient, but had a great
impact on the development of both continuous and discrete optimization. Karmarkar’s algorithm

[9] for linear programming improved Khachiyan’s performance bound, and his bound was again
improved later (see [6]). The effort to improve complexity led to better algorithms, which are
nowadays used for solving large scale linear and quadratic in many domains. In fact, the largest

linear programming problem treated up to now had 1.1 billion variables and 380 million con-
straints, solved by Gondzio & Grothey [5] using an interior point algorithm.

The conjugate gradient algorithm (Krylov space method) has optimal performance for quadratic
problems, but its extension to more general problems is not straightforward. It was superseded

by quasi-Newton methods, which are more efficient for non-quadratic problems, but coincide
with it in the convex quadratic case. Note that the conjugate gradient method was not motivated
by the complexity study, which came later.

Accelerated gradient methods are now in the phase of development, and we are not aware of any

extensive comparison with classical algorithms. Research in this field is presently very active,
and it is not clear to what classes of problems this approach will be applied and which methods
will be the winners in practical applications to large-scale problems.

REFERENCES

[1] AUSLENDER A & TEBOULLE M. 2006. Interior gradient and proximal methods for convex and conic
optimization. SIAM Journal on Optimization, 16(3): 697–725.

[2] BECK A & TEBOULLE M. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM J. Img. Sci., 2(1): 183–202, March.

[3] BIRGIN EG, MARTÍNEZ JM & RAYDAN M. 2009. Spectral Projected Gradient Methods. In C.A.

Floudas and P.M. Pardalos, editors, Encyclopedia of Optimization, pages 3652–3659. Springer.

[4] FLETCHER R & REEVES CM. 1964. Function minimization by conjugate gradients. Computer J., 7:
149–154.

[5] GONDZIO J & GROTHEY A. 2006. Solving nonlinear financial planning problems with 109 decision

variables on massively parallel architectures. In M. Costantino and C. A. Brebbia, editors, Computa-

tional Finance and its Applications II, WIT Transactions on Modelling and Simulation, 43, volume

43. WIT Press.

[6] GONZAGA CC. 1992. Path-following methods for linear programming. SIAM Review, 34(2): 167–

224.

[7] GONZAGA CC & KARAS EW. 2013. Fine tuning Nesterov’s steepest descent algorithm for differen-
tiable convex programming. Mathematical Programming, 138(1-2): 141–166.

Pesquisa Operacional, Vol. 34(3), 2014

�

�

“main” — 2014/10/23 — 12:28 — page 419 — #25
�

�

�

�

�

�

CLÓVIS C. GONZAGA and ELIZABETH W. KARAS 419

[8] GONZAGA CC, KARAS EW & ROSSETTO DR. 2013. An optimal algorithm for constrained differ-

entiable convex optimization. SIAM Journal on Optimization, 23(4): 1939–1955.

[9] KARMARKAR N. 1984. A new polynomial time algorithm for linear programming. Combinatorica,

4: 373–395.

[10] KHACHIYAN LG. 1979. A polynomial algorithm for linear programming. Doklady Akad. Nauk USSR,
244: 1093–1096. Translated in Soviet Math. Doklady 20: 191–194.

[11] LAN G, LU Z & MONTEIRO RDC. 2011. Primal-dual first-order methods with O(1/ε) iteration-

complexity for cone programming. Mathematical Programming, 126(1): 1–29.

[12] LUENBERGER DG & YE Y. 2008. Linear and Nonlinear Programming. Springer, New York, third

edition.

[13] MONTEIRO RDC, ORTIZ C & SVAITER BF. 2012. An adaptive accelerated first-order method for
convex optimization. Technical report, School of ISyE, Georgia Tech, July.

[14] NEMIROVSKI AS & YUDIN DB. 1983. Problem Complexity and Method Efficiency in Optimization.
John Wiley, New York.

[15] NESTEROV Y. 2004. Introductory Lectures on Convex Optimization. A basic course. Kluwer Aca-

demic Publishers, Boston.

[16] NESTEROV Y. 2013. Gradient methods for minimizing composite objective function. Mathematical

Programming, 140(1): 125–161.

[17] NESTEROV Y & POLYAK BT. 2006. Cubic regularization of Newton method and its global perfor-
mance. Mathematical Programming, 108: 177–205.

[18] NOCEDAL J & WRIGHT SJ. 2006. Numerical Optimization. Springer Series in Operations Research.

Springer-Verlag, 2nd edition.

[19] POLYAK BT. 1987. Introduction to Optimization. Optimization Software Inc., New York.

[20] RIBEIRO AA & KARAS EW. 2013. Otimização Contı́nua: aspectos teóricos e computacionais. Cen-

gage Learning. In Portuguese.

[21] RICHTÁRIK P. 2011. Improved algorithms for convex minimization in relative scale. SIAM Journal

on Optimization, 21(3): 1141–1167.

[22] ROSSETTO DR. 2012. Tópicos em métodos ótimos para otimização convexa. PhD thesis, Department

of Applied Mathematics, University of São Paulo, Brazil. In Portuguese.

[23] SHEWCHUK JR. 1994. An introduction to the conjugate gradient method without the agonizing pain.

Technical report, School of Computer Science, Carnegie Mellon University, August.

Pesquisa Operacional, Vol. 34(3), 2014

