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ABSTRACT. This study considers the use of a composicional statistical model under a Bayesian approach
using Markov Chain Monte Carlo simulation methods applied for road traffic victims ocurring in federal
roads of Brazil in a specified period of time. The main motivation of the present study is based on a database
with information on the injury severity of each person involved in an accident occurred in federal highways
in Brazil during a time period ranging from January, 2018 to April, 2019 reported by the federal highway
police office of Brazil. Four types of events associated with each injured person (uninjured, minor injury,
serious injury and death) are grouped for each state of Brazil in each month characterizing compositional
multivariate data. Such kind of data requires specific modeling and inference approaches that differ from
the traditional use of multivariate models assuming multivariate normal distributions.The proportion events
associated to the accidents (uninjured, minor injuries, serious injuries and deaths) are considered as a sample
of vectors of proportions adding to a value one together with some covariates such as pavement conditions
in each province, regions of Brazil, months and years that may affect the severity of the injury of each
person involved in an accident. From the obtained results, it is observed that the proportions of serious

accidents and deaths are affected by some covariates as the different regions of Brazil and years.

Keywords: accident victims, types of injuries, deaths, federal highways, compositional data, Bayesian
approach.

1 INTRODUCTION

A major world public health problem is related to traffic accidents where the death toll reached
1.35 million in 2016. With the fast increase of vehicles in circulation and the lack of monitoring
infrastructure especially in third world countries the situation tends to get worse. According
to a report from the World Health Organization (World Health Organization et al., 2018) as
progress is made in the prevention and control of infectious diseases, the number of deaths from
non-communicable diseases and injuries has increased significantly in recent years.
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2 COMPOSITIONAL STATISTICAL MODELS UNDER A BAYESIAN APPROACH

Traffic is already responsible for the eighth cause of death in all age groups, where traffic injuries
are currently the leading cause of death for children and young adults aged 5 to 29 years. An
improvement in traffic deaths reduction has already been observed in more developed countries,
but the situation is catastrophic in most emerging and poor countries. There is a strong association
between the risk of death in traffic and the income level of the countries. With an average rate
of 27.5 deaths per 100,000 inhabitants, the risk of death in traffic is three times higher in low-
income countries than in high-income countries, where the average rate is 8.3 deaths per 100,000
inhabitants. In addition, the number of road traffic fatalities is disproportionately high among low
and middle-income countries relative to the size of their populations and the number of motor
vehicles in circulation compared to the rest of the world (see Table 1).

Table 1 — Proportion of population, traffic deaths and number of registered vehicles by country in 2016
(income based on World Bank classification in 2017).

High Income Average Income Low Income

% of population 15% 76% 9%
% traffic deaths 7% 80% 13%
% registered vehicles 40% 59% 1%

In many emerging countries, including Brazil, this problem gets worse by a number of factors,
including low educational attainment and severe infrastructure problems on highways and urban
roads (see for example, World Health Organization, 2018; Bhalla et al., 2014; Waiselfisz, 2013;
Bahadorimonfared et al., 2013; Bacchieri & Barros, 2011; Jorge et al., 2009; Marin-Le6n et al.,
2012; Andrade & Mello-Jorge, 2016; Marin & Queiroz, 2000; Lyons et al., 2008). In Brazil, the
high numbers of accident injuries especially with serious injuries has been a challenge for the
single health system (SUS) (Malta et al., 2012; Jorge et al., 2008; Silva & Andrade, 1996; Klein,
1994; Jorge et al., 1994; Haagsma et al., 2016). It is also observed that the number of deaths
at the crash site on Brazilian highways is very large compared to other emerging countries and
first world countries. Many studies related to road improvement under an operational research
approach are presented in the literature (see for example, Martinez et al., 2017; Castro Aragén
& Leal, 2003; Novaes, 2001) but not so many related to traffic accidents. Among these studies
related to road accidents under an operational research approach we could quote Baykal-Glirsoy
etal. (2009); Szwed et al. (2006); Haastrup (1994); Assimizele et al. (2020); Mekker et al. (2018).

Traffic accident rates with deaths in Brazil are only surpassed by India, China, the United States
and Russia (World Health Organization, 2018) where between 1980 and 2011 nearly one mil-
lion people died from traffic accidents in the country, despite new laws being introduced and
implemented in 1998 (Brazilian Traffic Code or CTB) establishing conduct rules, infractions and
penalties for drivers and in 2008 with some changes to CTB establishing stricter penalties for
drunk drivers (Abreu et al., 2018).

It is important to point out that road transport in Brazil is the country’s main logistics system
with a network of 1,720,700 kilometers (Boletim Estatistico do CNT, 2018) of national roads
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and highways (the fourth largest in the world, CIA World Factbook, Brazil), where 61.1% of
all cargo handled in Brazil circulates (Boletim Estatistico do CNT, 2018). This highway system,
often containing old highways, with poorly drawn roads, simple and poorly signposted roads,
is the main means of transporting cargo and passengers in the country’s traffic. This kind of
transport system has been used since the beginning of the republic, when governments began to
prioritize road transport over rail and river transport. Under the epidemiological classification,
traffic accidents have been a highlight in external causes of mortality (ICD-10 codes WHO V01
to Y98, 1993), where in the period from 1977 to 1986 the traffic accident mortality rate in Brazil
went from 16 to 22/100 thousand leading to a 38% increase (Barros et al., 2003).

2 METHODOLOGY

This study considered a database related to the victims of road accidents (victims of land trans-
port accidents ICD-10 headings VO1 to V89, World Health Organization, 2004) reported by the
federal police (PF) of Brazil regarding all federal highways in the period ranging from January
1, 2018 to April 30, 2019 covering all states of the federation (https://www.prf.gov.br/portal/
dados-abertos/acidents) where the federal police reported for each victim the type of injury (un-
harmed, minor injury, serious injury and death) and some important factors such as cause of the
accident, type of accident, phase of the day, weather condition, type of track, road layout, age of
the victim, gender of the victim and type of vehicle. This information is described in the accident
reports prepared by the road police officers for each road accident. In this paper the data are
grouped in the form of monthly compositional data (observed proportion of uninjured, lightly
injured, severely injured and injured who died at the accident site) for each federative unit in
Brazil. The data set is presented in Table Al in an appendix at the end of the manuscript. Table
2 shows the total of casualties in each class (unharmed, mild, severe, death) from January 1,
2018 to April 30, 2019 for all units of the federation. Figure 1 shows the box-plots of each class
(unharmed, mild injury, severe injury and death) considering all federative units of the Brazil
federation. Figure 2 shows the time series for the proportions %unharmed, %mild, %severe and
%death. Figure 3 presents time series plots of the proportions observed for the 27 federative units
in Brazil.

From the box-plots of Figure 1, it is possible to see that some provinces as Sdo Paulo state (SP)
presents greater proportion of unharmed victims of the road accidents while other states as Minas
Gerais (MG) presents smaller proportion of unharmed victims when compared to other federative
units of Brazil. Also it is observed that the proportion of injury severity is smaller for Sao Paulo
(SP) state in comparison to the other federative units of Brazil while for some northeast federative
units as Alagoas (AL), Maranhdo (MA), Sergipe (SE) and Rio Grande do Norte (RN) there are
large proportions of injury severity in comparison to the other federative units of Brazil.
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4 COMPOSITIONAL STATISTICAL MODELS UNDER A BAYESIAN APPROACH
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Figure 1 — Box plots for the proportions (unharmed, mild, severe, death) by each federative unit.
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Figure 2 — Time series for %unharmed, %mild, %severe, death).

2.1 Modeling of Compositional Data

Compositional data are vectors of proportions specifying G fractions of a total. Denoting
x = (x1,x2,...,xc) to be a compositional vector, we must have x; > 0, for i = 1,...,G and
x1+x+...4+x¢ = 1. Compositional data often result when raw data is normalized or when data
is obtained as proportions of a certain heterogeneous amount. These conditions are usual in geol-
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Figure 3 — Compositional proportions (unharmed, mild, severe, death) by federative unit.

ogy, economy and biology. Standard existing methods for analyzing multivariate data under the
usual assumption of normal multivariate distribution (see, for example, Johnson et al., 2002) are
not appropriate to analyze compositional data, since we have compositional constraints. Differ-
ent modeling approaches are considered to analyze compositional data. A first model considered
to analyze compositional data was based on the Dirichlet distribution, but this model requires
that the correlation structure should be totally negative, an unobserved fact for compositional
data where some correlations are positive (see, for example, Aitchison, 1982; Atchison & Shen,
1980).

Atchison & Shen (1980) introduced the lognormal distribution to analyze compositional data,
transforming the vector of G components x into a vector y defined in the real coordinate space R,
considering an additive ratio log (ALR) function. Rayens & Srinivasan (1991) extended the ALR
transformation considering Box & Cox (1964) transformations as a generalization of the log-ratio
function. Another possibility is to consider the isometric log-ratio (ILR) transformation (Egozcue
et al., 2003; Martin Ferndndez et al., 2015), but the inverse transformation to get the proportions
in each class are more complex in the computational work and the obtained results are very
similar to the obtained results assuming the ALR transformation (see for example, Martinez
et al., 2020). Usually we have great difficulty to get classical inference results for these models,
especially in the presence of a covariate vector. Alternatively, the use of Bayesian methods (see,
for example, Gelman et al., 2013) is a good alternative to analyze compositional data (see, for
example, Iyengar & Dey, 1996, 1998; Tjelmeland & Lund, 2003; Shimizu et al., 2015), especially
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6 COMPOSITIONAL STATISTICAL MODELS UNDER A BAYESIAN APPROACH

Table 2 — Total count of ocurrences in each class (unharmed, mild, severe, death) from January 1, 2018 to
April 30, 2019 for all federation units (FU).

FU Unharmed Mild Severe Death

AC 422 416 88 30

AL 1335 1017 528 201

AM 261 214 63 36

AP 429 290 132 38

BA 7363 7160 2660 890
CE 4255 3031 1367 444
DF 2027 2058 327 114
ES 4439 3813 1845 309
GO 7493 7173 2410 671

MA 2553 1686 966 553
MG 17461 18713 5013 1509
MS 4052 3171 984 572
MT 5038 4184 997 473
PA 2444 1651 568 285
PB 3494 3064 1183 373
PE 5580 4342 1498 741

PI 2718 1865 976 354
PR 17438 13128 4557 1302
RJ 9050 7743 1716 641

RN 2339 2204 878 192
RO 4277 3117 989 254
RR 431 453 120 72

RS 10871 8786 2338 792
SC 16326 14863 4004 1133
SE 1214 1080 454 174
Sp 11266 8046 1469 398
TO 1331 960 325 176

considering Markov Chain Monte Carlo (MCMC) methods (see, for example, Gelfand & Smith,
1990; Smith & Roberts, 1993).

Thus, the compositional data introduced in Table A.1 are denoted by xj; = % unharmed, xo; = %
mild injuries, x3; = % severe injuries and x4; = % deaths. Let us assume a model with additive ratio
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log (ALR) transformation given by yi; = log(x2;/x1;), y2i = log(x3;/x1;) and y3; = log(xa;/x1;)

given by,
yi = g(B1.z)+witegj
o = g(Byz)+witej
i = 8(Bs.zi)+wite €))

where B, B, and B are vectors of regression parameters, z; is a covariate vector associated
to the i observation i = 1,2,...,432, w; is a random effect (latent unobserved variable) that
captures the dependency between the proportions for each province/month and €j; are errors
(non-observed variables) assumed to be independent random variables with normal distribu-
tions N (O,sz). Different distributions could be assumed for the random effects w;; in study,
it is assumed a normal distribution N(0, 62).

For a hierarchical Bayesian analysis of the model, it is assumed normal prior distributions for the
regression parameters with known hyperparameter values. For the second stage of the hierarchi-
cal Bayesian analysis, it is assumed a gamma prior distribution for the inverse of the variance 2
of the latent variable w;, that is,

T ~ G(ay,by) 2)

where G(a,b) denotes a gamma distribution with mean a/b and variance a/b>; T; = 1/62; a,, and
b,, are known hyperparameters. Further, it is assumed prior independence among the parameters.

Posterior summaries of interest for model (1) are obtained using simulated samples of the joint
posterior distribution for the model parameters using MCMC methods. The simulation algo-
rithm to generate samples of the joint posterior distribution for the model parameters is obtained
from the complete conditional posterior distributions for each parameter required in the MCMC
simulation algorithm. A great simplification in the simulation procedure is to use some existing
Bayesian simulation software. One such software is the Openbugs software (see, for example,
Lunn et al., 2009), where it is only needed to specify the joint distribution for the observations
and the prior distributions for the parameters of the assumed model.

Associated with the compositional data, there are some covariates such as month, year and region
of Brazil where the accident occurred. In addition to these covariates, other independent variables
of interest may also be associated with the compositional responses, such as road condition, road
layout, weather condition, and accident time. An important covariate in the occurrence of road
accidents is given by the condition of the pavement. Table 3 presents road pavement conditions
considering samples of a few kilometers of highways in each federal unit of Brazil presented in
the site related to the year 2018 “CNT 2018 Highways Survey”.

For the analysis of the compositional data given in Table A.1, it is assumed the following covari-
ates: month, year, percentage of pavement good, fair, bad, very bad (the optimum percentage is
not considered due to restriction %optimum + %good + regular% +%bad + %very bad = 1) and
the dummy variables related to the northeast (1 for NE and 0 otherwise), midwest (1 for CO and
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8 COMPOSITIONAL STATISTICAL MODELS UNDER A BAYESIAN APPROACH

0 otherwise), southeast (1 for SE and 0 otherwise) and south (1 for S and 0 otherwise) regions
where the northern region (N) is considered as a reference.

In the data analysis, it is first assumed a regression model with compositional data (1) not con-
sidering the presence of the latent factor W denoted as “model 17, that is, assuming indepen-
dence among the responses in the additive log-ratio (ALR) transformation y;; = log(x;/x1;),
yai = log(x3;/x1;) and y3; = log(x4;/x1;) where xj; = % unharmed, x; = % minor injuries, x3; =
% severe injuries and x4; = % deaths. Thus, it is assumed the linear regression models:

yii = g(Byp.z)+wite;
o = g(Byz)+wite
vii = 8(Bszi)+wite 3)

where,

g(ﬁlvzi)

Bi1 + Bio month; + Bi3 year; + Bra%good.pav; + Bis%regular.pav;
Bis%obad.pav; + B17%lousy. pav; + Bisregion.NE; 4+ Bigregion.CO;

+ +

Biioregion.SE; + By11region.S;,
g2(By,zi) = P+ Bramonth; + Bozyear; + Boa%good.pav; + Bys%regular.pav;
Bas%obad.pav; + Bo1%elousy. pav; + Pogregion.NE; 4+ Brgregion.CO;

+ +

Baroregion.SE; + Bo11region.S;,
g(B3,z)) = PBas1+ Bsamonth; + Bazyear; + B3a%good.pav; + B3s%regular.pav;
+  Bs¢%bad.pav; + Bs1%lousy. pav; + Bsgregion.NE; + Bsgregion.CO;
+ Bsioregion.SE; + B311region.S; )

and €j; are independent assumed errors with normal distributions N (0, sz), j=1,2.3.

From the ALR transformations assuming the real proportions py;, p2i, p3i and ps; where, py; +
P2i+ p3i+pai = 1, we have, y1; = log(x2i/x1:), y2i = log(x3;/x1;) and y3; = log(x4;/x1;), and the
inverse estimated proportions in each class are easily obtained from the expressions,

pii = 1/[l+exp(yui) +exp(y2i) +exp(y3)],

pai = exp(yn)/[1+exp(Vii) +exp(yai) +exp(33i)],

p3i = exp(ya)/[1+exp(yni) +exp(yai) +exp(y3i)],

pai = exp(y3)/[1+exp(ii) +exp(yai) + exp(33i)] Q)

where y1;,¥2;,¥3; and y4; are predicted values based on the estimated model.

Assuming normal independent prior distributions N(0,1) for all regression parameters and
gamma distributions G(1,1) for the variances of the errors €;;, &; and €3;, Table 4 shows the
posterior summaries of interest (Monte Carlo estimators given by the posterior parameter means,
posterior standard deviations of the parameters and 95% credibility intervals) based on 1000 sim-
ulated Gibbs samples (every 100th simulated sample among 100,000 generated Gibbs samples
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Table 3 — Condition of the pavement — total length evaluated.

FU Optimum Good Regular Bad VeryBad Total

AC 0 10 480 192 651 1333
AL 635 62 71 20 0 788

AM 10 0 429 282 363 1084
AP 127 10 306 60 0 503

BA 4218 849 3021 576 278 8942
CE 1127 423 1396 493 142 3581

DF 214 24 153 51 30 472

ES 908 100 611 88 24 1731

GO 2434 257 3575 580 617 7463
MA 1841 355 1540 362 579 4677
MG 5346 1441 5922 2322 205 15236
MS 2257 182 1711 190 70 4410
MT 1725 309 2063 633 80 4810
PA 1226 242 1978 235 222 3903
PB 842 98 466 240 62 1708
PE 1704 161 869 374 56 3164
PI 1572 161 1542 36 79 3390
PR 2815 163 2718 516 118 6330
RJ 1486 198 486 313 71 2554
RN 561 133 807 252 103 1856
RO 574 133 532 491 155 1885
RR 657 0 391 44 10 1102
RS 3776 814 3449 724 92 8855

SC 1277 276 1104 486 91 3234
SE 320 15 54 165 94 648

SP 6851 849 1836 419 28 9983
TO 708 50 2154 61 546 3519

to get an approximately uncorrelated sample) of the joint posterior distribution for all model pa-
rameters obtained using the Openbugs software and considering a burn-in sample of size 11,000
discarded to eliminate the effect of the initial parameter values needed for the MCMC algorithm.
Convergence of the MCMC simulated samples was monitored by traceplots of the generated
Gibbs samples (see Gelman et al., 2013)

From the results presented in Table 4, it is observed that the significative effects (zero not included
in the 95% credibility intervals) are:

* Response y, = log(x3/x1) where x| = % unharmed and x3 = % serious injury: poor pave-
ment (regression parameter 3,7 is estimated by a negative value) and NE (northeast) region
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1 0 COMPOSITIONAL STATISTICAL MODELS UNDER A BAYESIAN APPROACH

where regression parameter f3,g is estimated by a positive value indicating that the differ-
ence between x3 = % of serious injuries and x| = % unharmed increases in the NE region
when compared to the N region (north considered as reference).

L]

Response y3 = log(x4/x1) where x; = % unharmed and x4 = % deaths: covariate year
(regression parameter f33 is estimated by a negative value indicating a decrease in the
death/unharmed difference in the year 2019); NE (northeastern) region where the regres-
sion parameter f3g is estimated by a positive value indicating that the difference between
x3 = % deaths and x; = % unharmed increases in the NE region as compared to the N re-
gion (north considered as reference); CO region (midwest) where the regression parameter
B39 is estimated by a positive value indicating that the difference between x3 = % deaths
and x; = % unharmed increases in the CO region when compared to the N region (north
considered as reference); SE region (southeast) where the regression parameter 3319 is es-
timated by a positive value indicating that the difference between x3 = % deaths and x; = %
unharmed increases in the SE region when compared to the N region (north considered as
reference); and region S (south) where the regression parameter 331 is also estimated by a
positive value indicating that the difference between x3 = % deaths and x; = % unharmed
increases in region S when compared with region N (north considered as reference).

Now assuming a regression model with compositional data defined by (1) and (4) in the presence
of the latent factor W denoted by “model 2”, that is, assuming dependence between the responses
assuming a gamma distribution G(1,1) for the variance 62 of the random factor w; with a nor-
mal distribution N(0, 62) included in model (4), we have in Table 5, the posterior summaries of
interest assuming the MCMC simulation method based on 1000 simulated Gibbs samples (ev-
ery 400" simulated samples among 400,000 generated Gibbs samples to get an approximately
uncorrelated sample) of the joint posterior distribution for all model parameters obtained us-
ing Openbugs software and considering a burn-in sample of size 111,000 discarded to eliminate
the effect of the initial parameter values needed for the MCMC algorithm. Convergence of the
MCMC simulated samples was monitored by traceplots of the generated Gibbs samples.

From the results presented in Table 5, it is observed that the significative effects (zero not included
in the 95% credibility intervals) are the same as those obtained using “model 1”.

For the discrimination of the best model, it is used the Deviance Information Criterion (DIC).
The DIC criterion (Spiegelhalter et al., 2014) is based on the posterior average of the deviance.
Deviance is defined by,

D(6)=—2logL(0)+C (6)

where 0 is a vector of unknown parameters of the model; L(0) is the likelihood function and C
is a constant (not always known) when comparing two models. The DIC criterion is defined by,

DIC = D(6)+2pp 7)

Pesquisa Operacional, Vol. 40, 2020: e230462
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Table 4 — Posterior summaries - “model 1.

95% Cred. Int.

Mean S.D. Lower Upper
B -0.1200 1.0130 -1.9990  2.1180
Biio  0.1473  0.0865 -0.0078  0.3300
B 0.0635 0.0816 -0.0992  0.2222
Bi»  0.0077 0.0058 -0.0038 0.0193
Biz  -0.7870 0.5030 -0.0011  0.8560
B -0.3231 0.6715 -1.6350  0.9870
Bis -0.1707 0.1967 -0.5356  0.2120
Bis 02969 03370 -0.3835  0.9469
Bz  0.1121 02347 -0.3668  0.5830
Bis  0.0281 0.0706 -0.1086 0.1624
Bio  0.0997 0.0685 -0.0277 0.2317
B 0.0616 09568 -1.7390 2.0130
Boio 02155 02147 -0.2029  0.6464
B 0.1927 02102 -0.2015  0.5921
Bn 00114 0.0163 -0.0223  0.0436
Bz -0.0009 0.0004 -0.0018  0.0098
B 0.0462 09390 -1.7410 1.8570
Bs 03911 0.4695 -0.5950  1.2790
By  -0.9501 0.6877 -2.2780  0.3853
By -1.6230 05235 -2.6020 -0.5539
Bs  0.6654 0.1736  0.3120  1.0080
B  0.1341 0.1809 -0.2256 0.4783
Bsi  0.0197 1.0190 -1.9200 2.0560
B0 0.7747 03104  0.1547  1.3910
Bsii 09365 03458  0.2847  1.6620
Bz -0.0025 0.0273 -0.0532  0.0526
Bz -0.0016 05410 -0.0027 -0.5880
Bis 05721 0.9496 -1.3120  2.3590
Bss  -0.9367 0.6656 -2.2780  0.4054
Bss -1.1290 0.8710 -2.7460  0.6063
By -1.0830 0.6919 -2.4720  0.2858
Bz 1.5261 02702 1.0070  2.0890
Bs  1.2461 0.2984  0.6302  1.8620
1/62 56140 03881 4.8290  6.3680
1/67 0.7283 0.0493 0.6323  0.8277
1/67 02558 0.0176 02233  0.2904
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12 COMPOSITIONAL STATISTICAL MODELS UNDER A BAYESIAN APPROACH

Table 5 — Posterior summaries — “model 2”.

95% Cred. Int.

Mean S.D. Lower Upper
B -0.2007 0.9045 -1.8150  1.8190
Biio  0.1602 0.0907 -0.0156  0.3379
Biin 0.0663 0.0877 -0.1007  0.2466
B 0.0076 0.0061 -0.0039  0.0191
Biz  -0.0470 0.4500 -0.0010  0.7650
Bis  -0.4424 0.6514 -1.7060  0.8840
Bis -0.1485 02154 -0.5578  0.2642
Bis 03774 03595 -0.3213  1.1020
Bz 0.1272 02441 -0.3475  0.6037
Bis  0.0359 0.0735 -0.1082 0.1924
Bio  0.1068 0.0693 -0.0324  0.2394
By 0.0264 1.0140 -2.0100 2.1040
Biio  0.1952 02043 -0.1968  0.5986
B 0.1679 02109 -0.2214  0.5542
B 00114 0.0157 -0.0190 0.0421
Bz -0.0088 0.5280 -0.0018  0.2000
Bs  0.0379 0.9090 -1.6840  1.8520
Bys 03794 0.4785 -0.5885  1.3240
B  -0.8914 0.7033 -2.2470  0.4895
By -15260 0.5123 -2.5010 -0.5200
Bs  0.6415 0.1645 0.3257 0.9473
B 01151 0.1722 -0.2182 0.4574
B3 -0.0455 1.0170 -2.1460  1.9760
B0 0.6979 03211  0.0693  1.2940
B 0.8629 03189  0.2144  1.4810
B:»  -0.0031 0.0259 -0.0545 0.0473
Bss  -0.0015 0.5360 -0.0025 -0.3890
Bis 05301 0.9555 -1.3520  2.3830
Bss  -0.9200 0.6549 -2.2080  0.3785
Bss  -1.1600 0.8287 -2.8000  0.4658
By -0.9826 0.6951 -2.3480  0.2872
Bxs 14450 02563 0.9511  1.9600
B 1.1620 02731 0.6319  1.6870
1/62 12550 1.9490 92210  17.320
1/62  8.8500 1.1930 6.9640 11.630
1/67 0.8561 0.0608 0.7379  0.9810
1/67 02930 0.0208 02555 0.3362
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where D(a) is the posterior averaged deviation 8 = E (§ /y) and pp is the number of model

parameters, given by pp = D —D(0) where D = E(D(8/y) is the posterior mean of the deviation
that measures the quality of data fit for each model.

Table 6 shows the DIC values obtained from the generated Gibbs samples using the Openbugs
software for both models considered in the data analysis.

Table 6 — DIC estimates for model 1 and model 2

Model Yl Y2 Y3
Model 1  483.2 1373.0 1826.0
Model 2 4489 1318.0 1772.0

From the results of Table 4, it can be observed that the “model 2” is better fitted by the data.
Assuming “model 2”, the estimated proportions for the four classes given by (5) and the observed
proportions are presented in Figure 4. From the plots of Figure 4, it is observed good fit of model
2 to the compositional data associated to accident victims in Brazilian federal roads.

Scatterplot of % unharmed; %predicted unharmed vs data order Scatterplot of % mild; %predicted mild vs data order

—— Sépredicted mild

Y-Data
°
=
Y-Data

0 100 200 300 400

°
E
8

200 300 400

data order data order
Scatterplot of % severe; %predicted severe vs data order Scatterplot of % death; %predicted deaths vs data order
0,5
" Variable Variable
——— % severe 0.25 ——— % death
—— Spredicted severe ——— spredicted desths
04 0,20
s o 015
2 £
e 2
> o2 ~ on
01 0,05
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0 100 200 300 400 o 100 200 300 400
data order data order

Figure 4 — Estimated and observed proportions (unharmed, mild, severe, deaths).

3 DISCUSSION OF THE RESULTS AND CONCLUDING REMARKS

From the obtained results usig ALR compositional models it is possible to get important conclu-
sions on the study. Since the significative covariates affecting the responses y; = log(x3;/x1;) and
y3i = log(x4i/x1;), where x}; = % unharmed, x; = % minor injuries, x3; = % severe injuries and
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xa; = % deaths are given by poor pavement, NE region and year, Figures 5, 6, 7 and 8 show the
scatter plots associated to each response and covariate from where it is possible to get important
interpretations for the compositional multivariate dataset.

0,00 0,25 0.50 0.7 100
%very bad pav NE region

log{severe/unharmed)

y2
.

0,00 0,12 024 036 048

Figure 5 — Graphs of y, = log(severe /unharmed) versus %lousy pavement and NE region.

From the graphs of Figure 5, it is possible to observe that although there is great variability in
the response yy; there is a slight decreasing in the response with %lousy pavement (pavement in

very poor condition) and an increasing in the response yy; in the NE region when compared to
the other regions of Brazil.

yEar ME regicn CO region
-
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—_ I I -24
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24
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Figure 6 — Graphs of y3 = log(death/unharmed) versus year, NE region, CO region,
SE region and S region.
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From the graphs of Figure 6, it is possible to see an increasing in the response y3; in the year
2019 when compared to the year 2018; an increasing in the response y3; in the NE region when
compared to the other regions of Brazil; a decreasing in the response y3; in the CO region when
compared to the other regions of Brazil; an apparently decreasing in the response y3; in the SE
region when compared to the other regions of Brazil and an apparently decreasing in the response
y3; in the S region when compared to the other regions of Brazil.

0,00 0,25 050 075 1,00
% severe*¥very bad pav % severe*NE region
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- . . -
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[}
: i I 02
] ]
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i i .
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081 = [
:
06 ' .
: = I
04 $ H |
* |
0.2 . .
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0,0 - L]
0,00 0,12 0,24 036 048

Figure 7 — Graphs of %severe injury and %unharmed injury versus very bad pavement and NE region.

From the graphs of Figure 7, it is possible to see an increasing of %severe injuries in the NE
region when compared to the other regions of Brazil and a decreasing of %unharmed persons in
the NE region; in relation to the factor very bad (lousy) pavement, it is difficult to see the effect
in %unharmed and %severe injuries.

From the graphs of Figure 8, it is possible to observe that although there is great variability in
the responses %deaths and %unharmed, we see a small increasing of %deaths related to the year
2019 when compared to the year 2018; similarly apparently there is an increasing of %deaths in
the NE region when compared to the other regions of Brazil; a decreasing of %deaths in the SE
and S regions.

In summary, from the obtained results, it is concluded that the rates of serious accidents and
deaths are affected by some covariates as the regions of Brazil (especially the NE region where
the rates for accidents with severe injuries and deaths are higher than the rates for the other
regions of Brazil), years and some sligh effect of pavement conditions of the roads, which could
be important for the road managers to take decisions to improve the road conditions in Brazil.
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Figure 8 — Graphs of %death and %unharmed injury versus year, NE region, CO region,
SE region and S region.

This is an important result which could help in future decreasing of the high rates of severe
injuries and deaths in the Brazilian federal roads.

As concluding remarks, it is possible to point out that the use of existing compositional Bayesian
models could be of great interest in the data analysis of road accidents as seen in this study. It
is important to point out that other prior distributions could be considered for the parameters
of the model possibly incorporating with prior opinions of engineer experts in road traffic. The
use of MCMC methods to get the posterior summaries of interest using free existing simulation
softwares like the OpenBugs software could be a great option in the data analysis under a hierar-
chical Bayesian data analysis which only requires the specification of the likelihood function and
the prior distributions for the parameters of the model. It is important to point out that other de-
pendence structures could be assumed for the ALR transformed data, like a multivariate normal
distribution for the errors in the compositional model (see for example, Shimizu et al., 2015).

In a future work the results of this study could be extended to the presence of other covariates
as weather conditions, type of road (double lane and single lane), roads with and without tolls,
period of day, speed of the vehicle at the moment of the accident and many other possible covari-
ates that could affect the responses given by a proportion vector (x1; = %unharmed, xp; = %mild
injuries , x3; = %severe injuries and x4; = %deaths).
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