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ABSTRACT. This paper studies a variant of the container loading problem in which to the classical geo-
metric constraints of packing problems we add other conditions appearing in practical problems, the multi-
drop constraints. When adding multi-drop constraints, we demand that the relevant boxes must be available,
without rearranging others, when each drop-off point is reached. We present first a review of the different
types of multi-drop constraints that appear in literature. Then we propose a GRASP algorithm that solves
the different types of multi-drop constraints and also includes other types of realistic constraints such as full
support of the boxes and load bearing strength. The computational results validate the proposed algorithm,
which outperforms the existing procedures dealing with multi-drop conditions and is also able to obtain
good results for more standard versions of the container loading problem.
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1 INTRODUCTION

The single container loading problem (CLP) is one of the most challenging problems in cutting
and packing. It is a three-dimensional optimization problem in which we have to pack a set of
rectangular objects, boxes, into a large rectangular object, container, in such a way that the pack-
ing optimizes some criterion while satisfying a set of constraints. It is a critical part of any supply
chain because it has to be solved on a daily basis in many different situations, varying in the type
and characteristics of the goods to be transported, the number and types of trucks or containers
to be used, and the specific loading constraints of each company. Loading these containers effi-
ciently, that is, minimizing the empty spaces inside them, is not only an economic necessity, but
also an ecological issue due to the adverse impact of increased traffic on environmental resources.
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2 A GRASP ALGORITHM FOR THE CONTAINER LOADING PROBLEM WITH MULTI-DROP CONSTRAINTS

It is therefore not surprising that many solution approaches have appeared in the scientific liter-
ature in the last twenty years. Nevertheless, most of the academic research has focused on the
basic problem in which the volume occupied has to be maximized, subject to geometric con-
straints that prevent the boxes from overlapping each other and exceeding the dimensions of the
container. As long ago as 1995, Bischoff & Ratcliff [5] warned us that a number of factors, which
are frequently of importance in practical situations, had not received sufficient attention in the
OR literature. They listed twelve practical conditions that have to be considered when solving
practical problems for which feasible loading plans have to be constructed. Since then, there has
been a clear line of research in which these practical conditions have been added to the basic
geometric problem. More recently, Bortfeldt & Waischer [9] have written an exhaustive review
of the container loading problem and its relevant practical constraints.

In this paper, we focus our attention on one set of these realistic constraints, the multi-drop con-
straints. In some situations the loading plan has to take into account the fact that the boxes must
be delivered to different places. Every time a drop-off point is reached, the relevant boxes must
be available to be unloaded without rearranging other boxes. This condition adds additional con-
straints on the order and the position in which the boxes are placed in the container. Depending
on the way the boxes are unloaded and depending on the requirements of the company, we may
have different multi-drop constraints.

The paper is organized as follows. In Section 2 we review the existing heuristic approaches
to the basic container loading problem, and discuss and classify the additional constraints that
have been proposed and included in the published procedures. The multi-drop constraints are
described in more detail in Section 3, reviewing and discussing the different ways in which they
have been used by different authors. The main objective of this study is to develop an algorithm
that can accommodate the different variants of multi-drop constraints. Section 4 describes the
problem being solved, Section 5 contains the constructive and GRASP algorithms, and Section 6
describes the computational results, which show that our algorithm is able to outperform all the
published approaches. Finally, some conclusions are drawn.

2 ADDING REALISTIC CONSTRAINTS TO THE BASIC CONTAINER LOADING
PROBLEM

The basic Container Loading Problem can be defined as the problem of placing a set of boxes
into the container respecting the geometric constraints: the boxes cannot overlap and cannot
exceed the dimensions of the container. According to the improved typology for cutting and
packing problems proposed by Wischer et al. [48], the container loading problem can be clas-
sified as a three-dimensional rectangular single large object placement problem (3D-SLOPP) if
the set of boxes is weakly heterogeneous, or a single knapsack problem (3D-SKP) if the set
of boxes is strongly heterogeneous. In any case, the CLP is an NP-hard problem because the
NP-hard one-dimensional knapsack problem can be transformed into it. As a consequence, few
exact algorithms have been proposed to solve the problem (Fekete et al. [18], Martello et al. [35],
Junqueira et al. [31]). In contrast, there are many heuristic and metaheuristic procedures based
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on different approaches to packing boxes into the container. Pisinger [43] and Fanslau & Bort-
feldt [17] have classified these approaches as follows:

1. Wall-building approach

The wall-building approach, introduced by George & Robinson [23], fills the container
with a number of vertical layers (walls) across the length of the container. It has been used
by Bortfeldt & Gehring [7] in their Genetic Algorithm, by Pisinger [43] in his tree-search
method, and by Moura & Oliveira [38] in their GRASP algorithm.

2. Stack-building approach

The stack-building approach, proposed by Gilmore & Gomory [24], packs the boxes into
stacks which are arranged on the floor of the container by solving a two-dimensional pack-
ing problem. This method is used by Bischoff & Ratcliff [5] in their greedy algorithm, in
the Genetic Algorithms by Bortfeldt & Gehring [7], and Gehring & Bortfeldt [20], and by
Hifi [26] in his tree-search method.

3. Horizontal layer building approach

The container is filled with horizontal layers from bottom to top, trying to cover the max-
imum surface of the container. This is the approach of Bischoff & Ratcliff [5] in their
greedy algorithm and of Terno et al. [47] in their branch and bound procedure.

4. Block-building approach

The container is filled with blocks, usually composed of boxes of the same type, although
some authors consider blocks that combine boxes of different types. Many authors have
used this approach in a number of different procedures. Some examples are the Tabu
Search algorithm by Bortfeldt et al. [8], the tree-search by Eley [15], the hybrid Simu-
lated Annealing/Tabu Search by Mack et al. [34], the GRASP algorithm by Parrefio et
al. [40], and the hybrid GRASP/VNS by Parrefio et al. [42].

5. Guillotine cutting approach

This approach is based on a slicing tree representation of a packing plan. The branches
correspond to the guillotine partitioning of container regions into smaller parts, where the
leaf nodes correspond to the boxes. The graph-search method by Morabito & Arenales [37]
is based on this approach.

Nevertheless, in order to obtain packing plans that are useful in real problems, besides the geo-
metric conditions many other constraints have to be taken into account. These realistic constraints
have been added to the basic problem by many authors in recent years, though much more work
is still needed. Following the survey by Bortfeldt & Wischer [9], we review and classify here the
most important contributions that have appeared in the literature. The multi-drop constraints that
are the object of this study will be fully described in Section 3.
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2.1 Container constraints

Global container constraints refer to the weight limit and weight distribution inside the container.
The weight limit is the maximum weight that can be loaded into the container. When the cargo
is heavy, weight becomes a very restrictive condition, more so than the volume occupied by the
boxes. Gehring & Bortfeldt [20], Bortfeldt et al. [8], Terno et al. [47], and Egeblad et al. [14] are
some of the authors who address this weight limit constraint.

Weight distribution constraints require the weight of the cargo to be spread across the container
floor. An unbalanced container can produce problems when lifted by a crane. Also, when trans-
ported by truck, the cargo distribution has to take into account the maximum weight supported
by the truck axles. One way of achieving a good balance is to require that the center of gravity
of the load must lie in the geometric center of the container, possibly with some tolerances, as in
the studies by Bischoff & Marriott [4], Gehring & Bortfeldt [19], and Bortfeldt & Gehring [7].

2.2 Item constraints

Constraints directly related to items are priority constraints, orientation, and load bearing con-
straints. When the container is not large enough to accommodate all the items, a decision about
which items to load has to be taken. Sometimes this is done by using priorities, related to delivery
deadlines or to the shelf life of the products, as in Bischoff & Ratcliff [5] and Ren et al. [45].

One of the most common constraints is the orientation constraint, which forbids some of the six
potential orientations of a box. It usually limits the vertical orientation to one dimension (“This
way up!”), allowing 90° rotations of items on the horizontal plane, as in Haessler & Talbot [25],
and Jori & Martello [28]. Nevertheless, sometimes only one orientation is allowed and boxes
cannot be rotated, as in Morabito & Arenales [37] and Junqueira et al. [31]. Conversely, in some
cases all six possible orientations are permitted and boxes can rotate freely, as in Parrefio et
al. [40] and Ratcliff & Bischoff [44].

Load bearing constraints limit the way in which boxes can be placed on top of each other. It is
usual that the boxes to be packed differ in weight and also in their ability to withstand pressure
from the weight resting on them. This constraint can limit the number of boxes a box can bear
above it, as in Bischoff & Ratcliff [5] or can prohibit a particular type of product being placed on
top of another type, as in Terno et al. [47]. Nevertheless, the most usual load bearing constraint
limits the weight which can be applied on top of every box. Some recent examples are the papers
by Bischoff [3], Christensen & Rousoe [12], Junqueira et al. [31], and Alonso et al. [1].

2.3 Cargo constraints

When all the boxes cannot be accommodated in the container, apart from the decision about the
loading of each box there can be other constraints, such as the complete-shipment constraints,
requiring all the components of a product that have to be assembled at destination to be loaded
together, as in Bischoff & Ratcliff [5], lori & Martello [28], and Moura & Oliveira [38].
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Positioning constraints restrict the allocations of the item in the container. They can refer to
absolute positions (some boxes near the container door), as in Haessler & Talbot [25], Bortfeldt
& Gehring [7], and Terno et al. [47], or to relative positions (certain items have to be placed
together or at a certain distance from each other) as in Bischoff & Ratcliff [5].

2.4 Load constraints

This type of constraint is related to the properties of the final arrangement of the items in the
container. The most important of these properties is the stability of the cargo. Two types of
stability can be distinguished, vertical and horizontal stability.

Vertical or static stability prevents items from falling. A box must be supported from below by
other boxes to a given percentage. If this percentage is 100%, we speak of full support (Bortfeldt
& Gehring [7], Araujo & Armentano [2], Fanslau & Bortfeldt [17], Ngoi et al. [39]). Lower
percentages correspond to partial support (Jin et al. [29], Junqueira et al. [31]).

Horizontal or dynamic stability ensures that the boxes cannot move while the container is being
moved. Full horizontal stability means that each box is either adjacent to other boxes or to the
container wall on all its sides ([29], [31]). Bischoff & Ratcliff [5] and Eley [15] evaluate the
lateral support of the load by the percentage of boxes that are not in contact with other boxes or
a container wall.

3 MULTI-DROP CONSTRAINTS

The first authors who considered multi-drop situations were Bischoff & Ratcliff [5]. According
to them, if a container is to carry consignments for a number of different destinations, it is
desirable not only to place items within the same consignment close together, but also to order
the consignments within the container so as to avoid, as far as possible, having to unload and
reload a large part of the cargo several times. More recent studies are usually stricter, imposing
the condition that the arrangement of the boxes within the container should reflect the sequence
in which they have to be delivered, in order to avoid any unloading and reloading operations.
In their survey, Bortfeldt & Wischer [9] consider this constraint as a combination of absolute
and relative positioning constraints, so it could have been included in Section 2.3.

The literature that includes multi-drop constraints can be divided into two main groups. The
first group consists of studies that address packing problems in which multi-drop constraints are
considered. The second group includes studies that address combined problems of routing and
packing.

In the first category, Bischoff & Ratcliff [5] propose the first procedure for taking multi-drop
constraints into account, which involves loading a single customer at a time. Lai et al. [32]
transform a similar problem into a graph and develop methods to reduce the graph and to find the
maximal cliques in the graph. Terno et al. [47] develop an algorithm for the multi-pallet loading
problem, taking into account multi-drop and connectivity constraints. Jin et al. [29] use simulated
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annealing and design their algorithm to solve the problem with fixed loading (unloading) orders.
None of the previous algorithms has explicit results for multi-drop constraints. Christensen &
Rousoe [12] present the first results of an algorithm dealing with multi-drop and load-bearing
constraints. They propose a heuristic based on a tree search framework, using maximal spaces.
Liu et al. [33] propose an algorithm for a case of multi-drop in which each box has a different
destination. Their algorithm uses a scheme in which the next space to pack a box is randomly
chosen among the list of empty spaces. Junqueira et al. [30] develop an exact model to solve
small instances of a container loading problem with multi-drop constraints. Their approach is
based on a mixed integer linear programming model. The results indicate that they are able to
handle only problems of a moderate size. More recently, Ceschia & Schaerf [10] have proposed
a metaheuristic algorithm for multi and single container problems. Their local search procedure
works on the space of sequences of boxes to be loaded, while the actual load is obtained by
invoking, at each iteration, a specialized procedure. This procedure inserts the boxes into the
container using a deterministic heuristic which produces a load that is feasible according to
the constraints.

The second approach dealing with multi-drop constraints combines routing and packing. Gen-
dreau et al. [21] propose an algorithm to solve the combined problem with three-dimensional
packing constraints. This problem is known as the three-dimensional loading capacitated VRP
(BL-CVRP). Other approaches have reduced the loading constraints, so that only one- or two-
dimensional loads are considered. The two-dimensional loading capacitated VRP (2L-CVRP) is
addressed by Gendreau et al. [22] and Iori et al. [27]. The one-dimensional variant is considered
by Doerner et al. [13]. Common to these approaches is that the two problems are solved sep-
arately. A vehicle routing algorithm suggests routes that are checked for feasibility by using a
packing algorithm. For this setup to work in a practical setting, solutions to the CLP must be ob-
tained fast, as typically many routes need to be checked. Furthermore, when the CLP is combined
with vehicle routing, the multi-drop constraints on CLP become essential. Iori & Martello [28]
have produced a review of this type of problem. In recent years there have been several studies
developing efficient algorithms. Zhu et al. [49] develop a two-stage tabu search for the 3L-CVRP
and for the M3L-CVRP, the case in which the loading is done manually. Bortfeldt [6] propose a
very efficient algorithm including a tabu search algorithm for routing and a tree search algorithm
for loading. Ceschia & Schaerf [10] propose an extension of 3L-CVRP introduced by Gendreau
et al. [21]. They include additional constraints in relation to the stability of the cargo, the fragility
of items, and the loading and unloading policy, and consider the possibility of split deliveries, so
that each customer can be visited more than once.

When reviewing the above papers, it can be seen that the condition of avoiding reloading opera-
tions when unloading the boxes at each drop-off point can be implemented in practice in different
ways, depending on whether the container has only one unloading door or more than one, and
on the machinery that is available to do these operations: whether it is done manually or using a
forklift. Therefore, when defining which items can be unloaded at a destination while respecting
the multi-drop constraints, we can distinguish three main types:
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o Boxes that are visible

There has to be a passage from the box to an entrance of the container, that is, the boxes
to be unloaded at a destination have to be completely visible from one or more sides of the
container in the destination point, or be blocked only by boxes for the same destination.
In most of the papers this condition has to be satisfied from the unloading door and from
the top of the container. Several authors use this definition, for instance Gendreau et
al. [21], Christensen & Rousoe [12], and Ceschia & Schaerf [10]. When a customer is
visited, none of the corresponding boxes may be stacked beneath nor be blocked by boxes
for customers that are to be visited later. This constraint is violated if for any pair of boxes
i and j such that i has to be unloaded before than j, j is on top of i (i.e. the base of j is
higher than the top of i and they overlap horizontally), or j is in front of i (i.e. the back
of j is in front of the front of i, and they overlap across the container). This case reflects
the unloading of boxes by forklifts, where they are first elevated and then moved towards
the unloading door, as can be seen in Figure 1, in which the boxes for the next costumer
appear in light grey color.

passage
|

H
\W%
(a) Visible
L
H l
no passagé
W l
&=
W

(b) Not visible
Figure 1 — Applying the visibility criterion.
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L

(a) Visible and touchable

w
]
Untouchable

(b) Not visible or not touchable

Figure 2 — Applying the visible and touchable criterion.

Boxes that are touchable

This condition imposes a further constraint apart from visibility. We consider that although
a box may be visible, in some circumstances it could be very difficult to reach for a person
or for a machine. Imagine that we have a large narrow corridor inside the container that
makes a box visible, such as that on the top level in Figure 1(a). Maybe we can use this
corridor to reach and unload this box, but in some cases it is not physically possible to
do so. Then, Liu et al. [33] define reachability in terms of the position of each box in
relation to the partial packing existing in the container when it arrives at the destination at
which the box has to be unloaded. A box is considered reachable if it can be reached by
a worker or forklift of given dimensions. In other words, the box is considered reachable
if the distance between it and the nearest position in which a human operator or a forklift
can be located is less than or equal to a fixed quantity. Liu et al. [33] define two measures.
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For the delivery person to be able to touch item b; with his/her hands, L;yuchapie and
Hiouchabie have to satisfy the following constraints:

Liouchable + Hrouchabie < 200

Liouchabte < min{200 — z;, 60}

where z; is the height at which the box is placed (see Fig. 2). Ceschia et al. [11] use only
one parameter, the horizontal distance. L;qychapie 1 the distance along the axis L from the
box to the nearest place we can use to reach the box.

e Boxes that are separated from those of other customers

Junqueira et al. [30] define reachability as a function of a parameter §, which indicates
how many units of length beyond the “border” between boxes of consecutive destinations
the worker is allowed to go in order to unload the boxes. They define the “border” as a
virtual wall defined after all boxes for a destination have been packed inside the container.
These walls separate the boxes for each customer across the length of the container. If this
parameter § = 0 (Fig. 3), boxes for the next customer (in light gray) must be completely
separated from those for the previous customer (in dark gray). The worker is not allowed
to cross this virtual wall. In the general case, the worker is allowed to go only partially
beyond the virtual wall. In Figure 4, with § = [;, light gray boxes can be placed beyond
the wall defined by dark gray boxes, but one of their sides must always be on the virtual
wall.

(b) Unfeasible with § = 0

Figure 3 — Applying the Junqueira et al. virtual walls with § = 0.
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(b) Unfeasible with § = ;

Figure 4 — Applying the Junqueira et al. virtual walls with § = [;.

In these problems in which we have several clients, there is another question to be addressed:
can we load boxes for client j before all the boxes for a previous client i have been packed? We
can have two cases:

e Restricted

We have to pack the complete shipment for each customer in the given order. That is, it
is not possible to pack some boxes for customer j unless all the boxes for customer i
have been packed (j > 7). This is the most common circumstance when packing with
multi-drop constraints (Christensen & Rousoe [12], Ceschia & Schaerf [10]).

e Unrestricted

In this case, it is possible to pack boxes for customer j even though there are some boxes
for customer i which have been left unpacked (j > i). In this case these boxes would
be left out of the loading. In Liu et al. [33] and in Junqueira et al. [30], the objective is
to maximize the total volume packed, and this can be achieved by leaving out boxes for
several customers.

In Figure 5 we have three clients with boxes in different shades of gray (Fig. 5(a)) and we have
a two-dimensional container of dimensions (6,2). Considering that the objective is to maximize

the volume packed, in Figure 5(b) we can see the optimal solution for the restricted case, with
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value 10, while in Figure 5(c) we see the optimal solution packing all the boxes for clients 1 and
3, with value 11, but leaving out the intermediate client 2. Finally, in Figure 5(d) we can see the
optimal solution for the less constrained case, with value 12, packing some, but not all, of the
boxes for the three clients.

(a) Pieces
2 2 2
T e
1 1 — 1 -
1 | | 1 | 1
0 ll ; é 1'1 é fli 0 1 2 3 4 5 6 0 1 2 3 4 5 6
(b) Restricted (c¢) Unrestricted I (d) Unrestricted 11

Figure 5 — Packing different subsets of clients’ boxes.

4 PROBLEM DESCRIPTION

‘We have a container of dimensions (L, W, H) that has to be filled with a set of n boxes, B;, i =
1, ..., n. Each box has dimensions (/;, w;, ;) in cm. and weight w; in kg. and a destination or
drop number d;. The objective is to find an orthogonal packing of the boxes so as to maximize
the container volume utilization, subject to these constraints:

e Full support:

The base of each box has to be placed on the floor of the container or completely on top of
other boxes.

e Allowed orientation:

Each box has a set of allowed orientations due to its content or its structure. The orien-
tations are denoted by o;;, where i = 1, ..., n represents the box and j = 1, 2,3 the
orientation, that is, the dimension of the box that can be placed upright: 0;1 = 1 if dimen-
sion [ of box i can be upright and O if it may not, 0, = 1 if dimension w can be upright
and 0 if it may not, and o0;3 = 1 if dimension / can be upright and O if it may not. At least
one of these parameters must be 1 for each box i.

e Load-bearing strength:

Each box placed in one allowed orientation can bear a maximum weight m;; on top of it,
expressed in gr/crnz, where i = 1, ..., n represents the box and j = 1, 2, 3 the orienta-
tion. As Bischoff [3] points out, there are several ways in which the weight of a box is

Pesquisa Operacional, Vol. 35(1), 2015
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transmitted downwards onto the boxes supporting it from below. In practice, it depends on
the stiffness of the supporting surface: the more rigid it is, the more the weight is spread
over the whole surface. When using soft materials like cardboard, the weight of the box
above is essentially transmitted down onto the contact area only. We will assume this latter
situation and therefore when a box k& is put on top of another box i, its weight wy will be
divided by its base area to calculate the pressure, pi in gr/cm?, exerted on the support-
ing box. If this pressure py exceeds the load-bearing capacity of the box below, m;;, the
packing is not feasible. Otherwise, the remaining load-bearing capacity of box i will be
reduced by p.

e Multi-drop:

We admit the three possible definitions of multi-drop constraints described in the previ-
ous section. We have designed an algorithm able to deal with all kinds of multi-drop con-
straints. Depending on the type of constraint being considered, some steps of the algorithm
will be changed, as will be explained in the next section.

5 A GRASP ALGORITHM

The GRASP algorithm was developed by Feo & Resende [16] to solve hard combinatorial prob-
lems. For an updated introduction, see Resende & Ribeiro [46]. GRASP is an iterative procedure
combining a constructive phase and an improvement phase. In the constructive phase, a solution
is built step by step, adding elements to a partial solution. The constructive phase is iterative,
greedy, randomized, and adaptive. In the next subsections we describe a constructive procedure,
a randomization strategy which will be embedded in the constructive process, some movements
for the improvement phase, and a diversification phase which can be included in the iterative
structure.

5.1 Constructive Algorithm

The basis of our constructive algorithm is the constructive procedure proposed by Parrefio et
al. [41] for the container loading problem. The algorithm works on maximal spaces. As the
selected box is packed into a new space, three new maximal spaces are created. The constructive
algorithm uses an updated list of maximal spaces and a list of boxes for the current client still
to be packed. The most difficult part in this case is the management of the empty spaces when
all the boxes for a client have been packed. In this case, before starting to pack the boxes for
the next client, some spaces have to be removed from the list and others have to be updated in
order to satisfy the multi-drop constraints. The details of the algorithm can be found in [41]. For
completeness we will outline its main steps here.

Step 0: Initialization

S = the list of empty maximal spaces created when packing the boxes. Initially, S is just the
empty container.

B ={Bj, By, ..., By}, the set of boxes still to be packed, ordered by customer.

Pesquisa Operacional, Vol. 35(1), 2015
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Step 1: Choosing the maximal space from S

We have a list S of empty maximal spaces, which are the largest empty parallelepipeds avail-
able to be filled with boxes. We use two alternative strategies to choose the maximal space. We
alternate between choosing the maximal space with the minimum distance to the back of the
container and choosing the maximal space with the largest coordinate z. The reason behind these
strategies is to fill the back of the container first or to pile boxes forming stacks.

Step 2: Choosing the boxes to pack

Once a maximal space S has been chosen, we consider the remaining boxes of the current cus-
tomer fitting into S in order to choose which one to pack. If there are several boxes of the same
dimensions, we consider the possibility of packing a block, that is, packing several of these boxes
arranged in a rectangular array with several rows and columns.

Two criteria have been considered to select the configuration of boxes:

1. Best-Volume:

The box or block producing the largest increase in the volume occupied by boxes.
2. Best-Fit:

The box or block which best fits into the maximal space. We compute the distance from
each side of the box or block to each side of the maximal space and put these distances
in a vector in non-decreasing order. The box or block is chosen using the lexicographical
order.

If we are using the visibility criterion, the corner into which the box or the block is packed is
the corner of the maximal space with the shortest distance to the origin of the container. In the
other two cases, we have to check how and where we put the box or the block in order to make it
reachable, always trying to put it as far back as possible so as to maximize the remaining usable
space.

Step 3: Updating the list S for the current customer

Unless the box or block fits exactly into space S, packing it produces new empty maximal spaces
which will replace S in the list S. Moreover, as the maximal spaces are not disjoint, the box or
block being packed can intersect with other maximal spaces which will have to be reduced.

Once the new spaces have been added and some of the existing ones modified, we check the list
and eliminate possible inclusions. The list B is also updated and the maximal spaces that cannot
accommodate any of the boxes still to be packed are eliminated from S. If S = ¥ or B = ¢, the
procedure ends. Otherwise, if we have not finished packing the boxes for the current customer,
we go back to Step 1.

Step 4. Updating the list S for a new customer

We have to update the list of maximal spaces for the next customer. This depends on the type of
multi-drop constraint:

Pesquisa Operacional, Vol. 35(1), 2015



14 A GRASP ALGORITHM FOR THE CONTAINER LOADING PROBLEM WITH MULTI-DROP CONSTRAINTS

e Visible: We have to remove from the list all the maximal spaces that are not completely
visible from the front of the container. We update the maximal spaces that have some part
that is visible and other non-visible.

e Touchable and visible: Apart from the spaces removed when applying the previous crite-
rion, we have to remove or update all the spaces that are not touchable.

e Separated: If we work with virtual walls separating the customers and a given value of §,
we have to remove or update all the maximal spaces whose x-coordinate is lower than the
position of the virtual wall minus §.

Figure 6 shows an example of the different ways of updating the maximal spaces when the boxes
for a client have been packed. The left part of the figure shows the view from the top and the
right part the view from one side. Boxes 1 to 5, corresponding to the first customer, have been
packed. Using the first criterion, visibility, the space on the floor behind piece 4 cannot be used,
and neither can the space on top of piece 1, because piece 3 is taller. Using the second criterion,
touchability, the space above piece 3 cannot be reached. Also, as piece 2 is very high, only part
of the space above it is touchable. The third criterion, separation with § = 0, builds a virtual
wall at the right-hand side of the last piece and this wall cannot be penetrated to pack the next
customer’s boxes.

As in Parrefio et al. [41], two criteria have been considered to select the configuration of boxes:

e The block of boxes producing the largest increase in the objective function. This is a greedy
criterion in which the space is filled with the block producing the largest increase in the
volume occupied by boxes.

e The block of boxes which fits best into the maximal space. We compute the distance from
each side of the block to each side of the maximal space, order these distances in a vector
in lexicographical order, and select the block with the minimum distance.

5.2 Randomization

For each type of box and each allowed orientation, a block is built, according to the criterion se-
lected. From the set of all possible blocks, a restricted candidate list (RCL) is built and the block
to be packed is randomly selected from this list. We have used a value-based Restricted Candi-
date List: the candidates are selected according to their quality. If the value of the candidate’s
objective function is better than a threshold, the candidate is placed on the list. In the course
of the process of building blocks we get Cpin and Crax, the largest and the smallest values of
all the candidates, and the value of each candidate C. The candidate is accepted into the RCL
if it satisfies C > Cpin + ¥ (Cmax — Cmin). The parameter y € [0, 1] controls the size of the
list. If y = 0, all the blocks go into the list and the selection is completely random. In contrast,
y = 1 means a greedy selection. Only the best candidate goes into the list and therefore is always
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(a) Visible

(b) Touchable

(c) Separated, 6 =0

Figure 6 — Updating the maximal spaces after packing the boxes for a client.

chosen. For 0 < y < 1, the number of blocks going into the list is not predefined, but it depends
on the relative values of the candidates.

We also randomize the criterion used to assign a value to each block. At each iteration, we choose
at random between the criterion based on the increase in the occupied volume and the criterion
based on the way in which the blocks fit into the space, and build the solution using the criterion
chosen.

5.3 Improvements

We consider two types of improvements, one of them based on improvements of the global
solution and the other consisting of improvements of each client:
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e The first movement consists of eliminating the last k% boxes packed in the complete so-
lution (for instance, the last 50%). We choose the value k at random from the interval
[30, 90]. The removed items plus the items that were left unpacked in the solution are then
packed again using the deterministic constructive procedure. In this call of the determin-
istic algorithm we can use the objective function Best-Volume or the objective function
Best-Fit. Both alternatives have been tested and their results will appear in the next sec-
tion. We consider that a solution has improved if the total volume of the packed boxes has
increased.

e In the second improvement, we apply the previous procedure to the partial solution we
have when we finish packing the boxes for a customer. In this case, we consider that the
solution has improved if the area occupied by the partial solution has decreased.

The improvement phase is only called if the solution of the constructive phase is considered to
be promising, that is, if it is considered a good starting point for improving on the best known
solution. Therefore, we only consider those solutions that are above a certain threshold. At
the beginning, the threshold takes the value of the first solution of the constructive algorithm.
Then, if at an iteration the solution value is greater than the threshold, we update this threshold
to this value and go to the improvement phase. If the solution value is lower than the thresh-
old, the solution is not improved and the reject counter (niter) is increased. When the number
of rejected solutions is greater than a value maxFilter, the threshold is decreased according to
the expression:
threshold = threshold — A(1 + threshold)

where A is set at 0.2 and max Filter = 5, as in Marti & Moreno [36].

5.4 Memory-based constructive phase

When we deal with the unrestrictive variant of the problem we can modify the constructive phase.
In this case it is possible not to pack some boxes for a customer or even not to pack all the boxes
for one or more customers and continue with the packing for the following customers. This will
give us more flexibility which could lead to better solutions.

We save the information relative to the area of the floor of the container used by the partial
solution each time the packing of the boxes for a customer is finished. Every [ter,, iterations
(which we fixed at 500), we compute for each customer the difference between the area used
before and after their packing is done and divide it by the total volume of their boxes. The
average value of this ratio gives us an estimate of the relative cost of packing the boxes for this
customer and we use this information to decide which customers and boxes can be left out of the
packing in order to explore possibly better solutions.

For the next Iter, iterations, before starting the loading process, we remove from the list of
boxes a percentage of boxes to be packed (I/ter, = max{5 * customers, 250}). The percentage
depends on the quality of the best known solution; we remove at most a random value taken

Pesquisa Operacional, Vol. 35(1), 2015



D. ALVAREZ MARTINEZ, R. ALVAREZ-VALDES and F. PARRENO 17

from the interval (0.3 % (TotVol — VolBest), 0.7 x (TotVol — VolBest)), where TotVol is
the total volume of the boxes to pack and Vol Best the volume of the boxes in the best known
solution. We take the customer with the greatest ratio and remove boxes randomly until we reach
the predefined percentage. If we do not reach the percentage with this customer, we take the
customer with the next largest value, and so on. The difference T ot Vol — V ol Best indicates the
volume of the boxes left unpacked in the best known solution. We want to make room for boxes
at the end of the list, eliminating boxes of previous costumers, but ensuring that the reduced list
is large enough to fill completely the container.

6 Computational results

The algorithm was coded in C++ and run on an Intel Core 17-2600 CPU with 3.40 GHz and 12 GB
of RAM. We used several types of test instances. First, we used the test problems generated by
Bischoff & Ratcliff [5]. The 700 problems are divided into 7 classes (BR1, ..., BR7) of 100 in-
stances each. The number of box types in each class ranges from 3 different types in the first class
to 20 types in the seventh class. This set of 700 instances has been used by many authors and is
therefore the most usual benchmark for comparing the algorithms. In these instances the boxes
have been generated independently of the container dimensions, so there is no guarantee that
all the boxes of one instance will fit into the container. The weight of each box is proportional
to its volume and the load-bearing limits have been drawn randomly from a uniform distribu-
tion. The problems are available on the ESICUP website: http://paginas.fe.up.pt/~esicup/tiki-
list_file_gallery.php?galleryld=4. To extend these data sets for the multi-drop problem, Chris-
tensen & Rousoe [12] take a number of customers 2, 5, 10, or 50, and assign each box at random
to one of these customers. The assignment is done independently for each number of customers.

We have also used other sets of instances in order to compare with other authors. We compare
our algorithm with the exact procedure developed by Junqueira et al. [30] using the 16 instances
they generated. We also use the instances by Ceschia & Schaerf [10] in which they pack a single
container. Finally, in order to compare with the procedure by Liu et al. [33], we have generated
100 instances using the information provided in their paper.

For a last comparison with algorithms only considering load-bearing constraints, we have ex-
tended the study to classes BR8-BR15 of strongly heterogeneous instances, also developed by
Bischoff & Ratcliff [5]. In these classes, the number of box types ranges from 30 for BR8 to 100
for BR15.

For our GRASP algorithm we have set a maximum number of 50000 iterations. In all the tables
the averages correspond to the percentage of volume used.

6.1 Comparing with Ceschia & Schaerf [10]

The first comparison is made with Ceschia & Schaerf [10]. They consider a container loading
problem with orientation, full support, load bearing, and multi-drop constraints, and develop a
constructive algorithm that builds walls (as George & Robinson [23]), using stacks which are
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made of homogeneous blocks of boxes. The boxes are ordered by drop number and the way in
which they are packed ensures that the multi-drop constraints are satisfied. A local search im-
proves the solution by changing the sequence of boxes, but respecting the multi-drop conditions.

In their computational results, they use a set of 117 real-world problems, some of them involv-
ing just one container and others involving several containers. Here we have used only the 23
instances involving one container. A summary of the results appears in Table 1. The GRASP
algorithm matches the reported solutions for 10 instances and improves on the results for the
other 13 instances.

Table 1 — Comparison with Ceschia & Schaerf [10] on instances with one container.

GRASP Ceschia & Schaerf
Average volume (%) 75,04 70,04
Average CPU time (seconds) 18,66 3941

6.2 Comparing with Christensen & Rousoe [12]

Christensen & Rousoe [12] considered the version of the multi-drop constraints in which a box
can be unloaded if it is visible from the top and from the door of the container. They also included
orientation, full support and load-bearing, developed a tree-search algorithm, and tested it on the
Bischoff & Ratcliff [5] instances. Their algorithm was implemented in C++ and the tests were
performed on a Linux machine with 2.4 GHz 64 bit AMD processor and 2 GB RAM, with a time
limit of 60 seconds.

In Table 2 we can see the results of our algorithm compared with the Christensen & Rousoe [12]
algorithm. The table shows that our algorithm obtains better solutions for any number of cus-
tomers, from the classic problem with just one customer to problems with large numbers of
customers, with similar running times. Table 2 also shows that the solution quality depends not
only on the number of customers, but also on the combination of the number of box types and
the number of customers in the problem. When there are only three box types (BR1) the solution
quality only drops 13% when going from 1 to 50 customers, but in the case of 20 box types (BR7)
the difference between 1 and 50 customers is almost 30%. It is not surprising that the difficult
problems have many customers and many box types.

6.3 Comparing with Liu et al. [33] and with Jin et al. [29]

Liu et al. [33] considered the home delivery problem in which one box has to be delivered to each
costumer, without moving and reloading other boxes. This corresponds to a multi-drop problem
in which every client demands just one box. They develop a randomized constructive algorithm
and consider two versions: A/, in which the order of clients has to be respected, corresponding
to our restrictive case, and A2, in which when a box cannot be packed the process continues with
the next boxes until no more boxes can be packed, corresponding to the unrestrictive case. Jin
et al. [29] develop a simulated annealing for the general CLP, based on orderings of the boxes to

Pesquisa Operacional, Vol. 35(1), 2015



D. ALVAREZ MARTINEZ, R. ALVAREZ-VALDES and F. PARRENO 1 9

Table 2 — Comparison with Christensen & Rousoe [12].

Customers GRASP Christensen
BR1 BR2 BR3 BR4 BR5 BR6 BR7 Average | & Rousoe
1 9247 92775 92,76 92,22 91,68 91,01 89,62 91,79 89,07
2 91,77 90,76 89,47 88,56 87,78 86,69 85,51 88,65 85,96
5 88,56 86,02 83,15 81,36 80,14 78,30 76,12 81,95 78,52
10 85,28 81,43 7782 76,14 7447 7245 70,22 76,83 72,64
50 79,32 7396 6898 66,87 6485 63,25 60,61 68,26 64,45
Average 8748 8498 8244 81,03 79,78 7834 17642 81,50 78,13
Time 30,29 34,01 37,93 4198 57,18 6335 69,94 4781 60

be packed. As a particular case, they developed algorithm SIBP for a fixed box ordering. Liu et
al. [33] tested the SIBP algorithm and found that it did not guarantee the multi-drop constraints.
Then, in order to compare with their algorithms, they used algorithm SIBP’, an adapted version
of SIBP satisfying the multi-drop constraints. For the tests they used the 100 instances of set
BR7 ([5]), adding a random order to the original boxes. Algorithms were run 100000 times on
each instance and average results were reported, using an Intel Core 2 Duo E8400 3.00 GHz PC
with 2.00 GB of memory.

We have generated 100 instances following the information provided in their paper, because their
original data are unavailable. However, given that their data set has 100 problems and that we
report only averages, it is unlikely to introduce any systematic bias in the results.

Table 3 shows that the our GRASP algorithm is able to obtain better results even for this special
case of multi-drop constraints in similar computing times.

Table 3 — Comparison with Liu et al. [33] and Jin et al. [29].

Restrictive case Unrestrictive case
GRASP SBIP’ Al GRASP A2
Average 49,52 34.17 48,78 53.27 53.18
Time 84,11 63,76 51,98 82.14 85.68

6.4 Comparing with Junqueira et al. [30]

We have also compared our GRASP algorithm with the exact algorithm by Junqueira et al. [30].
We compare with this type of problem for two reasons. First, because they deal with a different
type of multi-drop constraint. As explained in Section 3, they separate the boxes for each cus-
tomer using virtual walls and boxes can only be unloaded if there are less than a given value &
behind these virtual walls. Second, because they developed an exact model and comparing our
results with theirs is a good way of assessing the quality of the solutions obtained by the GRASP
algorithm. They did not impose the condition of packing all the boxes for a customer before start-
ing to pack those for the next customer, so they solved the unrestrictive variant of the problem.
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Table 4 — Comparison with Junqueira et al. [30], 6 = /;.

S—1 Number | Box | Container % Volume packed
" | of boxes | types length Junqueiraetal. | GRASP
Al 20 1 15 100 100
AS 41 5 15 100 100
41 5 12 90 100
Al10 99 10 15 100 100
A20 89 20 15 100 100
B1 50 1 15 100 100
B5 813 5 15 100 100
B10 1000 10 15 100 100
B20 674 20 15 100 100
Table 5 — Comparison with Junqueira et al. [30], § = 0.
5—0 Number | Box | Container % Volume packed
of boxes | types length Junqueiraet al. | GRASP
Al 20 1 15 100 100
20 1 12 95 95
AS 41 5 15 100 100
41 5 12 77,9 95,5
Al10 99 10 15 100 100
A20 89 20 15 100 100
89 20 12 92,8 98,4
B1 50 1 15 100 100
B5 813 5 15 100 100
B10 1000 10 15 100 100
B20 674 20 15 100 100

They generated a set of instances with different numbers of boxes. The number of customers
was set to three for all the problems. Two values of the parameter §, defining when the boxes are
available, were used, § = 0 and § = ;. Their tests were performed on a PC Core i7 (2.8 GHz,
8.0 GB) with a time limit of 3600 seconds.

Tables 4 and 5 show the results obtained considering § = [; and § = 0, respectively. The
problems in Table 4, with § = [;, are less restricted and both algorithms are able to pack all
the boxes. When § = 0, in Table 5, the problems are more restricted and in some instances their
exact algorithm fails to obtain the optimal solution within the time limit of 3600 seconds. In
these cases, our GRASP algorithm is able to obtain equal or better solutions.

6.5 Problems with only one customer and load bearing constraints

Although this is not the main purpose of our algorithm, we compare it with the algorithm for the
container loading problem with orientation, full support and load bearing constraints, proposed
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Table 6 — Comparing with Alonso et al. [1].

Class GRASP Alonso et al. Class GRASP Alonso et al.
BR1 82,5 81,4 BR8 83,7 85,5
BR2 86,7 85,7 BR9 82,4 84,8
BR3 88,4 87,3 BR10 81,4 84,0
BR4 88,1 86,9 BR11 80,1 82,8
BR5 87,4 86,6 BR12 78,9 81,3
BR6 86,9 86,3 BR13 71,7 80,2
BR7 85,53 85,7 BR14 76,6 78,9
BR15 75,5 78,0
Average (1-7) 86,5 85,7 Average (8-15) 79,5 83,7
Time (sec.) 13,5 9.8 Time (sec.) 102,8 64,7

Average(1-15) 82,8 83,5

by Alonso et al. [1] which has obtained the best results for this type of problem, and use the same
test instances. In this case there is only one customer for the complete shipment. They proposed
a GRASP algorithm with different the two algorithms can be seen in Table 6. In the first seven
classes the new algorithm obtains better results, but for more heterogeneous instances the Alonso
et al. [1] algorithm is better. On average, the results obtained by our algorithm can be considered
competitive also for instances without multi-drop constraints.

7 CONCLUSIONS

We have reviewed different algorithms and types of multi-drop problems. We have developed a
GRASP algorithm with a new constructive procedure and some new improvement movements.
The main contribution is that this algorithm is able to accommodate the different versions of
the multi-drop constraints which have appeared in the literature and it obtains very good results
compared with existing heuristics for the different versions of the problem. The algorithm also
gets good results for other variants of the problem including full support and load-bearing con-
straints, even when all the boxes are for the same customer.

The algorithm is flexible and could be adapted to other constraints, such as the maximum weight
of the container, weight distribution, and boxes in which the weight is not proportional to the
volume. In the near future we plan to use this algorithm to work with more practical situations,
such as those combining loading and routing problems.
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