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ABSTRACT. Despite medical advances, mortality due to acute coronary syndrome remains high. For

this reason, it is important to identify the most critical factors for predicting the risk of death in patients

hospitalized with this disease. To improve medical decisions, it is also helpful to construct models that

enable us to represent how the main driving factors relate to patient outcomes. In this study, we compare the

capability of Artificial Neural Network (ANN) and Support Vector Machine (SVM) models to distinguish

between patients hospitalized with acute coronary syndrome who have low or high risk of death. Input

variables are selected using the wrapper approach associated with a mutual information filter and two new

proposed filters based on Euclidean distance. Because of missing data, the use of a filter is an important

step in increasing the size of the usable data set and maximizing the performance of the classification

models. The computational results indicate that the SVM model performs better. The most relevant input

variables are age, any previous revascularization, and creatinine, regardless of the classification algorithms

and filters used. However, the Euclidean filters also identify a second important group of input variables:

age, creatinine and systemic arterial hypertension.
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1 INTRODUCTION

Cardiovascular diseases, including cerebrovascular and ischemic heart diseases, are major causes
of death worldwide and the main cause of death in Brazil. In particular, Acute Coronary Syn-
dromes (ACSs) are prominent in maintaining a high mortality rate despite recent therapeutic
advances. These syndromes are characterized by total or partial occlusion of the coronary artery.
This leads to ischemia and/or necrosis of the myocardial area irrigated by the coronary artery,
following the rupture of an unstable coronary plaque. ACSs include acute myocardial infarction
(with and without ST-segment elevation) and unstable angina.

ACSs may result from the interaction of environmental, clinical, genetic, and socio-cultural fac-
tors. To obtain a reliable and effective clinical prognosis of patients with an ACS it is thus vi-
tal to identify the most important variables. This is also a critical step in developing medical
decision-supporting tools associated with clinical and laboratory procedures in order to reduce
the mortality rate and financial costs.

In this multi-factorial causal context, non-linear modelling methods have the required flexibil-
ity to construct classifiers with good predictive performance. Artificial Neural Network (ANN)
(Bishop, 1995) and Support Vector Machine (SVM) (Boser et al., 1992; Cortes & Vapnik, 1995)
are well-established examples of these types of models. They have been used in several stud-
ies for diagnosis and prognosis of coronary heart diseases; see e.g. Uğuz (2012); Khemphila &
Boonjing (2011); Sengur (2012); Çomak & Arslan (2012); Kohli & Verma (2011). Comparative
analyses between the predictive power of both models in this domain have also been published
and are briefly reviewed below since they are the focus of this work.

Berikol et al. (2016) tested the accuracy of four different classifiers (SVM, ANN, Naive Bayes,
logistic regression) for ACS diagnosis using a data set with 228 patients (99 with ACS and 129
without ACS) and 8 variables. The SVM presented higher accuracy (99%) than ANN (90%),
Naive Bayes (89%) and logistic regression (91%). Kumari & Godara (2011) compared four clas-
sification techniques (RIPPER, Decision Tree, ANN, and SVM) in terms of their capability to
predict the diagnosis of cardiovascular disease in general. They used a data set with 296 pa-
tients and 14 input variables. No preprocessing for input variable selection was performed in this
study, and the results indicated that the SVM model was superior. Xing et al. (2007) assessed the
performance of Decision Tree, ANN and SVM to predict the 6-month survival of patients with
coronary heart disease using a data set with 1,000 individuals. The results regarding the accuracy
of the classifiers employed were very similar: 92.1% for SVM, 91.0% for ANN, and 89.6% for
the Decision Tree.

Hannan et al. (2010) concluded that ANN and SVM perform worse than do medical decisions
regarding the prescription of heart disease medication. In Gudadhe et al. (2010), three-layer
ANNs, which were trained using the back-propagation algorithm, outperformed SVM in diag-
nosing heart diseases. Çomak et al. (2007) developed an SVM model to classify the Doppler
signals of aortic and mitral valves as either normal or abnormal. The input signals of 215 indi-
viduals were preprocessed using wavelet decomposition and short-time Fourier transformation
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techniques. The performance of the SVM algorithm was compared to that of a previous study
using an ANN (Turkoglu et al., 2002). The results indicated the superiority of the ANN in terms
of sensitivity and specificity. However the authors recommended using the SVM model because
of the shorter training times and greater stability in converging to the solution.

Despite it being well-known that the main drivers underlying the cardiovascular diseases can
substantially vary from country to country there is a lack of similar comparative studies focused
particularly on the Brazilian population. To the best of our knowledge, this is not restricted to
the public health and medical settings but is also pervasive over the whole spectrum of Brazilian
challenges. This happens regardless of the existence of an extensive literature in Soft Operational
Research that highlights the cross fertilisation benefits between different methodologies. For a
work that explores the use of multi-methodologies for understanding a real-world process of a
Brazilian hospital, see Pessôa et al. (2015).

We have also noted that many works have recently explored the synergistic links between Oper-
ational Research (OR) and Artificial Intelligence (AI) (Holsapple et al., 1994; Brown & White,
2012; Gomes, 2001). In particular, the interplay between OR and AI with regard to decision
support systems and optimization are discussed in Wojewnik & Kuszewski (2010) and Bennett
(2006), respectively. For an interesting study that compares the capability of ANN, SVM and
genetic algorithm to predict the Brazilian Power Quality, see Góes et al. (2015).

In this study we aim at reducing this gap in applied health studies and exploring the links between
OR and AI on behalf of the Brazilian population. Our objective is to compare the predictive
power of the ANN and SVM models in terms of classifying the risk of death (high or low) in
Brazilian patients admitted with ACSs. This also differs from previous studies whose aim is
often the diagnosis of cardiovascular diseases instead of the intra-hospital prognosis. In this
sense our work comes closer to the survival study of Xing et al. (2007). However those authors
were interested in the post-hospital prognosis since they defined survival as a patient being alive
after 6-months of a positive diagnosis of coronary heart disease.

Here the data set has clinical, genetic and socio-environmental variables. However, the use of
variables that are not relevant for predicting patient outcomes can disrupt the training and com-
promise the generalization power of the model. Furthermore, a model with all variables forces us
to discard a large number of individuals because of missing data. The number of possible vari-
able sets to be examined grows exponentially with the number of variables. So, a large number of
variables – as is the case here – implies a great computational cost as regards time and memory.

In practice, one common way to circumvent this issue is to adopt a heuristic variable selection
method that allows us to identify quickly a few but potentially promising variable sets. For this
purpose, we first order the input variables using a filter. Next each classification algorithm is
used independently to select the most relevant set of input variables.

We have observed that the studies above excluded individuals with missing information instead
of accommodating them in their approaches. Maximising the use of the data available is very
important because collecting data from patients is often a very expensive and time-consuming
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process, which requires a considerable amount of human, material and financial resources
(Kononenko, 2001). Also note that our emphasis on variable selection is another point that con-
trasts with the reviewed literature whose works do not often aim at identifying the most critical
variables for the diagnosis of heart disease.

The comparative study between ANN and SVM algorithms are based on the well-established
Mutual Information Feature Selector under Uniform information distribution (MIFS-U) criterion
(Kwak & Choi, 2002; Gonçalves & Macrini, 2011). To verify the robustness of the results with
regard to this mutual information filter we retrain the classification algorithm with better perfor-
mance using the orders of variables provided by two new filters based on Euclidean distance.
The development of these Euclidean filters is our main methodological contribution.

We performed logistic regression analyses, both with and without first-order multiplicative
interaction of the input variables selected in the preprocessing filter step. The sensitivity results
for all tested variable sets were under 10%, as already expected because of the very small ratio
of death events per variable (Concato et al., 1995; Peduzzi et al., 1995, 1996). For brevity, we
excluded experiments using logistic regression from the scope of this study.

This article is organized as follows. In the next section, we review the variable selection methods
and the SVM and ANN algorithms and introduce our Euclidean filters. In Section 3, the data set
used in the experiments is described. In Section 4, we discuss the results of the computational
experiments, which includes the comparative experiments and the corresponding robustness anal-
ysis. In the Conclusion, final remarks are presented and future works outlined.

2 DATA MINING TECHNIQUES

The variable selection methods and the ANN and SVM models employed in this study are briefly
discussed in this section.

2.1 Variable Selection Method

To construct efficient classifiers, variable selection is an important step for the following reasons
(Salappa et al., 2007; Guyon & Elisseeff, 2003; Saeys et al., 2007):

1. to avoid overfitting, to reduce noise, and (through this process) to improve the predictive
power of the classifier;

2. to obtain models with reduced computational cost, both in terms of the processing time
and the memory requirements; and

3. to directly elucidate the underlying process responsible for generating the data.

Our data set has 28 input variables (Appendix A) collected from 411 individuals, of whom only
37 died. However, not all variables were collected for all individuals. Requiring information
for all variables reduced the size of the training data set to 264 individuals, of whom only 17
died. Here the determination a priori of which variables are relevant to the death prognosis is
critical to reduce the dimension of the input space and, thereby to increase the size of the training
data set.
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The variable selection methods can be grouped into three broad classes: a filter, a wrapper, and
an embedded method (Guyon & Elisseeff, 2003; Saeys et al., 2007; Blum & Langley, 1997).
Filters correspond to a preprocessing technique that selects input variables before training the
classification algorithm. The advantages of filters are the ease and speed of implementation,
whilst their main disadvantage is that they ignore the interaction with the classifier.

Wrappers use the classification algorithms as black boxes to assess the predictive power of sub-
sets of input variables. These subsets are normally built either randomly or through a heuristic
procedure. Finally, embedded methods incorporate the selection method into the classifier train-
ing process. The main advantage of these two latter methods is the fact that they interact with the
classification algorithm. However this interaction also constitutes the source of their drawbacks,
namely greater computational cost (i.e., time and memory) and dependency on the classification
algorithm itself.

Our approach combines a wrapper method and a filter. This enables us to take advantage of
the benefits offered by these two methods and at the same time to minimize their deficiencies.
First, to compare the ANN and the SVM algorithm we use the MIFS-U filter. Via a greedy
strategy this filter provides us with an order of input variables based on the degree of mutual
information between input variables and the response variable. The density distributions of the
variables are approximated by their histograms, and it is assumed that the information contained
in these variables is uniformly distributed. In the second experiment, to explore the robustness
of the results we use two new filters based on Euclidean distance. These filters are discussed in
Section 2.2.

The order of variables is used as an input for the wrapper approach. We adopt the sequential
forward-selection strategy, where the classification algorithm (ANN or SVM) evaluates each
nested subset of variables until the classification error begins to increase. In other words, the
classification algorithm evaluates the subset with the k + 1 first variables if and only if the subset
with the first k variables yields a classification error below what was obtained from the subset
with the k−1 first variables. However, the variable selection is not interrupted until the minimum
value of k equal to six is reached.

Classification errors are assessed using the following concepts:

Accuracy (a) This is the probability of correctly predicting the outcome.

Sensitivity (x) This is the probability of correctly predicting the high death risk.

Specificity (y) This is the probability of correctly predicting the low death risk.

The Pearson correlation coefficient (PCC) is used to assess the performance of the classifiers.
This coefficient provides a balance between the concepts of sensitivity and specificity. The value
of PCC ranges from −1 (total disagreement) to 1 (total agreement), and a zero value represents
totally random predictions (Baldi et al., 2000).

The leave-one-out cross validation technique is used to estimate the quantities described above.
For a data set with L individuals, this corresponds to performing L trainings, where each training
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set contains L − 1 individuals and the test sample consists of the excluded individual, which is
different in each training. In the end, the probabilities are estimated by

â = T

L
, x̂ = TP

L P
, ŷ = TN

L N
, (1)

where T is the total number of correct predictions obtained by the classifier for a given data set;
TP and L P are, respectively, the number of positive data points that are correctly classified and
the total number of positive data points; and TN and L N are, respectively, the number of negative
data points that are correctly classified and the total number of negative data points.

2.2 New Euclidean Filters

Here two ordering criteria for the input variables are developed using Euclidean distance. The
only source of information for these criteria is the data themselves. This is because even among
medical specialists there is no established consensus regarding the absolute and/or relative im-
portance of each variable to some given ACS prognosis.

Initially, we briefly analyze the ordering criterion developed in a previous study by Chen et al.
(2009). To minimize text and avoid repeatedly referencing this article, we refer to this particular
criterion as CZCL (the initials of its authors’ names). Also let T = {(x1, y1), . . . , (xl , yl)} be a
sample with l individuals, where xi = (xi1, . . . , xin) and where xi j is the value of a variable j
for an individual i and yi ∈ {−1, 1} is the value of the response variable for an individual i.

2.2.1 CZCL Criterion

The CZCL criterion is based on two hypotheses:

1. If small changes of an input variable correspond to large variations in the response variable,
the input variable is relevant.

2. If small changes of an input variable correspond to small variations in a response variable,
then the input variable is unimportant.

This criterion orders the variables according to the following score:

Fk = g1 · VAk + g2 · Sk, (2)

where VAk is a score assigned to the kth variable by domain experts and Sk is an objective
score for the kth variable. The positive parameters g1 and g2 set the balance between domain
knowledge and data. The score Sk is formally defined by

Sk = maxk∈{1,...,n} (Tk ) − Tk

maxk∈{1,...,n} (Tk ) − mink∈{1,...,n} (Tk )
, (3)

where:

Tk =
l∑

r=1

l∑

s=1,s �=r

d(yr , ys)

d ′
k(xr , xs)

, (4)
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d ′
k(xr , xs) = [d2(xr , xs) − d2

k (xr , xs)] 1
2 (5)

d2(xr , xs) =
n∑

i=1

(xri − xsi )
2 (6)

d2
k (xr , xs) = (xrk − xsk)

2 (7)

d(yr , ys) = |yr − ys | (8)

Note that Sk corresponds to a normalization of Tk in order to use the same scale for the terms Tk

and VAk . Because our goal is to use only the data, we can drop the term VAk and the parameters
g1 and g2 from Equation 2 . Thus, there is no need to compute the value of Sk and we can order
the variables using the score given by:

T CZCL
k = Tk

maxk∈{1,n}(Tk)
(9)

The hypothesises above then imply that a relevant variable has a low score T CZC L .

Acording to Chen et al. (2009), the CZCL criterion has the following advantages:

1. It takes into account the relations between input and output variables when selecting which
variables are more relevant.

2. It uses the primitive input variables instead of some transformation thereof, as is done in
principal component analysis.

3. It does not require a large number of data points.

4. It does not require the data to conform to any statistical distribution.

5. It can capture non-linear relations between input and output variables.

6. It is simple to implement and has low computational cost.

2.2.2 Disagreement Criterion

Since in this study the response variable has only two categories, we only need to calculate Tk

(Equation 4) for pairs of individuals who have distinct outcomes. We then have that

Tk =
∑

r |y=1

∑

s|y=−1

|yr − ys |
d ′

k(xr , xs)
= 2

∑

r |y=1

∑

s|y=−1

1

d ′
k(xr , xs)

. (10)

Now note that there is no loss of information if we re-express Tk by:

T ∗
k =

∑

r |y=1

∑

s|y=−1

[d ′
k(xr , xs)]2 =

∑

r |y=1

∑

s|y=−1

[d2(xr , xs) − d2
k (xr , xs)]. (11)
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Because the term d2(xr , xs) is present in the computation of all variables, its omission does
not affect the relative order of the variables whilst also achieving a score that is more sensitive
to the main term d2

k (xr , xs). Implementing this change, we can then order variables using a
disagreement score given by

T D
k = (T ′

k )

maxk∈{1,,n} (T ′
k )

, (12)

where
T ′

k =
∑

r |y=1

∑

s|y=−1

d2
k (xr , xs). (13)

Keeping valid both hypotheses assumed for the CZCL criterion, the relevance of the kth variable
increases as the value of T D

k decreases.

The disagreement criterion has two additional advantages compared to the CZCL criterion:

1. It is more sensitive to the main quantity of interest d2
k (xr , xs).

2. It has lower computational cost.

2.2.3 Inverse Criteria

The scores T CZCL
k and T D

k are based on the Euclidian distance between the input variable k
in two different individuals. Because of the sensitivity hypotheses, their corresponding criteria
described above select those variables for which the summed distances are small. However, it is
also reasonable to assume the converse of this condition: input variables corresponding to large
distances are more able to distinguish between two possible outcomes (Dash & Liu, 1997). Based
on this new hypothesis, those variables with large scores T C ZCL

k or T D
k are more relevant. This

assumption yielded criteria called the inverse criteria. Therefore, the inverse CZCL criterion and
the inverse disagreement criterion select input variables that have, respectively, the highest scores
T CZCL

k and T D
k .

2.3 Artificial Neural Network (ANN) Model

The specific type of ANN (Bishop, 1995; Haykin, 1999; Teixeira Júnior et al., 2015) used in
this study is a three-layer feed-forward ANN. The input layer has k input neurons and one bias
neuron, where k corresponds to the number of input variables included in the model. The hidden
layer is initially composed of 10 hidden neurons and one bias neuron. Finally, the output layer
has one output neuron. The hyperbolic tangent is adopted as an activation function for the hidden
layer, whereas a linear function is assigned to the output layer. This structure is justified by its
simplicity. Moreover, if it is assumed there are non-identical data in distinct categories, three-
layer neural classifiers are universal classifiers (Young & Downs, 1998).

Supervised training of the ANN is performed using the error back-propagation algorithm asso-
ciated with the descending gradient method. In this case, the error associated with each input-
output neuron pair is computed and back-propagated, and the synaptic weights are adjusted to
reduce the total errors. This procedure is performed until the algorithm converges.

Pesquisa Operacional, Vol. 36(2), 2016
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To avoid over-fitting we adopt the Bayesian regularization algorithm (MacKay, 1992). In this
framework, the ANN weights and biases are assumed to be random variables. The regularization
parameters are the unknown variances associated with these distributions and can be estimated
through adequate statistical techniques. The result is the minimization of a function that is a linear
combination of the quadratic errors and the weights of the hidden and output layers. Bayesian
regularization requires the Hessian matrix to be computed, which implies using the Levenberg-
Marquardt algorithm (Nocedal & Wright, 2006). Ultimately, this structure enables us to select
the smallest set of neurons in the hidden layer that provides the best optimization of the ANN.

2.4 Support Vector Machine (SVM)

Solving a convex quadratic problem, the SVM model (Boser et al., 1992; Cortes & Vapnik, 1995;
Suykens et al., 2010; Scholkopf & Smola, 2001) selects a hyperplane that minimizes structural
risk. The minimization of structural risk (Vapnik, 2006) establishes a compromise between the
complexity of the decision function space and the ability to fit the model to the training data set
(empirical risk). This process guarantees a good generalization power for the trained classifier,
i.e., a strong propensity to correctly predict the outcome of an individual out of the training
sample.

When associated with a kernel function, the SVM model allows non-linear classifiers to be built
by implicitly mapping the initial data into a space of higher dimension than the original one. In
this case, the linear classifier obtained in a higher-dimension space corresponds to a non-linear
classifier in the original space.

Here we use the ν-SVM (Scholkopf & Smola, 2001; Chen et al., 2005; Scholkopf et al., 2000).
This classifier was initially conceived to recognize two types of patterns and was subsequently
extended to multi-class and regression problems. In ν-SVM training, it is necessary to adjust
the parameter, which represents the upper limit for the fraction of training errors and the lower
limit for the fraction of support vectors. These interpretations of the ν parameter simplify its
calibration. The kernel function adopted in this study is the hyperbolic tangent since the goal is
to compare the SVM and ANN classifiers (Karatzoglou et al., 2006).

To train the classifier, we use the Sequential Minimal Optimization (SMO) algorithm (Platt et
al., 1999). This algorithm analytically determines the global solution, optimizing at each itera-
tion only two Lagrangian multipliers from the convex quadratic problem corresponding to the
model’s mathematical formulation. The SMO algorithm requires minimal computational mem-
ory resources and is extremely fast because it performs only a limited number of very simple
operations.

3 EXPERIMENTAL DESIGN

Data were collected from a prospective cohort study of patients of both genders who were admit-
ted with ACS to five hospitals (three public and two private) in the municipality of Niterói, Rio
de Janeiro, Brazil, between July 2004 and June 2005 (dos Reis et al., 2007). Only patients who
were over 20 years of age and did not display any signs of terminal cancer, multiple trauma, or
dementia were considered.

Pesquisa Operacional, Vol. 36(2), 2016
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The data set contains 28 explanatory variables, which are classified into five categories: social
and anthropometric variables; variables related to previous cardiovascular history; clinical and
laboratory variables concerning hospital admission; diagnosis variables; and genetic variables.
The response variable is the occurrence of in-hospital death. These variables are described in
Appendix A, which includes information regarding the measurement scales and lists the abbre-
viation used for each variable.

4 RESULTS AND DISCUSSION

The MIFS-U filter and the ANN models are implemented using the MATLAB software, version
7.0. The Euclidean filter and ν-SVM models are run in the R software, version 2.7.0, using the
kernlab package. To avoid scale issues, the data are normalized.

4.1 Comparison between ANN and SVM using the MIFS-U filter

The MIFS-U criterion is used two times consecutively. Initially the filter is applied to a sample
with 264 individuals (17 deaths and 247 survivals), for whom data regarding the response variable
and all 28 input variables are available. The order obtained for the 28 input variables with respect
to the response variable death is shown in Table 1.

Table 1 – First phase of the MIFS-U filter

Position Variable Position Variable

1 Age 15 TT genotype

2 APR 16 Gender

3 Creatinine 17 HDL cholesterol

4 DD genotype 18 MT genotype

5 E2E2 genotype 19 II genotype

6 E4E4 genotype 20 Smoking

7 BMI 21 Total cholesterol

8 E2E3 genotype 22 ACS

9 SAH 23 DI genotype

10 E3E4 genotype 24 Killip

11 E2E4 genotype 25 Triglyceride

12 Diabetes mellitus 26 PMI

13 MM genotype 27 Education level

14 E3E3 genotype 28 Heart rate

Next the input space is reduced to 16 variables by disregarding the 12 last-ranked variables. The
MIFS-U filter is then applied to this new subset of input variables, corresponding to a sample
of 351 individuals (23 deaths and 328 survivals). The result is presented in Table 2. The sample
size has increased because the use of a smaller number of input variables allows us to reduce the
number of individuals for whom not all the required variables are available.

Pesquisa Operacional, Vol. 36(2), 2016
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Table 2 – Second phase of the MIFS-U filter.

Position Variable Change Position Variable Change

1 Age 0 9 E3E4 genotype –1

2 APR 0 10 Diabetes mellitus –2

3 Creatinine 0 11 E2E4 genotype 0

4 BMI –3 12 E2E3 genotype +4

5 DD genotype +1 13 MM genotype 0

6 E4E4 genotype 0 14 SAH +5

7 E2E2 genotype +2 15 TT genotype 0

8 Gender –8 16 E3E3 genotype +2

The results show that the three top-ranking variables remain unchanged in both orders of vari-
ables. Note that the variables Age, Any Previous Revascularization (APR), Creatinine, Body
Mass Index (BMI), DD, and E2E2 and E4E4 Genotypes are the seven variables holding the
most combined mutual information regarding the outcome of interest. Also observe that seven
variables (Age; Any Previous Revascularization; Creatinine; and E2E4, E4E4, MM, and TT
Genotypes) do not change their ranks between each filter pass, and two variables (DD and E3E4
Genotypes) change by only one position. The variables E2E2 Genotype, E3E3 Genotype and
Diabetes Mellitus shift their orders by only two positions whilst the variable Body Mass Index
shifts its rank by three positions. In contrast, the variables with the greatest changes in terms
of positions are E2E3 Genotype (four positions), Systemic Arterial Hypertension (SAH) (five
positions), and Gender (eight positions). The results can therefore be considered stable since the
greatest changes in the ordering only appear after the eighth position.

Table 3 summarizes the results for the ANN and SVM models trained using the sample with 351
individuals for all sets of variables. Classifiers built with the three top-ranking variables according
to the MIFS-U filter (Age, Any Previous Revascularization, and Creatinine) yielded the best
results in both models. Thus, the best classifiers are obtained from the information contained in an
integer variable (Age), a categorical variable (Any Previous Revascularization), and a continuous
variable (Creatinine).

Table 3 – Results from the ANN and SVM models.

Variables
Artificial Neural Networks Support Vector Machine

x̂ (%) ŷ (%) â (%) PCC (%) x̂ (%) ŷ (%) â (%) PCC (%)

Age, APR 87 56 58 21 91 97 98 77

Age, APR, Creatinine 78 70 70 25 91 99 98 85

Age, APR, Creatinine, BMI 74 67 67 21 83 99 97 79

Age, APR, Creatinine, BMI, DD
Genotype

70 72 72 22 90 97 96 76

Age, APR, Creatinine, BMI, DD
Genotype, E4E4 Genotype

70 74 73 23 77 96 95 65
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The fact that genetic and diagnostic variables do not contribute to the construction of the optimal

classifiers stands out. In the case of the ANN classifier, an increased number of input variables
tends to decrease sensitivity and to increase specificity. Therefore, the choice of the first three
variables represents a compromise between these two concepts, as determined using Pearson cor-

relation coefficient. Note that the SVM model with those three variables has superior predictive
power compared to any ANN model trained.

4.2 Robustness Analysis using SVM and Euclidean Filters

To verify in which extension the filter biased the wrapper variable selection we revisit the data

set using the Euclidean filter a single time. For brevity, we focus on the SVM model since it
clearly outperformed the ANN model previously.

To assess the importance of genetic variables for the prognosis of ACS here we adopt their
parametrisation in terms of allele instead of genotype. For example, take the E Apolipprotein

gene polymorphism. In the first experiment, we considered six input variables corresponding
its six genotypes XY , where X, Y = E2, E3, E4 were their possible alleles. Now we have
only three binary variables E2, E3, E4 corresponding to the three allele associated with this

polymorphism. Observe that this new definition does not cause any loss of information. We also
include three additional variables: time elapsed before first medical attention, family history
of coronary arterial disease and physical activity. The first two variables were excluded from

the first experiment because they are not directly associated with each sampled individual. The
last variable was initially omitted because we assumed that the variables Body Mass Index and
physical activity capture similar information. Appendix B describes these three variables and

the re-parametrised genetic variables.

Table 4 – CZCL Criterion (Inverse CZCL Criterion).

Position Variable T CZCL
K Position Variable T C ZC L

K

1 (26) APR 0.98404 14 (13) FHD 0.99172

2 (25) E3 allele 0.98532 15 (12) Triglyceride 0.99182

3 (24) TFM 0.98588 16 (11) Physical Activity 0.99253

4 (23) PMI 0.98786 17 (10) ACS 0.99314

5 (22) E2 allele 0.98795 18 (9) Gender 0.99383

6 (21) SAH 0.98847 19 (8) Diabetes mellitus 0.99402

7 (20) E4 allele 0.98925 20 (7) Education Level 0.99435

8 (19) I allele 0.98981 21 (6) Killip 0.99442

9 (18) T allele 0.999012 22 (5) Smoking 0.99517

10 (17) BMI 0.999018 23 (4) HDL Cholesterol 0.99532

11 (16) D allele 0.99054 24 (3) Age 0.99862

12 (15) M allele 0.99091 25 (2) Heart Rate 0.99873

13 (14) Total Cholesterol 0.99163 26 (1) Creatinine 1.00000
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The four criteria (CZCL criterion, inverse CZCL criterion, disagreement criterion and inverse

disagreement criterion) are applied to a complete sample with 226 individuals, of whom 16 had
fatal outcomes. Tables 4 and 5 show the orders of variables given, respectively, by T CZCL

k and
T D

k . As discussed in Section 2.2, the score T D
k provides a more well-defined classification of the

input variables than the score T CZCL
k : the distance between the first and last variables using T D

k

is 0.56 whilst using T CZCL
k is only 0.02.

Table 5 – Disagreement Criterion (Inverse Disagreement Criterion).

Position Variable T D
K Position Variable T D

K

1 (26) APR 0.4374 14 (13) Triglyceride 0.6192

2 (25) SAH 0.4815 15 (12) Education Level 0.6278

3 (24) TFM 0.5155 16 (11) ACS 0.6295

4 (23) PMI 0.5274 17 (10) Diabetes mellitus 0.6404

5 (22) I allele 0.5287 18 (9) Gender 0.6540

6 (21) Physical Activity 0.5510 19 (8) Smoking 0.6772

7 (20) FHD 0.5730 20 (7) HDL cholesterol 0.6809

8 (19) BMI 0.5747 21 (6) D allele 0.6920

9 (18) T allele 0.5776 22 (5) E3 allele 0.7618

10 (17) M allele 0.5777 23 (4) Age 0.7726

11 (16) E2 allele 0.6017 24 (3) Killip 0.8371

12 (15) Total Cholesterol 0.6083 25 (2) Heart Rate 0.9247

13 (14) E4 allele 0.6152 26 (1) Creatinine 1.0000

For each variable set V we train an SVM model using a maximal subset of individuals with no

missing information with respect to V . This means that two different sets of variables may be
trained with two different samples. All SVM models with two variables presented poor perfor-
mance and so they are excluded from the discussion for the sake of conciseness. Tables 6 through

9 summarize the results.

Table 6 – ν-SVM with variables selected using the CZCL Criterion.

Classifier Variables x̂ (%) ŷ (%) â (%) PCC (%)

1 APR, E3 allele, TFM 62.2 74.1 63.1 21.3

2 APR, E3 allele, TFM, PMI 69.8 76.0 69.3 25.1

3 APR, E3 allele, TFM, PMI, E2 allele 87.5 60.0 85.6 24.7

4 APR, E3 allele, TFM, PMI, E2 allele, SAH 52.1 68.0 53.2 10.7

The disagreement and inverse disagreement criteria select variables that allow us to construct
classifiers with better performance than those obtained using the CZCL and inverse CZCL cri-
teria. This suggests that the score T D

k identifies more efficiently the relevant information in the
whole set of input variables.

The classifiers that are constructed with variables selected using the disagreement and inverse
disagreement criteria also yield similar results. This indicates that the underlying hypotheses of
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both criteria may be valid. Therefore, it is worthwhile to explore whether there is a subset of the
variables selected by both criteria that provides us with a better classifier (Guyon & Elisseeff,
2003).

Table 7 – ν-SVM with variables selected using the Disagreement Criterion.

Classifier Variables x̂ (%) ŷ (%) â (%) PCC (%)

5 APR, SAH, TFM 94.9 75.9 93.5 41.8

6 APR, SAH, TFM, PMI 93.4 77.8 92.3 40.9

7 APR, SAH, TFM, PMI, I allele 54.3 80 54.8 21.7

8 APR, SAH, TFM, PMI, I allele, Physical Activity 51.6 80 53.5 21.7

Looking at the best classifiers (classifiers 5 and 15) we then select seven variables: (1) any pre-
vious revascularization, (2) systemic arterial hypertension, (3) time elapsed before first medical
attention, (4) creatinine, (5) heart rate, (6) Killip classification, and (7) age. To balance the pro-
portion between variables identified from each criterion in this set, we have excluded the allele E3
(classifier 15). The first three variables are selected using the disagreement criterion (classifier 5),
and the other four variables are selected using the inverse disagreement criterion (classifier 15).

Table 8 – ν-SVM with variables selected using the Inverse CZCL Criterion.

Classifier Variables x̂ (%) ŷ (%) â (%) PCC (%)

9 Creatinine, Heart Rate, Age 88.3 68.8 86.6 33.1

10 Creatinine, Heart Rate, Age, HDL cholesterol 51.9 70.4 50.2 13.2

11 Creatinine, Heart Rate, Age, HDL cholesterol, Smoking 57.9 81.5 59.9 35.0

12 Creatinine, Heart Rate, Age, HDL cholesterol, Smoking, Killip 92.3 61.5 89.7 34.1

Note that allele E3 is the last variable included in classifier 15. It provides a 9% increase in
sensitivity for classifier 15 with respect to classifier 14, although the specificity and accuracy
are reduced by approximately 1% and 0.2%, respectively. On the other hand, this variable ex-
cludes one dead individual from the sample used to train classifier 14 because data regarding
allele E3 is not available for that particular individual. Given the small number of dead patients,
it can be hypothesised that the improvement obtained with the inclusion of allele E3 is not di-
rectly attributable to this variable but results from the exclusion of this dead individual. So, we
can assume that the most relevant variables for classifier 15 are indeed the first four variables:
creatinine, heart rate, Killip and age.

Table 9 – ν-SVM with variables selected using the Inverse Disagreement Criterion.

Classifier Variables x̂ (%) ŷ (%) â (%) PCC (%)

13 Creatinine, Hear Rate, Killip 56 66.7 56.9 13.7

14 Creatinine, Hear Rate, Killip, Age 94.3 70.0 92.2 37.3

15 Creatinine, Hear Rate, Killip, Age, E3 allele 93.2 79.3 92.0 45.7

16 Creatinine, Hear Rate, Killip, Age, E3 allele, D allele 86.4 79.3 85.8 41.6
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Next we proceed to train SVM models using several subsets of those seven variables. The re-
sults are summarized in Table 10. All subsets include the following three variables: any previous
revascularization (first to be selected by the disagreement criterion), creatinine (first to be se-
lected by the inverse disagreement criterion) and age. The decision to include age in every subset
of variables is justified for two main reasons. First, since age is a variable collected for all indi-
viduals its inclusion in a classifier does not exclude any individual from the sample. Second, this
variable is less error prone since the level of socioeconomic development in large urban areas
prevents the great majority of people from being uncertain about their ages.

Table 10 – ν-SVM with variables selected using the Disagreement Criterion and the Inverse Disagree-

ment Criterion.

Classifier Variables x̂ (%) ŷ (%) â (%) PCC (%)

17 Creatinine, APR, Age 98.3 87.5 97.5 58.5

18 Creatinine, APR, Age, SAH 98.6 87.5 97.7 58.4

19 Creatinine, APR, Age, Hear Rate 97.6 79.3 96.1 46.7

20 Creatinine, APR, Age, TFM 70.0 75.0 70.4 27.1

21 Creatinine, APR, Age, Killip 63.3 87.1 65.1 37.4

22 Creatinine, APR, Age, SAH, Hear Rate 97.9 79.3 96.4 46.7

23 Creatinine, APR, Age, SAH, TFM 81.1 64.3 79.8 24.9

24 Creatinine, APR, Age, SAH, Killip 64.2 83.9 65.9 33.4

Also observe that including age in the classifier 14 enables us to improve the performance consid-
erably with respect to classifier 13: a 35.3% increase in accuracy, a 38.3% increase in specificity
and a 3.3% increase in sensitivity. In contrast, the performance of classifier 13 is much worse
than that of classifier 9: 29.7% decrease in accuracy, 32.3% decrease in specificity and 2.1%
decrease in sensitivity. This finding suggests that the discrimination power of the variable age
when used in conjunction with creatinine and heart rate is greater than that of the variable Killip
employed with the same two variables.

The best classifiers obtained from the combination of the disagreement and inverse disagree-
ment criteria are classifiers 17 and 18. One might argue that systemic arterial hypertension is
not relevant since the performance of classifiers 17 and 18 are somewhat similar. To confirm
this assumption, a three-variable classifier homologous to the one obtained using the variables
creatinine, age and any previous revascularization is evaluated.

In this case, we replace the variable any previous revascularization in classifier 17 by the vari-
able systemic arterial hypertension. In contrast to the variables creatinine and age, which are
selected using the inverse disagreement criterion and are non-categorical, the variables any pre-
vious revascularization and systemic arterial hypertension are selected using the disagreement
criterion and are two-class variables. The performance of the SVM model trained with variables
creatinine, systemic arterial hypertension and age is:

x̂ = 98.3%, ŷ = 86%, â = 97.4%, PCC = 57.5%.
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This result suggests that the variable systemic arterial hypertension is relevant and brings the

same kind of information that the variable any previous revascularization does in the presence of
the variables creatinine and age. Therefore, both variables (APR and SAH) can be used (although
not in the same classifier) to predict the risk of death.

5 CONCLUSION

In this study, we combined the wrapper and filter approaches to select input variables using an
incomplete sample. This allowed us to maximize the use of information without resorting to
methods for estimating missing data. In the first experiment, we used the order of variables

given by the MIFS-U filter to compare the capability of ν-SVM and feed-forward ANN models
to predict the risk of death (as high or low) in patients admitted with ACS. In line with previous
studies (Berikol et al., 2016; Kumari & Godara, 2011; Xing et al., 2007), the results indicated that

the ν-SVM model is superior. However, the classifier biases did not diverge in terms of variable
selection since both classifiers identified the same optimal subset of input variables: Age, Any
Previous Revascularization, and Creatinine.

In the second experiment, we assessed the impact that the MIFS-U filter could have on the vari-

able selection and, therefore, on the performance of the models. For this purpose, we developed
two new criteria for variable ordering (the disagreement criterion and the inverse disagreement
criterion) based on Euclidean distance. These criteria have very low computational cost and

are able to capture non-linear relations between input and response variables. Their combined
use enabled us to construct classifiers with good performance both in terms of sensitivity and
specificity.

Moreover, our Euclidean filters did not only recover the same optimal set of three variables

chosen by the MIFS-U filter but also highlighted another set of three equally important vari-
ables: creatinine, age and systemic arterial hypertension. So, a possible further advance will be
to propose a framework to integrate the classifiers constructed using these two variable groups.

For example, this development can enable us to classify the death risk of patients hospitalized
with acute coronary syndrome into three classes: high risk, for which both classifiers indicate
high risk; moderate risk, for which the classifiers diverge (i.e., one indicates low risk and the

other high risk); and low risk, for which both classifiers indicate low risk.

The objectives of this study were to identify the relevant variables for the ACS prognosis and to
compare the prediction capabilities of ANN and SVM models. The accuracy of our best SVM
classifiers was similar to that found for ACS diagnosis in Berikol et al. (2016). Nevertheless, if

the goal was the performance of a specific classifier in itself, the results should be interpreted
with care (Chatfield, 1995). Because of the reduced number of individuals in the sample, we
used the same data set for variable selection, training and validation. Although the leave-one-out

technique allowed us to circumvent this issue, we should recognise that the results tend to be
positively biased.
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Another possible research stream is to explore causal and explanatory analyses using graphical

models such as Bayesian Networks (Pearl, 2009; Schenekenberg et al., 2011) and Chain Event
Graphs (Smith & Anderson, 2008; Collazo & Smith, 2015). Finally, in a future study it will also
be very interesting to examine the impact of different layers of hidden neurons defined for the

ANN algorithm on the results.
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eleição da ventilação mecânica no pós-operatório de cirurgia cardı́aca. Fisioterapia em Movimento,

24(3): 481–492.

[42] SCHOLKOPF B & SMOLA AJ. 2001. Learning with Kernels: Support Vector Machines, Regulariza-

tion, Optimization, and Beyond (Adaptive Computation and Machine Learning). The MIT Press.

[43] SCHOLKOPF B, SMOLA AJ, WILLIAMSON RC & BARTLETT PL. 2000. New support vector algo-
rithms. Neural computation, 12(5): 1207–1245.

Pesquisa Operacional, Vol. 36(2), 2016



�

�

“main” — 2016/8/4 — 11:17 — page 340 — #20
�

�

�

�

�

�

340 A COMPARATIVE STUDY BETWEEN ANN AND SVM FOR MEDICAL PROGNOSIS

[44] SENGUR A. 2012. Support vector machine ensembles for intelligent diagnosis of valvular heart dis-

ease. Journal of medical systems, 36(4): 2649–2655.

[45] SMITH JQ & ANDERSON PE. 2008. Conditional independence and chain event graphs. Artificial

Intelligence, 172(1): 42–68.

[46] SUYKENS JAK, ALZATE C & PELCKMANS K. 2010. Primal and dual model representations in
kernel-based learning. Statistics Surveys, 4: 148–183.
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(See Table 11)

B APPENDIX – ADDITIONAL AND MODIFIED EXPLANATORY VARIABLES
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