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ABSTRACT. Solving nesting problems or irregular strip packing problems is to position polygons on

a fixed width and unlimited length strip, obeying polygon integrity containment constraints and non-

overlapping constraints, in order to minimize the used length of the strip. To ensure non-overlapping, we

use separation lines, i.e., straight lines that separate polygons. We present a nonlinear programming model

that considers free rotations of the polygons and of the separation lines. This model uses a considerable

smaller number of variables than the few other approaches proposed in the literature. We use the nonlinear

programming solver IPOPT (an algorithm of interior points type), which is part of COIN-OR. Computa-

tional tests were run using established benchmark instances and the results were compared with the ones

obtained with other methodologies in the literature that use free rotations.

Keywords: separation line, irregular packing problems, nonlinear optimization.

1 INTRODUCTION

Irregular strip packing problems have a great relevance in production processes, such as garment,
manufacturing and furniture making. In irregular strip packing, smaller irregular pieces (in our
case polygons) must be positioned into a big piece (in our case the strip), minimizing the used
length of the strip. The main constraint in irregular strip packing problems is the non-overlapping
between pieces, but it is very complex for a computational program to determine if two pieces are
overlapping, touching or separated. In the literature there are tools for solving this issue (see [5]),
among these the raster methods, direct trigonometry, no-fit polygon, and phi-function. In raster
methods the strip is always divided into discrete areas and coding schemes are used. In the coding
schemes used by Oliveira and Ferreira, and Segenreich and Braga in [22] and [25], respectively,
the empty cells belonging to the division of the strip are encoded by zero and numbers equal to

*Corresponding author.
1Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Av.Trabalhador São-carlense, 400,
13566-590 São Carlos, SP, Brasil. E-mails: jeinnyp@icmc.usp.br; andretta@icmc.usp.br
2INESC TEC, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-590 Porto, Portugal.
E-mail: jfo@fe.up.pt



�

�

“main” — 2018/7/11 — 11:47 — page 196 — #2
�

�

�

�

�

�

196 SOLVING IRREGULAR STRIP PACKING PROBLEMS WITH FREE ROTATIONS USING SEPARATION LINES

or greater than one are used to encode a piece; so, to check the non-overlap in raster methods is
only a matter of checking the grid cells. There are several tools that use trigonometry to deal with
the non-overlapping. In [14] circles inscribed are used to relax the non-overlapping constraints,
replacing them with non-overlapping constraints of circles inscribed. In the remaining tools that
use trigonometry, the pieces are represented by polygons, thereby the non-intersection of the
edges of polygons must be checked to verify the non-overlap. In phi-function, the pieces are
represented by the union or intersection of primary objects, that is, circles, rectangles, regular
polygons, convex polygons, and the complement of these forms. This tool was designed and
implemented in [6, 26, 27, 29]. The phi-function is a mathematical expression that represents
the relative position of two pieces. Specifically, the phi-function value is greater than zero if
the pieces are separated; equal to zero if their borders are touching; and smaller than zero if
overlapping each other. In this article, we use two tools to ensure non-overlapping of pieces,
direct trigonometry and no-fit polygon. In the model, we represent the pieces by polygons and
use separation lines, that is, we use trigonometry. A straight line is a separation line if given two
polygons, all vertices of one of the polygons are on one side of the line or on the line, and all
vertices of the other polygon are on the other side of the line or on the line. For the resolution
of the modeled problem we need a starting solution; for the construction of this starting solution,
we use the no-fit polygon. The no-fit polygon is a polygon resulting from the two polygons that
are being compared. One of the advantages of this method is that the generation of these no-fit
polygons is done only once, in a pre-processing phase, but a big disadvantage is that the no-fit
polygons are dependent on the orientation of the polygons, and have to be generated for all their
possible orientations; in all the instances, we use four predefined orientations of the polygons,
0◦, 90◦, 180◦ and 270◦, which is usually done in the literature.

Several solving techniques for these problems that deal with irregular pieces have been devel-
oped, based predominantly on heuristics and metaheuristics [1, 10, 13, 17, 20, 22]. The heuristics
used for solving these problems can work with partial solutions, constructing the final layout
piece by piece (constructive heuristics), or complete solutions, in which changes are done in or-
der to find improvements. Exact algorithms based on mixed integer linear programming models
that ensure finding the optimal solution were also developed [2, 12, 31]; however, in these algo-
rithms, the runtime increases dramatically with the increase of the quantity of objects used in the
problem. Few methods that combine exact and heuristic approaches have been developed [9],
which allow the computation of high quality solutions in shorter computational times. In all
these techniques and algorithms, free rotations are not allowed.

Additionally in the literature, we also find a visual system for packing problem of irregular pieces
with free rotation into a rectangular board that aims to minimize the waste [16]. This algorithm
is based on Physics, the rubber band physics movement.

Nonlinear programming models have also been proposed for representing the irregular packing
problem, such as [8, 14, 15, 23, 29]. In all these models free rotation of the pieces is allowed.
In [8] a model for a strip packing problem was presented. In this model phi-functions are used
to ensure non-overlapping of the pieces. The pieces in this paper are phi-objects, which are
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2D and 3D objects of very general type. To solve the problem [8] applied a modification of the
Zoutendijk method of feasible directions [34,35] combined with the concept of ε-active inequal-
ities [28]. In [14] the pieces and the shapes can be arbitrary nonconvex polygons and to solve the
problem [14] used three solvers: Branch&Reduce Optimization Navigator (BARON) [24, 30];
the LINDO global optimization procedure (GOP); and The Global Mixed-Integer Quadratic
Optimizer (GloMIQO) [18]. In [23], like in [8], a model for an irregular strip packing prob-
lem was presented. In this, the resolution of the problem is divided in two phases: big pieces
are compacted in a first phase, while in a second phase, the remaining small pieces are placed
between the big pieces. In their experiments, [23] used instances where the pieces are convex
and nonconvex irregular polygons. The representation of these polygons was done by circle cov-
ering, and they used the nonlinear solver ALGENCAN [3, 4]. In [15] a model for two cases of
packing pieces was developed. In the first case, the objective is to pack the pieces in such a way
as to minimize the area of the design rectangle. In the second case, the objective is to pack the
pieces on stocked rectangles of known geometric dimensions. Separation lines are used to ensure
non-overlapping. In their work the pieces are circles, rectangles, and convex polygons; and to
solve the problem [15] used BARON [24, 30] and LindoGlobal; an experiment was performed
with only two polygons and found a feasible solution for it, in which LindoGlobal proved global
optimality in 40 min, but BARON did not increase the lower bound at all. With more than two
polygons this technique has difficulty finding an optimal solution to the problem. In [29] it was
provided a nonlinear programming model that employs ready-to-use phi-functions. In this paper,
the pieces are bounded by circular arcs and/or line segments, and two types of container are con-
sidered, rectangular and circular. To solve the problem, [29] developed a compaction algorithm
to search for local optimal solutions, which is performed by IPOPT (an algorithm of interior
points type, [32]), a component of COIN-OR.

In this paper we propose a nonlinear mathematical model for an irregular strip packing problem
which deals only with polygons which may be convex or nonconvex, and that can rotate freely.
In the model, to ensure non-overlapping, we use direct trigonometry, in particular separation
lines, a similar technique to that used in [15], but with a significantly lower number of variables.
The high number of variables in the model used in [15] comes from having all vertices of the
polygon as variables. Also, it is due to the line vector equation used to model the separation lines,
which in turn implies the employment of many variables such as footing point vector, direction
vector, normal vector, vectors connecting the separation line with the vertices, and distance of
the vertices to the separation line, among others. In our model only the reference point and the
angle of rotation for each polygon and for each separation line are variables, allowing us to
obtain good solutions for larger instances in reasonable execution times. Like the polygons, the
separation lines also can rotate freely. We use a code for nonlinear programming to solve the
problem, IPOPT [32], which depends substantially on a starting solution. We present a way of
calculating starting solutions.

This paper is organized as follows. In the next section a model of an irregular strip packing prob-
lem that considers free rotations is presented. The modeled problem, the polygons representation
used in the model, and the tool used to ensure non-overlapping are described also in this section.

Pesquisa Operacional, Vol. 38(2), 2018
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In Section 3, the parameters of the algorithm used for solving the problem are presented, as well
as the numerical results obtained when performing tests with known benchmark instances. At
the end of our paper we present some conclusions in Section 4.

2 A MODEL FOR AN IRREGULAR STRIP PACKING PROBLEM

The irregular strip packing problem studied in this paper consists of placing n irregular polygons,
which can rotate freely, in a fixed width and unlimited length strip, obeying polygon integrity
containment constraints and non-overlapping constraints, in order to minimize the used length of
the strip. We propose a nonlinear mathematical model for this irregular strip packing problem.

We now explain how the polygons are represented in the model (Section 2.1), as well as the
tool used to ensure non-overlapping of the polygons (Section 2.2), and then, introduce the model
(Section 2.3).

2.1 Representation of polygons in the model

Here, we describe the representation of the polygons. If a polygon is convex, it is represented by
their vertices, as follows:

Pi = [
(x1

i , y1
i ), (x2

i , y2
i ), . . . , (xvi

i , yvi
i )

]
,

with vi the number of vertices of the polygon Pi .

If a polygon is nonconvex, it can be partitioned in convex polygons, as follows:

Pi = [
Pi,1 , Pi,2, . . . , Pi,pi

]
,

with pi the number of convex polygons belonging to the partition of the nonconvex polygon Pi ,
see Figure 1.

The partition of a nonconvex polygon influences the model and therefore the solution, because
there is a directly proportional relationship between the number of convex polygons belonging to
the partition and the number of separation lines. The number of variables and the computational
effort will grow according to the number of polygons in the partition.

The coordinates of a vertex belonging to a partition of a nonconvex polygon Pi are given by

(xl
i, j , yl

i, j ), with j = 1, . . . , pi and l = 1, . . . , vi, j ,

with vi, j the number of vertices of the convex polygon Pi, j .

We can deal with the problem with n nonconvex polygons in the same way that we deal with the
problem with N convex polygons, with N = ∑n

i=1 pi . We just have to ensure that the translations
and rotations are the same for all polygons belonging to the partition of a nonconvex polygon.

The reference point is used for representing a polygon which has undergone translations and/or
rotations, since we can write all other vertices of the polygon in terms of this point, as can be
seen in Section 2.1.1. We choose the first vertex as the reference point of a polygon.

Pesquisa Operacional, Vol. 38(2), 2018



�

�

“main” — 2018/7/11 — 11:47 — page 199 — #5
�

�

�

�

�

�

JEINNY PERALTA, MARINA ANDRETTA and JOSÉ FERNANDO OLIVEIRA 199

Figure 1 – Partition of a nonconvex polygon.

2.1.1 Vertices of polygons in general form

Henceforth, we will use the following notation: (xl
i , yl

i ) are the coordinates of a vertex of a
polygon Pi in the original position, and (x̄l

i , ȳl
i ) are the coordinates of a vertex of a polygon Pi

which has undergone translations and/or rotations.

In the representation of the polygons used in the model, we assume that (x1
i , y1

i ) = (0, 0) for all
i. Thus, if we translate and rotate a polygon Pi around its reference point, the coordinates of any
vertex l in general form are given by:

(
x̄l

i , ȳl
i

) = (
xl

i cos θi − yl
i sin θi + x̄1

i , xl
i sin θi + yl

i cos θi + ȳ1
i

)
,

with θi the angle of rotation of the polygon Pi . We consider that positive angles represent rotation
in the counterclockwise direction.

When we deal with nonconvex polygons, we make sure that the translations and rotations are the
same for all polygons belonging to the partition of the nonconvex polygon.

2.2 Separation lines

We use separation lines to ensure non-overlapping, see Figure 2. A straight line given by the
equation y = ci,r x + di,r separates two polygons Pi and Pr if either{

yl
i − ci,r xl

i − di,r ≤ 0, ∀l ∈ {1, . . . , vi},
yl

r − ci,r xl
r − di,r ≥ 0, ∀l ∈ {1, . . . , vr },

(1)

Pesquisa Operacional, Vol. 38(2), 2018
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or {
yl

i − ci,r xl
i − di,r ≥ 0, ∀l ∈ {1, . . . , vi},

yl
r − ci,r xl

r − di,r ≤ 0, ∀l ∈ {1, . . . , vr },
(2)

holds.

Figure 2 – Separation line of two convex polygons.

When we are dealing with nonconvex polygons, we must have lines separating each pair of
polygons Pi, j , Pr,s , belonging to the partition of polygons Pi , Pr , respectively, with i �= r
(that is, we do not have lines separating the polygons belonging to the partition of a nonconvex
polygon), j ∈ 1, . . . , pi , and s ∈ 1, . . . , pr .

A separation line does not necessarily pass over one side of one of the two polygons that it is
separating; however, at the starting solution, all separation lines have a rotation of 0◦ and pass
over one side of one of the two polygons that it is separating. Next, we present the general form
of a separation line passing through a side of one of the two polygons, that is, which passes
through two vertices of a polygon (Pi, j or Pr,s ), let’s say (xk , yk) and (xk+1, yk+1):

(y − yk)(xk+1 − xk) − (yk+1 − yk)(x − xk) = 0.

Like polygons, the separation lines can also rotate and translate, as long as they remain being sep-
aration lines. When rotating and translating a separation line, we rewrite the point (x̄k+1, ȳk+1)

as a function of (x̄k, ȳk), which we will call from now on reference point of the separation line;
therefore

(x̄k+1, ȳk+1) = ((xk+1 − xk) cos αi, j,r,s +(yk − yk+1) sin αi, j,r,s + x̄k,

(xk+1 − xk) sin αi, j,r,s +(yk+1 − yk) cos αi, j,r,s + ȳk),

with αi, j,r,s the angle of rotation of the separation line of the polygons Pi, j and Pr,s .

Next, we rewrite the separation line equation:

(y − ȳk)[(xk+1 − xk) cos αi, j,r,s + (yk − yk+1) sin αi, j,r,s ]−
(x − x̄k)[(xk+1 − xk) sin αi, j,r,s + (yk+1 − yk) cos αi, j,r,s ] = 0.

Pesquisa Operacional, Vol. 38(2), 2018
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2.3 Model for an irregular strip packing problem with n polygons considering free
rotations

Because we want to position n polygons in a fixed width and unlimited length strip in order to
minimize the used length of the strip, the objective function is given by:

z = max{x̄il }, l = 1, 2, . . . , vi and i = 1, 2, . . . , n, (3)

with vi the number of vertices of the polygon Pi .

Without loss of generality, to ensure non-overlapping, we used in our model the set of con-
straints (1), for each pair of polygons Pi, j and Pr,s , with

ci, j,r,s = (xk+1 − xk) sin αi, j,r,s + (yk+1 − yk) cos αi, j,r,s

(xk+1 − xk) cos αi, j,r,s + (yk − yk+1) sin αi, j,r,s

and
di, j,r,s = ȳk − ci, j,r,s x̄k,

in which (xk , yk) and (xk+1, yk+1) are the two vertices of one of the polygons whereby passes
the separation line and αi, j,r,s is the rotation angle of the straight line that separates Pi, j from
Pr,s . We use the notation (xk, yk) for the reference point of the separation line. Note that the
coordinates of this reference point are also the values of the translations parameters, that from
now on, we will write (x̄i, j,r,s , ȳi, j,r,s ), for a straight line that is separating Pi, j from Pr,s .

Let (z, q1, q2, . . . , qn, q̄1, q̄2, . . . , q̄Q) be the vector of all variables in our model, with z the
length of the strip defined in (3), qi the variables referring to the polygon Pi , qi = (x̄1

i , ȳ1
i , θi ),

i = 1, . . . , n and q̄� the variables referring to the line that separates polygon Pi, j from polygon
Pr,s , q̄� = (x̄i, j,r,s , ȳi, j,r,s , αi, j,r,s ), � = 1, . . . , Q and Q = ∑n−1

i=1 pi (
∑n

k=i+1 pk) the number of
separation lines. Let e be the width of the strip in which the polygons are to be placed. A general
model for our problem is given by:

Minimize z

subject to 0 ≤ ȳl
i, j ≤ e, i = 1, . . . , n (4a)

j = 1, . . . , pi

l = 1, . . . , vi, j

0 ≤ x̄l
i, j ≤ z, i = 1, . . . , n (4b)

j = 1, . . . , pi

l = 1, . . . , vi, j

ȳl
i, j − ci, j,r,s x̄l

i, j − di, j,r,s ≤ 0, i = 1, . . . , n (4c)

r = 1, . . . , n

i �= r

j = 1, . . . , pi

Pesquisa Operacional, Vol. 38(2), 2018
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s = 1, . . . , pr

l = 1, . . . , vi, j

ȳl
r,s − ci, j,r,s x̄l

r,s − di, j,r,s ≥ 0, i = 1, . . . , n (4d)

r = 1, . . . , n

i �= r

j = 1, . . . , pi

s = 1, . . . , pr

l = 1, . . . , vr,s

Remembering that the vertices of a translated and rotated polygon Pi, j are given by (x̄l
i, j , ȳl

i, j ),
for i = 1, . . . , n, j = 1, . . . , pi and l = 1, . . . , vi, j , in which

x̄l
i, j = xl

i, j cos θi − yl
i, j sin θi + x̄1

i ,

and
ȳl

i, j = xl
i, j sin θi + yl

i, j cos θi + ȳ1
i ,

with (x̄1
i , ȳ1

i ) the variable reference point of polygon Pi and θi the variable rotation angle.
(xl

i, j , yl
i, j ) are the coordinates of a vertex of a polygon Pi in the original position.

Constraints (4a) and (4b) ensure that a polygon Pi is entirely inside the strip. In these constraints,
the width e is a fixed parameter; the length z is a variable; x̄l

i, j and ȳl
i, j depend on the reference

point and the rotation angle of the polygon, (x̄1
i , ȳ1

i ) and θi , respectively, which are variables.
Constraints (4c) and (4d) ensure non-overlapping of the convex polygons Pi, j and Pr,s . In these
constraints, ci, j,r,s and di, j,r,s depend on the reference point and the rotation angle of the separa-
tion line, (x̄i, j,r,s , ȳi, j,r,s ) and αi, j,r,s , respectively, which are variables.

3 COMPUTATIONAL EXPERIMENTS AND RESULTS

All numerical experiments were performed on an Intel Core I7-4510U CPU @ 2.1GHz processor
and 8 GB of memory. We used a code for nonlinear programming to solve the problem, IPOPT
[32] (an algorithm of interior points type), which is part of the COIN-OR [33].

IPOPT is the implementation of a barrier or interior points method for large scale nonlinear
optimization problems of the type

Minimize f (v)

subject to gL ≤ g(v) ≤ gU ,

vL ≤ v ≤ vU ,

with v ∈ Rn and f , g continuously differentiable; the mathematical details of this algorithm can
be found in [21, 32]. IPOPT can be executed in different programming languages, we used the

Pesquisa Operacional, Vol. 38(2), 2018
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C programming language version of Ipopt-3.12.3 and compiled the codes in the Ubuntu 12.04
operating system.

The CPU time is very large when we use the Hessian of the Lagrangian, therefore we will always
use an option given in IPOPT to approximate the Hessian with limited memory, which makes the
runtime shorter, without affecting the quality of the solution. In addition to the standard IPOPT
parameters, we use the adaptive update strategy for barrier parameter. The maximum execution
time is set to one hour.

We use the geometric library Computational Geometry Algorithms Library (CGAL) to partition
the nonconvex polygons, in particular, we use the implementation of Greene’s dynamic program-
ming algorithm [7].

In the next subsection a brief explanation of the starting solution used in the execution of IPOPT
is presented. In Section 3.2, the results obtained with IPOPT and comparisons of those with two
methodologies recent in the literature [16,29], which also allow free rotations, are presented.

3.1 Starting solutions

IPOPT is designed to find local solutions. Taking into account that the developed nonlinear model
is nonconvex, when solving it we can find many stationary points with different objective func-
tion values, and these stationary points depend on the starting solution.

In the next section we present the instances that are used to test our model. For each one of
these instances, we generate a starting solution using a bottom-left algorithm. The bottom-left
algorithm is a single pass heuristic that, given a set of pieces and an order, places the pieces one
by one on the strip, as far to the left and to the bottom as possible. The algorithm receives a
list of randomly ordered polygons. This list is represented by a sequence, and for decoding the
sequences, we used the technique presented in [19]. To avoid overlapping, the algorithm uses
no-fit raster, concept also introduced in [19]. In no-fit raster, to represent the strip a discrete grid
of points is used. The scale used for discretization in most instances is 1.0, except for Albano,
Dagli, and Swim, (instances in which the area occupied by the polygons is greater), which are
0.02, 0.5, and 0.00005, respectively. Although in the model we allow free rotation, this bottom-
left algorithm does not allow free rotation of the polygons, therefore we use four predefined
angles of rotation (0◦, 90◦, 180◦ and 270◦) in all instances. For each instance, we execute the
algorithm 1000 times, then we choose the layout with shortest length obtained from these 1000
executions as a starting solution.

3.2 Comparing results

To test our model, we will use the same benchmark problems used in the two approaches with

which we will compare results, available in [11]. The most important characteristics of these
instances are presented in Table 1. The names of the instances are presented in the first column.
In the second and third columns the number of convex, and nonconvex polygons are presented,

respectively. The total number of polygons, after decomposition of nonconvex polygons into

Pesquisa Operacional, Vol. 38(2), 2018
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convex polygons are presented in the fourth column. In the fifth the total number of vertices are

presented. The number of variables and the number of constraints are presented in the sixth and
seventh columns, respectively.

Table 1 – Instances data.

Instance
convex nonconvex final conv. no. of no. of no. of

polygons polygons poly. no. vertices variables constraints

albano 10 14 52 220 3907 11700
blaz 16 12 48 216 3385 10792

dagli 21 9 51 228 3790 11988
jakobs1 15 10 35 146 1831 5468

jakobs2 14 11 42 158 2590 7367

marques 10 14 50 214 3628 11002
poly1a 10 5 22 81 712 1968

poly2a 20 10 44 162 2875 7500
poly3a 30 15 66 243 6490 16596

poly4a 40 20 88 324 11557 29256
poly5a 50 25 110 405 18076 45480

poly10a 100 50 220 810 72451 180060
poly20a 200 100 440 1620 290101 716520

shirts 60 39 169 739 42583 126236
swim 6 42 291 1446 123787 415845

trousers 48 16 104 468 16045 49476

A starting solution is the layout with shortest length, among 1000 executions of the bottom-left
algorithm applied to random piece sequences. As the sequence of the polygons is random, if we
execute the algorithm another 1000 times, the layout with shortest length can be different to the
one found previously, thus, in order to analyze the effectiveness of our model, for each instance,

we considered 10 starting solutions. We execute IPOPT to solve our model with each one of
these 10 different starting solutions.

When in the initial layout the polygons have enough space to move, the model is able to change
the layout more deeply. On the other hand, when the initial layout is already quite compressed,

the model performs a compaction phase, without deep changes in the layout. In order to show
how much our model reduces the length of the starting solution, we present Table 2, in which
the compaction percentages, measured by the layout length reduction from the initial to the final

solution, are presented (first column); the minimum, the average and the maximum compaction
percentages, regarding the 10 different starting solutions used, are also presented in the third,
fourth and fifth columns, respectively. Note that, these percentages are larger in instances with

pieces of similar sizes, like in all variations of the instance poly, and that for instances with a
smaller number of pieces the compaction is bigger. Note also that the compaction is smaller in
instances with big pieces, such as in the instances albano, marques, shirts or trousers.

Pesquisa Operacional, Vol. 38(2), 2018
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Table 2 – Compaction percentages from length in the starting solution to length in the solution.

Instance Compc. Min. Compc. Avg. Compc. Max. Compc.

albano 2.60% 0.00% 2.20% 4.55%

blaz 4.06% 1.80% 6.27% 11.84%

dagli 8.17% 2.50% 5.07% 8.17%
jakobs1 13.33% 0.00% 4.00% 13.33%

jakobs2 7.14% 0.00% 5.26% 8.90%
marques 3.80% 0.00% 1.58% 3.80%

poly1a 26.23% 15.90% 20.71% 26.89%
poly2a 20.71% 11.25% 16.75% 20.71%

poly3a 18.71% 7.29% 15.08% 18.71%
poly4a 17.75% 13.34% 15.68% 17.99%

poly5a 16.86% 13.21% 15.46% 16.98%
poly10a 15.78% 7.27% 14.46% 15.97%

poly20a 14.18% 2.05% 10.38% 14.24%
shirts 2.81% 0.56% 2.10% 3.70%

swim 9.41% 4.30% 6.74% 10.09%

trousers 2.59% 1.24% 2.69% 4.15%

The length of the starting solution does not have a determinant impact on the length of the
solution, the layout of the starting solution is what determines the length of the solution; two

starting solutions with the same length can produce two solutions with quite different lengths, as
long as the layouts at the starting solutions are enough different, see Figure 3. In our experiments,
we have observed that in 10 of the 16 instances tested the shortest starting solution produced the

shortest solution.

We solved the model in Section 2.3 for the instances of Table 1 using the 10 different starting
solutions and we compared our results with those of the recent literature that allow free rota-
tions, [29] and [16]. These results are summarized in Table 3, in which the minimum (second

column), the average (third column), and the maximum (fourth column) strip length obtained
are presented. The average time used to construct the starting solutions (fifth column) and the
average time (sixth column) that was spent to solve the instances are also presented in Table 3 ;

the strip length and time reported in [29] are in seventh and eighth columns, and strip length and
time reported in [16] are in ninth and tenth columns, respectively.

For those instances tested in [29], it can be observed that the length of the best solution obtained
in this work is slightly greater than those reported there. However, when comparing with [16]

we can see that in most instances the minimum length obtained using our model is smaller. In
the few remaining, the length is very close. On the other hand, note that our model finds good
solutions for problems with a large number of polygons, although in these the number of variables

and constraints, and the computational time, grows drastically. These solutions may not be local
optimal due to the maximum execution time.
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(a) Starting solution layout 1 (b) Final layout 1

(c) Starting solution layout 2 (d) Final layout 2

Figure 3 – Example of two starting solutions with the same length and solutions with quite different lengths.

Table 3 – Comparison of our results to those in [29] and [16].

Instance

Our approach Best results in [29] Best results in [16]

Minimal

Solution

Average

Solution

Maximal

Solution

SP Average

time(sec)

IPOPT Average

time(sec)
Length Time(sec) Length Time(sec)

albano 10355.80 10601.03 10849.99 158.68 178.56 10032.24 124.39

blaz 27.82 29.02 30.44 1.37 49.52 25.41 25.42 28.27 56.86

dagli 60.60 61.96 63.36 404.13 135.10 56.90 139.00 59.24 132.58

jakobs1 12.99 13.49 14.00 4.68 19.30 13.19 48.46

jakobs2 26.00 27.29 30.00 17.60 18.41 24.25 53.67

marques 84.65 86.68 91.00 66.74 58.11 84.93 118.12

poly1a 14.01 14.53 15.01 6.23 19.07 13.90 27.59

poly2a 26.16 27.30 27.92 10.68 87.53 26.67 61.23

poly3a 39.01 40.29 44.50 15.44 773.32 39.48 149.66

poly4a 50.99 52.50 53.72 20.59 1621.54 51.13 210.74

poly5a 63.66 65.05 66.31 26.21 1773.85 65.64 287.32

poly10a 127.16 129.46 140.01 58.25 2350.17 126.29 618.80

poly20a 254.86 268.06 294.81 151.38 3484.92 251.04 1209.17

shirts 62.19 64.43 65.62 11.55 1808.73 65.06 340.89

swim 6011.93 6311.16 6526.38 449.85 3600.00 5661.95 431.97

trousers 249.35 258.03 261.94 118.00 603.36 251.94 265.48

The layout of minimum length obtained and the starting solution used to find it, for each instance,
can be seen in Figures 4 – 19.
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(a) Starting solution layout (b) Final layout

Figure 4 – Instance Albano.

(a) Starting solution layout (b) Final layout

Figure 5 – Instance Blaz.

(a) Starting solution layout (b) Final layout

Figure 6 – Instance Dagli.

(a) Starting solution layout (b) Final layout

Figure 7 – Instance Jakobs1.
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(a) Starting solution layout (b) Final layout

Figure 8 – Instance Jakobs2.

(a) Starting solution layout (b) Final layout

Figure 9 – Instance Marques.

(a) Starting solution layout (b) Final layout

Figure 10 – Instance Poly1a.

4 CONCLUSIONS

In this work, we developed a model for irregular strip packing problems, that allows free rotations

and uses separation lines to avoid overlap. As a relevant point of this work we highlight the use
of the general equation of the line to model the separation lines, allowing us to use only three
variables for each separation line: the coordinates of the reference point and the angle of rotation.

This establishes a marked dissimilarity with other models presented in the literature, for example
the one presented in [15], which has a higher number of variables. The number of variables in
the model used in [15] is grounded on the representation of the polygons used, in addition to the
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(a) Starting solution layout (b) Final layout

Figure 11 – Instance Poly2a.

(a) Starting solution layout (b) Final layout

Figure 12 – Instance Poly3a.

(a) Starting solution layout (b) Final layout

Figure 13 – Instance Poly4a.

(a) Starting solution layout (b) Final layout

Figure 14 – Instance Poly5a.
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(a) Starting solution layout

(b) Final layout

Figure 15 – Instance Poly10a.

(a) Starting solution layout

(b) Final layout

Figure 16 – Instance Poly20a.

(a) Starting solution layout (b) Final layout

Figure 17 – Instance Shirts.
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(a) Starting solution layout (b) Final layout

Figure 18 – Instance Swim.

(a) Starting solution layout

(b) Final layout

Figure 19 – Instance Trousers.

vector equation of the line used to model the separation line. In fact, a instance with two convex
polygons of 5 and 6 vertices would use:

• For the separation lines: eleven variables for the distances of the vertices to the sepa-
ration line, two variables for the footing point vector, twenty two variables for the vec-
tors connecting the separation line with the vertices, eleven auxiliary variables needed to

compute these vectors, two variables for the direction vector and, two variables for the
normal vector.

• For the polygons: two variables for the orientation angle of the polygons, two variables
for the radius of the smallest circle enclosing the polygons, twenty two variables for the

coordinates of the vertices and, four variables for the center coordinates of the polygons.

• Others: a variable for the area of the design rectangle, two variables for the extensions of
the design rectangle and, a variable for the objective function.
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Instead, for an instance with two convex polygons our model would only need 10 variables,

a significant simplification that leads to a better performance of the solution method ensuring
likewise a good solution to the problem.

The solution of the problem modeled here, using a local nonlinear programming solver, depends
on the starting solution. We used a bottom-left algorithm to construct these starting solutions.

To test the effectiveness of our model, we compared our results with those obtained recently in
the literature [16, 29], which also use methodologies with free rotations. The lengths reported
in [29] are smaller but very close to those found in this work. On the other hand, the lengths

reported in [16] are greater in most instances; in the others, they are very close. Therefore, the
effectiveness of our model is verified, as well as the quality of the constructed starting solutions
using a bottom-left algorithm; however, we believe that these results could be improved by using

another algorithm to construct the starting solutions.

ACKNOWLEDGEMENTS

This research was partially supported by CNPq (grants 141072/2014-8 and 409043/2016-8)
and FAPESP (grants 2013/07375-0 and 2016/01860-1), from Brazil.

REFERENCES

[1] ALBANO A & SAPUPPO A. 1980. Optimal allocation of two-dimensional irregular shapes using
heuristic search methods. IEEE Transactions on Systems, Man and Cybernetics, 10: 242–248.

[2] ALVAREZ-VALDES R, MARTINEZ A & TAMARIT JM. 2013. A branch and bound algorithm for
cutting and packing irregularly shaped pieces. International Journal of Production Economics,

145(2): 463–477.

[3] ANDREANI R, BIRGIN EG, MARTINEZ JM & SCHUVERDT ML. 2007. On augmented lagrangian
methods with general lower-level constraints. SIAM Journal on Optimization, 18: 1286–1309.

[4] ANDREANI R, BIRGIN EG, MARTINEZ JM & SCHUVERDT ML. 2008. Augmented lagrangian
methods under the Constant Positive Linear Dependence constraint qualification. Mathematical

Programming, 111: 5–32.

[5] BENNELL JA & OLIVEIRA JF. 2008. The geometry of nesting problems: A tutorial. European Jour-

nal of Operational Research, 184: 397–415.

[6] BENNELL JA, SCHEITHAUER G, STOYAN Y & ROMANOVA T. 2010. Tools of mathematical

modelling of arbitrary object packing problems. Ann. Oper. Res., 179: 343–368.

[7] CGAL – COMPUTATIONAL GEOMETRY ALGORITHMS LIBRARY. 2D Polygon Partitioning. Avail-

able at: http://doc.cgal.org/latest/Partition_2/

[8] CHERNOV N, STOYAN Y & ROMANOVA T. 2010. Mathematical model and efficient algorithms for
object packing problem. Computational Geometry: Theory and Applications, 43: 535–553.

[9] CHERRI L, CARRAVILLA M & TOLEDO F. 2016. A model-based heuristic for the irregular strip
packing problem. Pesquisa Operacional, 36(3): 447–468.

Pesquisa Operacional, Vol. 38(2), 2018



�

�

“main” — 2018/7/11 — 11:47 — page 213 — #19
�

�

�

�

�

�

JEINNY PERALTA, MARINA ANDRETTA and JOSÉ FERNANDO OLIVEIRA 213
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