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ABSTRACT. Optimization benchmarks are tools for the validation and comparison of algorithms. Routing
benchmarks are particularly relevant to industry. However, there are few available VRP benchmarks based
on realistic situations. This research creates a set of multi-objective (three objectives) instances for a length-
constrained variant of VRP. The instances model a realistic case of mail delivery performed by mail carriers
on foot in the Brazilian city of Rio Claro. A new graph of the city road map was created, and mail carriers’
activities were estimated. Streets were assigned with distinct probability densities to receive deliveries. This
research produces 80 mail delivery instances with up to 50,000 deliveries per instance. Finally, bounds for
a set of instances were produced. The instances are publicly available for the community to test, compare
and validate multi-objective optimization algorithms.

Keywords: VRP instances, multi-objective, logistics.

1 INTRODUCTION

Logistics is present in several activities of modern daily life and is a field of scientific study.
Logistical optimization can reduce costs for many economic activities. Computer science brings
solutions to real-world decision-making problems.

One of the computational problems involving logistics is the Traveling Salesman Problem (TSP).
A generalization of the TSP is the Vehicle Routing Problem (VRP). The VRP was introduced by
Dantzig & Ramser (1959). It was initially defined as a problem of fueling multiple trucks for a
single refinery. However, the name VRP only appears in the paper of Christofides (1976), where
VRP was defined as a generic class of problems involving the visit of “customers” by “vehicles”.

Since then, several variants of the VRP have emerged, modeling different situations, bringing dif-
ferent characteristics and requirements. The most studied variant assumes a capacity in vehicles,
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which can be a maximum weight or volume supportable by a vehicle. Such restriction implies
a maximum number of deliveries that a given vehicle can perform. Capacity can be variable or
equal for vehicles. This variant is named Capacitated Vehicle Routing Problem (CVRP).

Assuming time windows, in which deliveries have a specific time window to be performed, we
have the Vehicle Routing Problem with Time Windows (VRPTW).

There is also the possibility of using several depots. Such problems are called Multi Depot Vehi-
cle Routing Problem, (MDVRP). According to Eksioglu et al. (2009), about 11% of the papers
assume the variant with multiple deposits, 90.5% for CVRP and 37.9% for VRPTW.

According to Talbi (2009), scientists, engineers and managers always make decisions. As the
world becomes more and more complex, the decision process must be made in a rational and
optimized way.

For Talbi (2009), the decision process consists of four steps: (i) formulate the problem; (ii) model
it; (iii) optimize it; and (iv) implement a solution.

In the first step, the problem is identified, and an initial formulation is made. This formulation
may be inaccurate. Internal factors, external factors and goals are outlined.

In the second stage, a mathematical model is built for the problem, which can be inspired by
similar models found in the literature. In these cases, the problem is reduced to better studied
models. Generally, every model is a simplification of reality, being usually incomplete. Modeling
may present approximations and some phenomena may not be represented because they are too
complex or not very relevant for the intended objectives.

Once the problem is modeled, a good solution must be generated for it, which can be optimal or
sub-optimal. Next, the decision process can be implemented, and the proposed solution can be
tested. However, benchmarks allow the performance of processes to be tested before someone
implements a solution in the real world.

Benchmarks are commonly found tools in computing and other areas, and they allow us to eval-
uate the performance of products and methods. Benchmarks model a problem, allow the per-
formance evaluation of algorithms and solutions. There are several benchmarks known in the
literature. The best known to TSP is the TSPLIB (Reinelt, 1991). The TSPLIB brings a group
of several instances of different papers, being available in Reinelt (1995). Although the TSPLIB
has instances for the symmetric and asymmetric TSP, it also has instances of related problems,
such as the CVRP, the sequential ordering problem, and the Hamiltonian Cycle.

Vidal et al. (2020) creates a concise guide about VRP variants using three main subdivisions: (i)
Metrics, objective functions and the combination of objective functions. (ii) Routing optimization
integrated with business decision-making. (iii) Model precision improvement.

In this direction, in Meira et al. (2020) there is the construction of a benchmark for the VRP. That
research analyzes the problem of mail delivery by mail carriers in the city of Artur Nogueira,
Brazil. The variant is called PostVRP.
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PostVRP considers vehicles with no capacity, a maximum route limited and only one depot.
That research develops a methodology for probabilistic deliveries generation in a roadmap space
and a method for calculating distances by the shortest path algorithm. The instances generated
in Meira et al. (2020) contain up to 30,000 deliveries. In PostVRP there is a multi-objective
approach, since it considers three objectives: (i) the minimization of the total route length; (ii)
the minimization of the number of vehicles and (iii) the reduction of the variability in the length
of the routes.

The focus of this research is to create multi-objective instances for mail deliveries on foot in the
city of Rio Claro, State of São Paulo (SP), Brazil, located at 22◦ 24’ 39” S, and 47◦ 33’ 39” W.
The mathematical model was created based on the expert knowledge of one author, who lives
in Rio Claro. This research generates new instances for the variant PostVRP with up to 50,000
deliveries and up to 120 vehicles. We named the new instances as RioClaroPost.

The roadmap generated in this research presents 1,674 streets. We preliminary present results
using the 2-opt algorithm (Croes, 1958) to validate the new instances.

2 LITERATURE REVIEW

Let n be the VRP number of clients. The first known instance of VRP was proposed in the
paper of Dantzig & Ramser (1959), who introduced the problem. Such work contains only one
instance, with n = 12, for the CVRP variant. The research introduced the algorithm that was later
improved by Clarke & Wright (1964), known as the savings heuristic.

Solomon’s paper (1987) extends the savings heuristic to the VRPTW. This paper also brings
a new set of 56 instances, all with n = 100 divided into six problem sets: R1 and R2 being
randomly generated through a uniform distribution, C1 and C2, which were generated through
clustering, RC1 and RC2, which contain a mix between clustered and randomly generated data.
Each set has from eight to 12 instances. The instances of sets R1, C1, RC1 have more restricted
route times compared with sets R2, C2 and RC2. According to Solomon, several factors can
affect the behavior of routing and scheduling heuristics, such as: geographic data, the number
of customers served by a vehicle, and features such as time constraints. Gehring & Homberger
(1999), extended Solomon’s instances to create a new benchmark.

The authors of this research created six groups of instances, in which the first group contains
the 56 original instances of Solomon (with n = 100) and the other five groups containing 60
instances with n = 200, n = 400, n = 600 and n = 1,000. The research kept the same six classes
defined by Solomon: R1, R2, C1, C2, RC1 and RC2. Each class contains ten instances.

In 2012, Ma et al. (2012) created 56 instances based on Solomon. They modeled a new problem,
which was named VRP with Time Windows and Link Capacity Constraints (VRPTWLC). This
variant added a new restriction to VRPTW. Such restriction consists of the insertion of maximum
capacity to streets and accesses. Such streets and accesses are forbidden for some vehicles. The
instances generated by this research are practically the same as Solomon’s, with street capacity
added.
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Uchoa et al. (2017) created two sets of instances for CVRP. The main set contains 100 new
instances containing n between 100 and 1,000 clients. The extended set has 600 new instances.
The focus of the research was to generate less artificial and less homogeneous instances, avoiding
patterns that are unlikely to appear in real data.

Lee & Chae (2021) proposed a new set of 648 instances with n between 50 and 500 for the
Asymmetric Costs VRP (ACVRP). This benchmark models Seoul and Busan instances in South
Korea, using the SK Telecom API.

Elgharably et al. (2022) introduced a multi-objective model for the Green Vehicle Routing Prob-
lem (GVRP) based on the instances of Uchoa et al. (2017). The authors considered three objec-
tives: (i) to minimize the total operational cost; (ii) to minimize the environmental impact; and
(iii) to maximize customer satisfaction. The problem addressed by this work is also considered
stochastic because of its uncertainties. Three models are proposed by this work: the first considers
uncertainty in travel time, whereas the other models address uncertainties about demands.

Gunawan et al. (2021) provided a list of instances of different works. The primary reference is
the research of Mendoza et al. Mendoza et al. (2014), which made available variants of VRP on
an open platform called VRP-REP. The VRP-REP defined 48 VRP variants divided in 100 sets,
resulting in 8,683 instances.

3 PROBLEM DEFINITION

This section was based on research (Meira et al., 2020), where the authors defined the problem as
a variant of the VRP based on the delivery of mail by mail carriers in the Brazilian city of Artur
Nogueira, through a benchmark with instances of up to 30,000 vertices. The research presents
only one depot and a maximum route length Rmax allowed for the solution.

The authors in Meira et al. (2020) considered a complete weighted graph G(V,E,w) and a cost
function w : E→Q+. There is a special vertex π ∈V called deposit. The set of clients is given by
C = V \ {π} and their number by n = |C|. The set of clients is represented by C = {c1, . . . ,cn}.
There is a value k ∈ N that represents the number of vehicles, which can be a constant or a
variable.

Consider a sequence S(C,k) = (c1, . . . ,cn,π, . . . ,π) assembled by inserting all the elements of
C into S(C,k) . After that, the vertex of the deposit is inserted k−1 times. Each permutation of
S(C,k) represents a VRP solution.

All routes start and end at the depot. Each route is a subsequence of S limited by π . For
example, consider the solution S′ = (c1,c2,c3,c4,π,c5,c6,c7,π,c8,c9,c10). In this example,
R1 = (c1,c2,c3,c4), R2 = (c5,c6,c7) and R3 = (c8,c9,c10). Let Partition(S) = (R1, . . . ,Rk′) be
the set generated by breaking the original sequence into routes. The break occurs every time the
deposit is found in the original sequence. By definition, empty routes are not part of Partition(S).
That is, Partition(1,2,π,π,3,4) is {(1,2),(3,4)} and not {(1,2),(),(3,4)}.
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The size of the route R = (r1, . . . ,rm) is given by:

W (R) = w(π,r1)+w(rm,π)+
m−1

∑
i=1

w(ri,ri+1).

The average length of a solution S = (s1, . . . ,sm) is calculated as the average length of the routes,
as follows:

W (S) =

∑
R∈Partition(S)

W (R)

|Partition(S)|

The number of vehicles used in a given solution is equal to the number of non-empty routes,
i.e. |Partition(S)|. If the number of vehicles is k and empty routes are not allowed, we have
the restriction |Partition(S)| = k. If the number of vehicles is k at most, or if empty routes are
allowed, we have |Partition(S)| ≤ k.

Similarly to Meira et al. (2020), we defined three optimization objectives: f1(S), f2(S) and f3(S).
The f1(S) is W (S). The function f2(S) = |Partition(S)| that represents the number of vehicles.
Finally, the function f3(S) measures the degree of variability between the lengths of the routes
by calculating the standard deviation:

f3(S) =

√√√√√ ∑
R∈Partition(S)

(W (R)−W (R))2

|Partition(S)|−1

The mail carrier has a limit of six or eight hours of work per day. As the value W (R) is measured
in time, the solution must respect W (R) ≤ Rmax for a given Rmax ∈ N. The formal definition of
the problem is presented below:

Definition 1. PostVRP.

Given a set of elements S, a cost function w : S×S→N, a constant k ∈ S represents the maximum
number of vehicles, a special vertex π ∈ S is the depot, the Rmax ∈N is the maximum length of the
route. Considering C← S\{π}, the sequence S(C,k) and Pe is the set of all feasible permutations
of S(C,k) respecting the Rmax. PostVRP consists of the minimization of ( f1(S′), f2(S′), f3(S′)) for
every S′ ∈ Pe.

4 METHODOLOGY

As in Meira et al. (2020), streets are modeled as a polygonal chain P defined as a set of planar
coordinates, such that P= (c1, . . . ,cn), where c∈R2 for all c∈P. The graph G(V,E) is generated
from the set of these streets. Each vertex v ∈V is associated with a Cartesian coordinate (x,y) ∈
R2 and each edge e = (u,v) is a line segment between u and v. Edge cost is defined by Euclidean
distance. See Figure 1.
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We use a probability density to assign probabilities of streets receiving deliveries as in Meira
et al. (2020). This method is used because central streets are more likely to receive deliveries
compared to isolated streets per unit of length, simulating the population density of a real urban
area.

The research (Meira et al., 2020) presents a tool for creating benchmarks. We use this tool to
create a set of instances to the city of Rio Claro. This tool has three configuration files to be
defined:

• Background.png: contains an image used for viewing. This image also serves as the basis
for building the model.

• Model.txt: contains information about the model, such as: additional cost to perform a
delivery, vehicle speeds, density street attributes, depot location and the street map.

• Instances.txt: contains the attributes of each instance, such as maximum number of
vehicles, number of deliveries and maximum size of each route.

We started the construction of the instances by manually extracting the coordinates corresponding
to the streets from the Rio Claro’s map. At this stage, 1,674 streets were extracted. Figure 1
illustrates the extraction of streets and the representation of some streets modeled through this
process. Corners are computed automatically by the tool.

The construction of the model was based on a cropping of a digital image of the map of Rio Claro
available on the city’s website. Similarly to the research of Meira et al. (2020) each street was
classified using the attributes Region (R), Type (T) and Zone (Z). The classification of streets was
based on the knowledge of one of the authors, who lives in the region. The assigned probabilities,
penalties and nomenclatures in use also follow the pattern defined by Meira et al. (2020) as shown
in Table 1.

Table 1 – Street Attributes. Penalty attribute, level and values. A 0.4 value means that the density of
deliveries is multiplied by the value 0.4. Source: Meira et al. (2020).

Attribute Level 1(pen) Level 2(pen) Level 3(pen) Level 4(pen)

Region(R) central(1.0) peripheral(0.75) distant(0.4) isolated(0.2)
Type(T) avenue(1.0) street(0.75) path(0.4) highway(0)
Zone(Z) commercial(1.0) mixed(0.75) residential(0.4) -

Each street in Rio Claro received an attribute Region, among the values central (penalty 1),
peripheral (penalty 0.75), distant (penalty 0.4) and isolated (penalty) 0.2. Penalty 0.4 means that
the density of deliveries is multiplied by the value 0.4.

Each street in Rio Claro received an attribute type, with values avenue, street, path and highway,
with penalties (1;0.75;0.4;0), respectively.

Finally, each street in Rio Claro received an attribute zone with values commercial, mixed and
residential with penalties (1;0.75;0.4), respectively.
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Figure 1 – Street modeling. Above a cropping of the original map and below the extracted streets (dashed
in blue). The streets were extracted manually as a polygonal chain.

The authors in Meira et al. (2020) created a graph G(V,E). Each vertex v ∈V is associated with
a Cartesian coordinate (xv,yv) ∈ R2, and each edge e = (u,v) is a straight-line segment between
u and v. The edge weight is w′(e) =

√
(xu− xv)2 +(yu− yv)2. An edge e is associated with its

street St(e).

The authors in Meira et al. (2020) assigned a non-normalized probability density D(St) to each
street St. Such density is the product of the streets’s penalties. The probability of a street receiving
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a delivery workload per unit length is directly proportional to the density value D. Such a value
is used to create a central street with a large workload compared to a distant one.

The paper uses a probability of one delivery being assigned to an edge e, denoted by Prob(e):

Prob(e) =
D(St(e))w′(e)

T
,where T = ∑

e′∈E
D(St(e′))w′(e′).

Prob(e) is directly proportional to the edge length w′(e) and to the probability density D(St(e)),
and it must be normalized to obtain ∑e∈E Prob(e) = 1. The location of a given delivery d, de-
noted by loc(d), is composed of three attributes: an edge (u,v), a value α ∈ [0,1], and a label
street side ∈ {⊕,	}. The delivery is positioned at the affine combination of u and v in respect to
α , that is, (xu,yu)(α)+ (1−α)(xv,yv). The street of a delivery d = (e,α,street side), denoted
by St(d), is the street of the edge St(e). The value of α is randomly generated within the interval
[0,1]. The street side label is an equiprobable random choice in the set {⊕,	}.

In Meira et al. (2020), the algorithm partitioned all edge probabilities in the interval [0,1]. For
each delivery, select a random value r ∈ [0,1]. If r is in the interval associated with Prob(e),
create a delivery d = (e,α,s), where s is a random choice in {⊕,	}.

5 RESULTS

The Rio Claro Post contains 80 instances starting with three delivery points and ending with
50,000 delivery points. Figure 2 presents a complete image of the model. Figure 3 shows a crop-
ping of the central region for an instance with 30,000 delivery points. Each delivery point is
probabilistic generated. Figure 4 shows the complete map only with the modeled streets repre-
sented by the dashed lines in blue. Each street is a polygonal chain. Corners are automatically
calculated.

Vehicle speed (PIXEL VALUE) was defined in the model.txt file as 0.886 s/pixel, equivalent
to approximately 4.6 km/h, which represents the walking speed of a mail carrier. This constant
serves to establish a direct relation of a pixel to seconds. The additional cost per delivery was set
at four pixels, equivalent to three seconds per delivery. This means that a delivery consumes an
additional time to be performed, not related to distance or speed. The maximum allowed route
was 32,505 pixels in some instances and 24,379 pixels in others, representing a daily workload
of eight or six hours, respectively.

The instances were established following the pattern of groups defined by Meira et al. (2020),
with instances Toy, Normal, OnStrike and Christmas as in Table 2. Toy instances have a small
number of deliveries compared to a realistic problem. Normal instances contain a more realistic
number of deliveries. The maximum length in OnStrike instances grows up to eight hours. Fi-
nally, Christmas instances contain a large number of deliveries, making it more difficult to use
any strategy.

Once the three files are filled, the benchmark tool executes and creates the 80 instances. Each
instance file contains the matrix wi j with the cost measured according to the time required to
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Figure 2 – Complete map of the city of Rio Claro. The map was the base for the manual extraction of the
streets and used as a background image for the instances. Source: Rio Claro City Hall website.
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Figure 3 – RioClaroPost instance 75 with 30,000 delivery points. Cropping of the central region. Each
blue dot corresponds to a probabilistically generated delivery.

Table 2 – RioClaroPost instance groups.The instance groups were established following the pattern of
groups defined by Meira et al. (2020).

Group #Instances #Deliveries Max Len.(h) #Vehicles(max)
Toy 30 3 to 5,000 6 3 to 45

Normal 15 10,000 to 14,000 6 90
OnStrike 15 15,000 to 19,000 8 90

Christmas 20 20,000 to 50,000 8 90 to 120

make delivery j starting from delivery i. The instance file contains additional information as
maximum route length, position of each delivery, maximum number of vehicles and more. The
80 instances use 195GB of memory in plain text format.

5.1 Instances Validation

We obtained an initial result for the instances of RioClaroPost by using the 2-opt algorithm. The
algorithm was executed five times for each instance.

At first, we optimized a single route containing all deliveries, similarly to the TSP problem. Then,
the route was split by using a greedy route-first, cluster second algorithm. Table 3 contains results
obtained for some instances.

We used the index W/Rmax, which is obtainable by dividing the total length of the single route
by the value of Rmax. This value represents the number of mail carriers needed to cover the TSP
cycle in sequence, without returning to the depot at each vehicle change. If the TSP cycle is
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Figure 4 – Streets of the Model (blue). The streets were obtained by manual extraction over the city map
(Figure 2).

optimum, W/Rmax is a lower bound to the number of vehicles. In our case, the non-optimum
solution produces a W/Rmax, which is just a reference index.

The results about the vehicles were obtained through the division of routes by the greedy algo-
rithm. Figure 5 contains Table 3 data. It compares the number of instance deliveries with (i) the
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Table 3 – RioClaroPost results of 2-opt algorithm followed by a route-first cluster second algorithm. The
results were obtained through five executions for each instance.

ID #Deliveries W/R max #vehicles time(s)
avg±std avg±std avg±std

12 50 1.78±0.03 2.8±0.4 0.001±0.002
15 100 2.72±0.04 4.0±0.0 0.0±0.0
18 200 4.10±0.06 6.2±0.4 0.004±0.003
21 500 6.36±0.06 9.0±0.0 0.022±0.002
24 1000 8.91±0.05 13.0±0.0 0.14±0.01
27 5000 18.15±0.07 26.0±0.0 3.6±0.1
30 10000 24.75±0.08 35.4±0.5 18±3
45 15000 22.09±0.08 28.6±0.5 42±2
51 17000 23.15±0.06 29.8±0.4 65±4
60 20000 24.79±0.10 32.2±0.4 120±13
63 22000 25.66±0.03 33.0±0.0 174±14
66 24000 26.69±0.10 34.2±0.4 209±9
69 26000 27.73±0.08 35.8±0.4 281±19
72 28000 28.28±0.04 36.4±0.5 348±19
75 30000 29.32±0.07 38.0±0.0 445±32

number of vehicles obtained after the greedy algorithm and (ii) the W/Rmax index. It should be
observed that the value of W/Rmax and the number of vehicles after the division fits an amortized
delivery cost. The larger the number of deliveries, the cheaper the cost of each delivery. The first
derivative represents the number of vehicles by delivery, and it is decreasing.

There is a break in the continuity of the curves. It happens where the maximum length grows
from six to eight hours by vehicle. It occurs between the Normal and OnStrike instances.

The time to execute the largest instance in Table 3 was 445±32 s. This instance contains 30,000
deliveries. Figure 6 displays the route obtained by 2-opt. A crop of the result appears in Figure 7.

Respectively, instances 78 and 79 contain 40 and 50 thousand deliveries. The weighted matrix
has 40,0002 and 50,0002 elements. The largest instance contains 2.5 billion of longs, each long
with 8B, resulting in a matrix of 20GB of memory. This large matrix doesn’t fit in the computer
memory. It is necessary to compute the weight wi j at runtime by a shortest path algorithm, thus
increasing execution time. The results using a shortest path instead of wi j can be seen in Table 4.
The results obtained are nearly the same as in Table 4, but the time to find the result increased.
The time is about ten times larger, considering instances 72 and 75.
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Figure 5 – Number of vehicles or W/Rmax × Number of deliveries of instances in thousands. The W/Rmax

(red line) is obtainable by dividing the total length after the optimization by the value of Rmax. The
vehicles (yellow line) were obtained through the division of routes by the greedy algorithm.

Table 4 – RioClaroPost results. Results obtained calculating the wi j by shortest path algorithm. Results
were obtained through five executions for each instance. Results are similar to Table 3, except for the time,

which is larger here.

ID #Deliveries W/R max #vehicles time(s)
avg±std avg±std avg±std

72 28000 28.28±0.06 36.2±0.4 3054±203
75 30000 29.25±0.07 37.8±0.4 4256±599
78 40000 32.79±0.06 42.2±0.4 4566±266
79 50000 35.87±0.07 46.0±0.0 8055±630

6 CONCLUSION

In this research we model new multi-objective instances to the benchmark PostVRP (Meira et al.,
2020) for mail deliveries on foot in the city of Rio Claro. At the end, the generated model has
1,674 streets.

Each street receives a classification, which is used for the distribution of delivery points. The
classification follows the patterns used in the original instances (Meira et al., 2020). In total,
80 instances were generated, containing from three deliveries and three vehicles up to 50,000
deliveries and 120 vehicles. The instances generated in this research is open for use.

The benchmark generated in this research is open for use under request.

Pesquisa Operacional, Vol. 42, 2022: e257140
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Figure 6 – Result obtained by the optimization of the instance RioClaroPostChristmas 30000 0 by the
2-opt algorithm. It contains one route.
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Figure 7 – Result obtained by the optimization of the instance RioClaroPostChristmas 30000 0 by the
2-opt algorithm. The optimization was based in only one route. Cut from the central region.
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