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ABSTRACT. In this work, the presence of cut nodes in a network is exploited to propose a competitive

method for the multi-terminal maximum flow problem. The main idea of the method is based on the relation

between cut-trees and cut nodes, which is observed in the context of sensitivity analysis on the variation

of edges capacities. Computational experiments were conducted with the proposed algorithm, whose re-

sults were compared with the ones of Gusfield, for randomly generated and well-known instances of the

literature. The numerical results demonstrate the potential of the method for some classes of instances.

Moreover, the proposed method was adapted for the single maximum flow problem, but failed to improve

existing running times for the very same classes of instances.

Keywords: maximum flow, cut-tree, cut nodes.

1 INTRODUCTION

Computing the maximum flow value between a source and a terminal node of a given network
is a classical problem in the context of network flows. Its extension, namely the multi-terminal
maximum flow problem, consists of finding the maximum flow values between all pairs of nodes
of an undirected network. These problems have several applications, especially in the field of
logistics, biology, telecommunications and energy, see for example, Cohen & Duarte Jr. (2001),
Tuncbag et al. (2010) and Diallo (2011).

It is noteworthy that the multi-terminal maximum flow problem differs from the multi-com-
modity flow problem. While, in the latter problem, mixed flows between multiple pairs of origins
and destinations share the network, in the former, although we compute the maximum flow values
for all pairs of the network nodes, there is a single flow between a source node and a destination
node in the network at a time.
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438 COMPUTING MAX FLOWS THROUGH CUT NODES

Ford & Fulkerson (1973) popularized the maximum flow problem in the ’50s. Through the
demonstration of the connection between a maximum flow value and a minimum cut capac-
ity, they sophisticatedly solved it. Since then, many improved algorithms have been published to
compute the maximum flow values or the minimum cut capacities, including the preflow-push
algorithm from Goldberg & Tarjan (1986), which we will use in this work.

Regarding the multi-terminal maximum flow problem of a given undirected network G with n
nodes, one can solve it naively, by running n(n−1)/2 times a maximum flow algorithm between
all unordered pairs of nodes of G. However, Gomory & Hu (1961) developed a method to com-
pute the maximum flow values of G, by just running (n − 1) times a maximum flow algorithm.
Its output, called cut-tree, summarizes the maximum flow values and identifies a minimum cut
between any pair of nodes. After that, Gusfield (1990) presented a simpler procedure to obtain
the same cut-tree, but also using (n − 1) times the maximum flow algorithm. Then, Goldberg
& Tsioutsiouliklis (2001) conducted a study comparing computationally three variations of the
Gomory and Hu algorithm and the Gusfield algorithm. For the unweighted case, when each edge
has one-unit capacity, Bhalgat et al. (2007) showed a faster algorithm that does not use a maxi-
mum flow algorithm as internal procedure.

Elmaghraby (1964) introduced the sensitivity analysis on multi-terminal flows, studying the ef-
fects on the maximum flow of a network through the variation of a single (parametric) edge
capacity. Later, Barth et al. (2006) extended that study to the case of more than one paramet-
ric edge, noting that a total of 2k cut-trees is sufficient to compute all maximum flows for any
parameter value, being k the number of parametric edges in the network.

In this work, given an undirected network G, by using the theory of sensitivity analysis on
multi-terminal network flows under edge capacity variations, we introduce a theoretical property
that relates cut nodes and cut-trees. Based on such a property, we propose a new approach for
the computation of cut-trees for networks that contain cut nodes. Similarly, a single maximum
flow can be computed in parts, if there are cut nodes in the path between the source and the
terminal node.

Computational experiments are conducted to compare the running times of the proposed proce-
dures with respect to the traditional ones. For these experiments, four instances families are used:
PATH and TREE, from Goldberg & Tsioutsiouliklis (2001), CACTUS, from Husimi (1950), and
PARTED that we specially developed for the experiments. When a given undirected network
contains cut nodes, the numerical results show that the computation of cut-trees with the pro-
posed method is effective. However, for the same test instances it seems not the case, when we
apply an adaptation of the method to solve particularly the single maximum flow problem.

The paper is structured as follows. Section 2 presents the used notations and basic concepts re-
lated to cut nodes and to the multi-terminal maximum flow problem. Section 3 presents some
theoretical properties of cut nodes in network flows. In Section 4, we present the proposed
method based on the identification of cut nodes, together with an example to show its appli-
cation. In addition, an adaptation of the proposed method is showed to solve the maximum flow
problem. Computational experiments with the proposed algorithms are shown in Section 5, while
concluding remarks and perspectives are resumed in Section 6.

Pesquisa Operacional, Vol. 37(3), 2017
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2 NOTATION AND BASIC CONCEPTS

From now on, we assume that the reader has basic knowledge of graph and network flows theories
and problems. Reference books include Ford & Fulkerson (1973), and Hu & Shing (2002).

Let G = (V , E) be a connected undirected graph, consisting of a set V of n nodes v, and a set E

of m edges e, where each edge is an unordered pair [i, j ] of nodes in V . A network is a graph G
associated with a capacity function over the edges c : E → R+ . A flow from a source node s to
a terminal node t in G is a function f : E → R+ with the conservation property at each node v,

except for s and t ∑

i∈V

f (i, v) =
∑

j∈V

f (v, j ) ∀v ∈ V \{s, t},

and the capacity constraint
∀i, j ∈ V , f (i, j ) ≤ c(i, j ).

Observe that edges can be represented by two arcs of opposite directions. Therefore, unlike an
arc, an edge has no direction, that is, it has two opposite directions at once. Thus, an undirected

network has the same structure as a directed symmetric network, where each arc has the same
capacity of the original edge, allowing equal capacity to either direction. It is important to note
that, when a flow passes through a capacitated edge, it uses only one arc, never both. Hereafter,

we will deal only with undirected networks.

We denote by (s - t) the cut separating the nodes s and t , by c(s - t) the capacity of the cut
(cut value), and by (X, X) a cut separating the nodes of a graph into two complementary subsets
X and X . Among all possible cuts separating s and t , one with the smallest capacity is called

a minimum cut, and its capacity is the maximum flow value between s and t , which will be
represented by fs,t .

After observing the existence of at most n− 1 distinct values of maximum flow in an undirected
network with n nodes, Gomory & Hu (1961) developed a method that obtains the n(n − 1)/2

values of maximum flows using a node contraction scheme and running only n − 1 times the
maximum flow algorithm. The result is expressed by a cut-tree defined as follows.

Definition 2.1. A cut-tree of a network G = (V , E) is a tree CT = (V , E ′) obtained from G,
with weighted edges and the same set of nodes V . A cut-tree CT has the following properties:

1. Equivalent flow tree: the value of the maximum flow between any s and t of G is equal to
the value of the maximum flow in CT between s and t , that is, the smallest edge capacity
on the unique path connecting s to t in CT . Thus, the maximum flows between all pairs of

nodes in G are represented in CT ;

2. Cut property: the removal of any edge e with capacity c(e) from CT separates its nodes
into two sets. This partition corresponds to a minimum cut in G with capacity c(e), sepa-

rating the two extremities of the edge e.

Pesquisa Operacional, Vol. 37(3), 2017
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Figure 1 illustrates an example of a cut-tree CT constructed from a network G. As we can see,

by the properties mentioned above, the minimum cut between nodes 2 and 3, and nodes 1 and
2, are respectively reflected by the edges [2, 3] and [1, 2] of the cut-tree CT . Its maximum flow
values are the capacities of these edges, in this case 3 and 4, respectively. The minimum cut

between nodes 1 and 3 is reflected, in turn, by the edge [2, 3] in CT , with maximum flow value
equal to 3.

Figure 1 – Example of a cut-tree CT of a network G.

In general, there are several cut-trees for the same network. The cut-tree will be unique only if

all the (s - t) minimum cuts of the network are unique.

Gusfield (1990) presented a very simple procedure that builds a cut-tree without using contrac-
tion of nodes. Its implementation is very easy: it takes only five additional lines of code to any
algorithm that computes a minimum cut. Like the method of Gomory and Hu, Gusfield’s method

solves the multi-terminal maximum flow problem with (n − 1) executions of a maximum flow
algorithm.

Definition 2.2. A node i of a connected graph G is called a cut node when G\{i} is not con-
nected.

As for illustration, nodes 3 and 6 are cut nodes of the graph showed in Figure 2(a), as we can

verify respectively in Figures 2(b) and 2(c).

Figure 2 – Illustration of cut nodes.

Definition 2.3. A biconnected component of a graph G is a maximal connected subgraph B of
G containing no cut nodes, where the term “maximal” refers to the state that any inclusion of a
node in B creates a cut node in B.

Now, see an example of biconnected components of a given graph in Figure 3.

Pesquisa Operacional, Vol. 37(3), 2017
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Figure 3 – The graph (a) and its three biconnected components (b), (c) and (d).

3 PROPERTIES OF CUT NODES

In this section, we introduce some theoretical results that allow an innovative computation of

both the single and the multi-terminal maximum flow problems, by exploiting the presence of
cut nodes in networks. For the case of the multi-terminal maximum flow problem, the property
comes up from its parametric version, formulated in the light of the theory of sensitivity analy-

sis on multi-terminal maximum flows. In general terms, this theory studies the behavior of the
maximum flows values between the all pairs of nodes in a network under variations of edge
capacities.

Barth et al. (2006) examined the parametric problem considering the increasing variation of the

capacity of a single edge. The problem can be formulated as follows for a pair of nodes.

Let G = (V , E) be a network with source node s and terminal node t . Consider an edge e =
[i, j ] ∈ E with non-negative capacity c(e) = λ. The goal is to determine the maximum flow
value between s and t with the increasing variation of λ.

The cited authors observed that, for a network that has only one edge with parametric capacity,
the variation of this capacity may not influence the values of maximum flows (and minimum
cuts) for various pairs of nodes. Denoting by f λ

s,t the maximum flow value between s and t when
the capacity of the edge e is λ, they stated the following result.

Lemma 1 (Barth et al. (2006)). Let G = (V , E) be a network with n nodes, and e = [i, j ] ∈ E
such that c(e) = λ. Let s and t be a pair of nodes of G and CT α a cut-tree when c(e) = α. If
the path connecting s to t Ps,t in CT α has no edge in common with Pi, j , then f λ

s,t = f α
s,t , ∀λ >

α ≥ 0.

Proof. Using the cut property of the cut-trees (Definition 2.1, item 2), one can show that there

exists a minimum cut Cα
s,t separating s and t where both nodes i and j (e = [i, j ]) are in the same

side of the minimum cut. Therefore, the cut does not contain e for λ > α, and it is insensible to
the variation of λ. �

Still, for the next result of Barth et al. (2006), the following definition is necessary.

Definition 3.1. Let G = (V , E) be a connected and acyclic network, i.e., a tree. Let i and j be
a pair of nodes of G and Pi, j the (unique) path connecting them. The (i, j) forest decomposition
of G, denoted by Fi, j , is the set of trees that remains after the removal of Pi, j .

Pesquisa Operacional, Vol. 37(3), 2017
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442 COMPUTING MAX FLOWS THROUGH CUT NODES

For example, consider the tree G and the path i-3- j in G on the left of Figure 4. Then, the (i, j )

forest decomposition of G is formed by the four subtrees on the right of Figure 4.

Figure 4 – Example of a (i, j) forest decomposition of a given tree G.

Lemma 2 (Barth et al. (2006)). Let G be a network with an edge e = [i, j ] with parametric

capacity. Let CT α be the cut-tree when c(e) = α. Let Fi, j be the (i, j ) forest decomposition of
CT α. For each tree T ∈ Fi, j , there exists a cut-tree of G with c(e) = λ > α that contains T as
subtree.

Proof. To see this proof, please, refer to the work of Barth et al. (2006). �

Now, we introduce the following results.

Lemma 3. If two nodes belong to a biconnected component A, the maximum flow between them
can be computed considering A as a graph itself.

Proof. If s and t are nodes of G in A, there is no path between s and t that contains a node not
in A. �

Before we introduce the next result, it is important to observe that:

• The affirmation that a given edge is not contained in a network is equivalent to say that
this edge is contained in the network with null capacity. Therefore, adding an edge to a
network can be understood as varying positively its capacity from zero.

Lemma 4. The cut-tree of a graph is the union of the cut-trees of its biconnected components.

Proof. Let G be a graph with a unique biconnected component A, which is the graph itself.
Let CT and CTA be the cut-trees of G and A, respectively. By adding edge after edge, and the

nodes of its extremities, in G, we can create a biconnected component B that shares node z with
A. In this process, let e = [i, j ] be the edge added at each step and Pi, j the path between i

Pesquisa Operacional, Vol. 37(3), 2017



�

�

“main” — 2018/2/5 — 12:01 — page 443 — #7
�

�

�

�

�

�
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and j in CT . Since, at every step, Pi, j doesn’t have edge in common with CTA , according to

Lemmas 1 and 2, the cuts in CTA are not influenced by the process and they can be part of the
final CT . To conclude the proof, from Lemma 3, the nodes of A reside on the same side as z in
all minimum cuts between nodes from B, which leads to the result that CTA can be a subtree of

the final CT . �

Next we show an example of the proof of Lemma 4. Consider the network G and its cut-tree CT
showed in Figure 5.

Figure 5 – Network G (left) and its cut-tree CT (right).

Based on Lemma 1, if we add to the network G edges [3, 6], [3, 5], [3, 4], [4, 5] and [5, 6], one

by one, these additions would not influence the cuts in CT represented by the edges [1, 2] and
[1, 3]. Furthermore, the new CT , according to Lemma 2, could contain these cuts. At last, from
Lemma 3, node 3 will be adjacent to node 1 in the new CT . Figure 6 illustrates the new network
and its corresponding CT .

Figure 6 – Network New G (left) and its cut-tree New CT (right).

For the case of determining the single maximum flow between a source and a terminal node, we
state that:

Lemma 5. Let s and t be a pair of nodes of a network G. If a path P between s and t traverses
x cut nodes of G, then the maximum flow between s and t is the minimum value among the

maximum flows between (s, z1), (z1, z2), . . . , (zx , t), where z1, z2, . . . , zx are the cut nodes of G
in P in the order they are traversed from s to t .

Proof. The proof is simple. If there are cut nodes of G in P, the removal of z1 disconnects
s from t , and so all the flow that leaves s must pass through z1. The same result is true for
z2, . . . , zx . �

Pesquisa Operacional, Vol. 37(3), 2017
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4 PROPOSED METHODS

Based on Lemma 4, if a network has cut nodes, one can solve the multi-terminal maximum flow
problem by computing the cut-trees of each of its biconnected components and joining them at
the end. Next, we describe the outline of the proposed method, namely CN.

For computing the maximum flow between all pairs of nodes in an undirected network G =
(V , E) with n nodes and capacities on the edges, CN identifies the biconnected components and
performs a test. If no biconnected component has more than 80% of n nodes, then the method
applies the Gusfield algorithm on each biconnected component. Finally, the cut-tree of G is
achieved by joining all the cut-trees of the biconnected components. Otherwise, if there is a
biconnected component with more than 80% of n nodes, it applies Gusfield algorithm to G.

Observe that the if-then condition is different from just having a cut node. It avoids the situation
shown in Figure 7, where a biconnected component has almost the size of the network. In this
situation, it becomes difficult to compensate the overhead of managing biconnected components
with computations of maximum flow in networks considerably smaller than the original. The
choice for the percentage of 80% will be discussed in Section 5. Regarding the if-else condition,
note that a network without cut nodes has only one biconnected component, that is, the network
itself. Figure 8 shows the pseudo-code of the method CN.

Figure 7 – Network G (left) and its biconnected component with more than
80% of the nodes (right).

Input: G

1 Identify all biconnected components in G;

2 if no biconnected component has more than 0.8n nodes then
3 | Apply Gusfield algorithm to each biconnected component separately;

4 | Join all the cut-trees of the biconnected components into a unique cut-tree CT ;
5 else
6 | Apply Gusfield algorithm to G to get CT ;

7 return CT ;

Figure 8 – Pseudo-code of CN.

In our implementation of CN we used the Gusfield algorithm to construct the cut-trees duo to
its simplicity, but one can also implement it using the Gomory and Hu algorithm. In addition,
the procedure used to identify the biconnected components in the network was based on the
algorithm of Hopcroft & Tarjan (1973). Moreover, the highest-label preflow-push algorithm
of Goldberg & Tarjan (1986) was chosen to compute the maximum flows inside the Gusfield
algorithm.

Pesquisa Operacional, Vol. 37(3), 2017
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Given the network instance showed in Figure 9, in the following we illustrate the application

of CN.

Figure 9 – Network G.

First, the algorithm finds nodes 3 and 6 as cut nodes. Then, it identifies three biconnected com-

ponents in G (line 1), which are shown in Figure 10.

Figure 10 – Biconnected components of G.

As no biconnected component of G has more than five nodes (line 2), the algorithm computes,
through Gusfield algorithm, the cut-tree of each biconnected component (line 3). The resulting
cut-trees are illustrated in Figure 11.

Figure 11 – Cut-trees of the biconnected components of G.

Finally, all the cut-trees of the biconnected components are joined to form the cut-tree of G

(line 4), as in Figure 12.

Figure 12 – Cut-tree of G.

Pesquisa Operacional, Vol. 37(3), 2017
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Regarding the single maximum flow problem, we can implement a new approach based on Lem-

mas 3 and 5. After identifying the biconnected components of the network and a path between
the source and the terminal nodes, the method computes, under the condition that there is no
biconnected component with more than 0.8n nodes, all (s, z1), (z1, z2), . . . , (zx , t) maximum

flows values. Finally, it returns the minimum value among them. Otherwise, if there is a bicon-
nected component with more than 0.8n nodes, a maximum flow algorithm is applied to G. Note
that, if s and t are in a same biconnected component, there will be no z nodes, and the method

will run just once the single maximum flow algorithm. The choice for the size of 0.8n, in the
condition of the algorithm, will be also discussed in Section 5. Figure 13 shows the pseudo-code
of this method, namely MaxFlow CN.

Input: G, s, t
1 Identify all biconnected components in G and a path P between s and t ;

2 if no biconnected component has more than 0.8n nodes then
3 | Let z be the current node while traversing P from s to t ;
4 | Set z as the node adjacent to s;

5 | while z �= t do
6 | | if z is a cut node of G then
7 | | | Compute fs,z in the biconnected component that contains both s and z;

8 | | | s ← z;
9 | | z← next node in P;

10 | Compute fs,z in the biconnected component that contains both s and z;

11 | maxflow← minimum value among all fs,z ;
12 else
13 | maxflow← Compute fs,t in G;

14 return maxflow;

Figure 13 – Pseudo-code of MaxFlow CN.

Let us exemplify the application of MaxFlow CN algorithm in the network shown in Figure 14,

taking s = 1 and t = 6.

Figure 14 – Network G.

First, the algorithm finds node 3 as cut node in G. Then, it identifies two biconnected components

in G, shown in Figure 15, and the path 1-2-3-5-6 between s and t (line 1).

Pesquisa Operacional, Vol. 37(3), 2017
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Figure 15 – Biconnected components A and B of G.

As no biconnected component of G has more than four nodes (line 2), the algorithm sets z as
node 2 (lines 3 and 4). Then, since 2 �= t , the command while is executed (line 5). As node 2 is

not a cut node (line 6), z is now updated as node 3 (line 9), and while is executed again, since
3 �= t . Now, as z is a cut node (the if condition is true), f1,3 is computed in the biconnected
component A and s is updated to node 3 (lines 6, 7 and 8). In this case, f1,3 = 3 with minimum

cut composed by edges [1, 3] and [2, 3]. In the third iteration of the loop while, with z set as
node 5, the if condition is not true. Then, z is updated to node 6 = t , causing the stopping
of while. A maximum flow algorithm is run in B, resulting in f3,6 = 2, with minimum cut

composed by [3, 4] and [5, 6] (line 10). Finally, the maximum flow value between nodes 1 and 6
is the minimum value between f1,3 and f3,6 (line 11), which is 2.

Since the method seeks the minimum fs,z value, we compute each fs,z faster by limiting it to
an upper bound variable u. Initially u = M, where M is a big number, and when fs,z < u, then

u = fs,z . The maximum flow algorithm will perform lesser operations as no flow can exceed
u. In the example above, the variable u is updated twice, from M to 3 and from 3 to 2, after
computing respectively f1,3 and f3,6.

As in CN, the algorithms of Hopcroft & Tarjan (1973) and the highest-label preflow-push of

Goldberg & Tarjan (1986) were used in MaxFlow CN to identify the biconnected components
and to compute the maximum flows, respectively.

5 COMPUTATIONAL EXPERIMENTS

In this section, we report computational experiments with CN and MaxFlow CN, proposed here,

in comparison with the algorithms of Gusfield (GUS) and Goldberg and Tarjan (MaxFlow),
which were implemented by Skorobohatyj (2011). Moreover, we show some numerical tests that
empirically defined the condition in line 2 in CN and MaxFlow CN. In the four algorithms, the

maximum flow value is computed with an optimized version of the highest-label preflow-push
algorithm, where the resulting flow is not computed for all edges.

Both CN and MaxFlow CN were implemented in C language with input file format and data
structure from Skorobohatyj (2011). The algorithms were compiled with Mingw through the

software Dev-C ++ 5.10 and the tests were run on a computer with 64-bit Processor Intel (R)
Core (TM) i3 of frequency 3.50 GHz, 4 GB of RAM under the Windows 8 operational system.

Pesquisa Operacional, Vol. 37(3), 2017
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For the experiments, the instances were created by the generators PATHGEN and TREEGEN,
from Goldberg & Tsioutsiouliklis (2001), and PARTEDGEN, CACTUSGEN, and TESTGEN,
specially developed here for this purpose. The desired characteristics of the test instances are:
the presence of cut nodes or the high chance of having cut nodes in the generated graphs.

Let us denote the parameters used by the five generators: n the number of nodes in the graph, d
the density of the graph given in terms of a percentage of arcs (that indirectly defines the number
of arcs m), P the edge capacity factor, and S the seed of the generator. As follows, we introduce
them briefly.

Given the path length (parameter k), the PATHGEN builds a path of k − 1 edges and con-
nects the remaining n − k nodes to the path nodes at random. Then, it adds edges at random to
achieve the desired number of arcs and to make the minimum cut problems more difficult. For the
PATHGEN, the k value determines the path shape. For example, if k = n, then we get one path
through all the nodes; if k = 1, then we have all nodes sharing an edge with node 1.

Given the tree shape (parameter k), the TREEGEN generator builds a tree by connecting node
i, i = 2, . . . , n, to a randomly chosen node in {1, min{i − 1, k}}. Then, it adds edges at random
to achieve the desired number of arcs and to make the minimum cut problems more difficult.
The value of k determines the shape of the tree. For example, if k = 1, then the tree is a star. If
k = n − 1, then the tree is obtained by connecting each node, except the first one, to a randomly
chosen preceding node.

Given the number of biconnected components (parameter k), the PARTEDGEN builds a graph
with k−1 cut nodes linking biconnected components of equal size. After building a path through
all the nodes in the first step, it adds strategic edges to create k-edge disjoint cycles of size
approximately n/k. Finally, it adds edges at random in each biconnected component to achieve
the desired number of arcs.

To explain CACTUSGEN, the following definition is necessary.

Definition 5.1. A connected graph in which every two cycles have at most one node in common
is a cactus graph.

Given the number of cycles (parameter k), the CACTUSGEN generator builds a cactus graph
with k cycles. We created two types of the generator: CACTUS PATHGEN and CACTUS -
STARGEN. In the first type, a path through all the nodes is built and then k edges are added to
form k-edge disjoint cycles, and, in the second one, all k cycles have the same size and one node
in common. In both, the density parameter d is not considered, since in these cases k defines the
number of edges m.

Given the size of a biconnected component (parameter k), the TESTGEN builds a graph where
one of its biconnected components has size approximately nk, with k being a percentage. After
building a path through all the nodes in the first step, it adds a strategic edge to create a cycle of
size approximately nk. Finally, it marks the nodes of the cycle with color 1 and the remaining
nodes with color 2, and then it adds edges at random, by connecting nodes with the same color,
to achieve the desired number of arcs.
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In the computational experiments, we consider up to three distinct seeds (S = 1, 2, 3), except

for the generation of PARTED instances. The edge capacities are chosen uniformly at random
from the interval [1, . . . , 100P]. We set the factor P = 1 when generating all the instances, as
well as n = 1000. We observe that this value of n is relative large in relation to the ones used in

Goldberg & Tsioutsiouliklis (2001). The inputs of algorithms MaxFlow and MaxFlow CN were
s = 1 and t = 1000, so that s and t were in different biconnected components in the generated
instances.

To estimate the maximum size of a biconnected component, needed for the condition in line 2 of

the algorithms CN and MaxFlow CN, numerical tests were performed for instances of the family
TEST, with the following variants of CN and MaxFlow CN:

• CN 0 and MaxFlow CN 0: CN and MaxFlow CN implemented with the size 0.0*n in
line 2 condition, i.e., for these variants, the condition is never satisfied;

• CN 1 and MaxFlow CN 1: CN and MaxFlow CN implemented with the size 1.0*n in
line 2 condition, i.e., for these variants, the condition is always satisfied.

Hereafter, for each class of the test instances we show the comparison of the running times ob-
tained by the proposed algorithms. The running times obtained by CN 0, CN 1, MaxFlow CN 0
and MaxFlow CN 1 are reported in Table 1. The running times obtained by the algorithms CN,

GUS, MaxFlow CN and MaxFlow for the PARTED and PATH generated instances are summa-
rized in Tables 2 and 3, respectively. The results obtained for the TREE generated instances are
shown in Table 4. Tables 5 and 6 show the running times for the CACTUS PATH and CAC-

TUS STAR instances, respectively. For each test instance, the running time refers to the median
of five runs of the algorithm given in microseconds (μs). The symbol ∗ that may appear next the
seed value means that a biconnected component of the graph instance has more than 80% of the

nodes of the graph instance.

Table 1 – Running time for the TEST instances with n = 1000, m = 3497, k =
99, 95, 90, 85, 80, 75 and S = 1, 2.

TEST (n = 1000, m = 3497)

k = 99 k = 95 k = 90 k = 85
k = 80 k = 75

S = 1 S = 2 S = 1 S = 2

CN 0 123314 123423 121045 115754 123865 120208 115726 116518

CN 1 180503 184355 158692 146726 133504 128467 119713 115259

MaxFlow CN 0 348 329 328 309 361 352 357 459
MaxFlow CN 1 561 485 521 481 536 553 492 518

Analyzing the numerical results, we point out that:

1. Regarding the TEST instances, we observe that CN 1 and CN 0 have closer results when
k = 75. For this reason, the condition in line 2 of CN was set to the 80% percentage;
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Table 2 – Running time for the PARTED instances with
n = 1000, m = 3497 and k = 2, 4, 8, 16.

PARTED (n = 1000, m = 3497)

k = 2 k = 4 k = 8 k = 16

CN 71204 29685 15059 8394

GUS 97514 95450 94860 94339

MaxFlow CN 433 401 390 424
MaxFlow 260 179 353 121

Table 3 – Running time for the PATH instances with n = 1000, m = 1399, k = 250, 500, 750
and S = 1, 2, 3.

PATH (n = 1000, m = 1399)

k = 250 k = 500 k = 750
S = 1 S = 2 S = 3 S = 1 S = 2 S = 3 S = 1∗ S = 2∗ S = 3∗

CN 38200 35789 35667 49642 49253 50138 60114 61432 59639

GUS 55046 54261 55628 58469 58095 58162 57825 58748 57192

MaxFlow CN 184 185 191 208 203 194 164 157 156
MaxFlow 180 65 64 71 65 58 76 68 68

Table 4 – Running time for the TREE instances with n = 1000, m = 1549, k = 250, 500, 750
and S = 1, 2, 3.

TREE (n = 1000, m = 1549)

k = 250 k = 500 k = 750
S = 1 S = 2 S = 3 S = 1 S = 2∗ S = 3 S = 1∗ S = 2∗ S = 3∗

CN 47976 45278 47024 50595 60095 55410 60904 62053 60074
GUS 58001 57821 56908 58532 57835 59569 58825 59864 58519

MaxFlow CN 320 240 395 246 377 289 241 300 221

MaxFlow 184 89 223 136 256 135 141 195 120

2. Still, for the TEST instances, since MaxFlow CN 1 running time does not get better when

the parameter k decreases, the condition in line 2 of MaxFlow CN was also set to the 80%
percentage;

3. For the PARTED instances, when the parameter k increases, CN performance gets much
better than GUS performance;

4. In both PATH and TREE instances, when the parameter k increases, the performance of

CN decreases;
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Table 5 – Running time for the CACTUS PATH instances with n = 1000,

k = 10,20 and S = 1, 2, 3.

CACTUS PATH (n = 1000)

k = 10 (m = 1009) k = 20 (m = 1019)

S = 1 S = 2 S = 3 S = 1 S = 2 S = 3

CN 8901 9047 8905 4812 4867 4777
GUS 68897 67814 70287 59783 57929 61114

MaxFlow CN 116 117 131 114 130 128

MaxFlow 115 161 121 122 80 52

Table 6 – Running time for the CACTUS STAR instances with n = 1000,
k = 10,20 and S = 1, 2, 3.

CACTUS STAR (n = 1000)

k = 10 (m = 1009) k = 20 (m = 1019)

S = 1 S = 2 S = 3 S = 1 S = 2 S = 3

CN 9079 9090 9261 5313 5246 5320

GUS 69456 65624 65816 57762 55744 56923

MaxFlow CN 63 65 61 52 51 52
MaxFlow 113 77 70 80 69 34

5. CN running times for PATH instances were up to 35% (k = 250, S = 3) lower than GUS.
For the TREE instances, CN running times were up to 21% (k = 250, S = 2) lower than
GUS;

6. For the generated instances with a biconnected component with more than 0.8n, CN per-
forms very close to GUS algorithm, while MaxFlow CN performs worse than MaxFlow;

7. For CACTUS PATH and CACTUS STAR instances, CN outperforms GUS, even better

when k increases;

8. For almost all instances, MaxFlow obtains better running times than MaxFlow CN.

One possible reason to explain why the performance of CN improves when the parameter k
increases in PARTED, CACTUS PATH and CACTUS STAR instances is that the biconnected

components of the graphs become smaller. For the PATH and TREE instances, the opposite may
occur, that is, when k increases, the biconnected components become larger.

Through point 6 above, the worse performance of MaxFlow CN is explained by the fact that
the identification of biconnected components is an expensive task for the single maximum flow

case. Besides the identification of biconnected components, the execution of the maximum
flow algorithm more than once also seems to have a significant impact in the running times
of MaxFlow CN.
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Regarding CN’s good performance, we observe that it executes n − 1 maximum flow algorithms

in subgraphs of the original graph, whereas GUS applies n − 1 maximum flow algorithms in the
original graph.

6 CONCLUSION

This work studied the relation between the maximum flows and cut nodes and proposed new

approaches to solve the single and the multi-terminal maximum flow problem in graphs with cut
nodes, aiming to reduce the running time, i.e., the computational complexity, when compared to
the results obtained by classical algorithms.

The computational experiments conducted with the proposed methods used instances gener-
ated by PATHGEN, TREEGEN, PARTEDGEN and CACTUSGEN, where the last two were
especially developed here. The numerical results pointed out that CN algorithm has better per-
formance in comparison to Gusfield algorithm, whereas the MaxFlow CN algorithm could not

overcome the MaxFlow algorithm.

Variants of the proposed methods can still be developed and tested. For instance, a comparison
study can be done with CN being implemented with Gomory and Hu’s method as subroutine
instead of Gusfield’s. Since the maximum flow algorithm implemented by Skorobohatyj, that

we used in both MaxFlow and MaxFlow CN, is an optimized version of the Goldberg & Tar-
jan (1986) algorithm, tests with the full version are recommended.
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