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ABSTRACT. We present a rigorous and comprehensive survey on extensions to the multicriteria setting

of three well-known scalar optimization algorithms. Multiobjective versions of the steepest descent, the

projected gradient and the Newton methods are analyzed in detail. At each iteration, the search directions

of these methods are computed by solving real-valued optimization problems and, in order to guarantee

an adequate objective value decrease, Armijo-like rules are implemented by means of a backtracking pro-

cedure. Under standard assumptions, convergence to Pareto (weak Pareto) optima is established. For the

Newton method, superlinear convergence is proved and, assuming Lipschitz continuity of the objectives

second derivatives, it is shown that the rate is quadratic.

Keywords: multiobjective optimization, Newton method, nonlinear optimization, projected gradient

method, steepest descent method.

1 INTRODUCTION

In multiobjective (or multicriteria) optimization, finitely many objective functions have to be
minimized simultaneously. Hardly ever a single point will minimize all of them at once, so we

need another notion of optimality. Here, we will use the concepts of Pareto and weak Pareto
optimality. A point is called Pareto optimal or efficient, if there does not exist a different point
with the same or smaller objective function values, such that there is a strict decrease in at least

one objective function value. A point is called weakly Pareto optimal or weakly efficient if there
does not exist a different point with strict decrease in all its objective values. Applications for
this type of problem can be found in engineering [14] (especially truss optimization [12, 32],

design [20, 31], space exploration [39, 41]), statistics [10], management science [15, 40, 42],
environmental analysis [34, 16], etc.

One of the main solution strategies for multiobjective optimization problems is the scalarization
approach [23, 24, 43]: we obtain the optimal solutions of the vector-valued problem by solving
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586 A SURVEY ON MULTIOBJECTIVE DESCENT METHODS

one or several parametrized single-objective (i.e., scalar-valued) optimization problems. Among

the scalarization techniques, we have the so-called weighting method, where one minimizes a
nonnegative linear combination of the objective functions [26, 29, 30, 37]. The parameters are
not known in advance and the modeler or decision-maker has to choose them. For some prob-

lems, this choice can be problematic, as shown in the example provided in [18, Section 7], where
almost all choices of the parameters lead to unbounded scalar problems. Only recently, adap-
tive scalarization techniques, where scalarization parameters are chosen automatically during the

course of the algorithm such that a certain quality of approximation is maintained, have been
proposed [13, 17]. Still other techniques, working only in the bicriteria case, can be viewed as
choosing a fixed grid in a particular parameter space [11, 12].

Multicriteria optimization algorithms that do not scalarize have recently been developed (see,

e.g., [5, 6] for an overview on the subject). Some of these techniques are extensions of scalar
optimization algorithms (notably the steepest descent algorithm [19] with at most linear conver-
gence), while others borrow heavily from ideas developed in heuristic optimization [33, 38]. For

the latter, no convergence proofs are known, and empirical results show that convergence gen-
erally is, as in the scalar case, quite slow [44]. Other parameter-free multicriteria optimization
techniques use an ordering of the different criteria, i.e., an ordering of importance of the compo-
nents of the objective function vector. In this case, the ordering has to be prespecified. Moreover,

the corresponding optimization process is usually augmented by an interactive procedure [36].

Following the research line opened in 2001 with [19], other classical (scalar) optimization pro-
cedures where extended in recent years, not just for the multicriteria setting, but also for vector
optimization problems, i.e., when other underlying ordering cones are used instead of the non-

negative orthant. In [28], a steepest descent method is proposed, while in [1, 21, 22, 25], several
versions of the projected gradient method are studied. Proximal point type methods are analyzed
in [4]. Trust region strategies for multicriteria were developed in [8, 9]. Even a steepest descent

method for multicriteria optimization on Riemannian manifolds was developed in [2]. In 2009,
Fliege et al. [18] came up with a multiobjective version of the Newton method, while later on,
Graña Drummond et al. [27] proposed a Newton method for vector optimization.

These extensions share an essential feature: they are all descent methods, i.e., the vector objec-

tive value decreases at each iteration in the partial order induced by the underlying cones. Under
reasonable assumptions, full convergence of sequences produced by these algorithms is estab-
lished in all those works. As expected, for the vector-valued Newton methods, convergence is

local and fast, while for the others it is global (and not so fast).

In this survey we study just three of these procedures: the steepest descent [19, 28], the projected
gradient [21, 22, 25] and the Newton [18, 27] methods. For the sake of simplicity, we just analyze
their multiobjective versions and, in order to emphasize the underlying ideas and avoid techni-

calities, we do not present the results in their maximum degree of generality. For instance, we
assume that the objectives are continuously differentiable in the whole space, while, sometimes,
we just need local differentiability, etc.

Pesquisa Operacional, Vol. 34(3), 2014
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The outline of this paper is as follows. In Section 2 we establish the notation, as well as the basic

concepts, and define the (smooth) unconstrained multiobjective problem. We also state and prove
a simple but important result on descent directions. In Section 3, we study the multiobjective
steepest descent method. First, we introduce the search direction and analyze its properties. Then

we describe the algorithm and, finally, we perform the convergence analysis of the method.
Basically, we establish that, under convexity of the objectives and another natural assumption,
any sequence produced by the method is globally convergent to a weak Pareto optimal point. In

Section 4 we define the smooth constrained multicriteria problem, as well as the multiobjective
projected gradient algorithm and we present its convergence analysis, which is quite similar to
the previous one. In Section 5, for twice continuously differentiable strongly convex objectives,

we define the multiobjective Newton method and, assuming similar conditions as those of the
previous cases, we establish its convergence to Pareto optimal points with superlinear rate. Under
the additional hypothesis of Lipschitz continuity of the objectives’ second derivatives, we prove
quadratic convergence. In Section 6 we make some comments on how to obtain (strong) Pareto

optima with the first two algorithms and on how to approach the whole efficient frontier with the
three methods.

2 PRELIMINARIES

All over this work, 〈·, ·〉 will stand for the usual canonical inner product in Rp (here, we will
just deal with p = n or p = m), i.e., 〈u, v〉 = ∑p

i=1 uivi = u�v. Likewise, ‖ · ‖ will always
be the Euclidean norm, i.e., ‖u‖ = √〈u, u〉. For an m × n real matrix A, ‖A‖ will denote its

operator (Euclidean) norm. As usual, R+ and R++ designate the sets of nonnegative and positive
real numbers, respectively.

Let Rm+ := R+ ×· · ·×R+ and Rm++ := R++ ×· · ·×R++ be the nonnegative orthant or Paretian
cone and the positive orthant of Rm , respectively. Consider the partial order induced by Rm+: for

u, v ∈ Rm , u ≤ v (alternatively, v ≥ u) if v−u ∈ Rm+, as well as the following stronger relation:
u < v (alternatively, v > u) if v − u ∈ Rm++. In other words, u ≤ v stands for ui ≤ vi for all
i = 1, . . . ,m, and u < v should also be understood as a (strict) componentwise inequality.

Let

F : Rn → R
m

be a continuously differentiable mapping. Our problem consists of finding Pareto or weak Pareto
points for F in Rn and we note it by

minimize F(x)
subject to x ∈ Rn.

(1)

Recall that x∗ ∈ Rn is a Pareto optimal (or efficient) point for F , if

there is no x ∈ Rn such that F(x) ≤ F(x∗) and F(x) �= F(x∗),

Pesquisa Operacional, Vol. 34(3), 2014
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that is to say, there does not exist x ∈ R
n such that Fi (x) ≤ Fi (x∗) for all i = 1, . . . ,m and

Fi0 (x) < Fi0 (x
∗) for at least one i0. A point x∗ ∈ R

n is a weakly Pareto optimal (or weakly
efficient) point for F , if

there is no x ∈ Rn such that F(x) < F(x∗),

i.e., there does not exist x ∈ R
n such that Fi (x) < Fi (x∗) for all i = 1, . . . ,m. Clearly, if

x∗ ∈ Rn is a Pareto optimal point, then x∗ is a weak Pareto point, and the converse is not always
true.

As wee will see in our first lemma, a necessary condition for optimality of a point x̄ ∈ C is
stationarity (or criticality):

J F(x̄)(Rn) ∩ [−Rm++] = ∅,
where J F(x̄) stands for the Jacobian matrix of F at x̄ (the m×n matrix with entries (J F(x̄))i, j =
∂Fi (x̄)/∂x j ), J F(x̄)(Rn) := {

J F(x̄)v : v ∈ Rn
}

and −Rm++ := {−u : u ∈ Rm++}. So x̄ ∈ Rn is
stationary for F if, and only if, for all v ∈ Rn we have J F(x̄)v �< 0, that is to say for all v there

exists j = j (v) such that
(J F(x̄)v) j = ∇Fj (x̄)

�v ≥ 0, (2)

and this condition implies

max
i=1,...,m

∇Fi (x̄)
�v ≥ 0 for all v ∈ Rn .

Note that for m = 1, we retrieve the classical stationarity condition for unconstrained scalar-
valued optimization: ∇F(x̄) = 0.

By definition, a point x ∈ R
n is nonstationary if there exists a direction v ∈ R

n such that
J F(x)v < 0. The next result shows not only that such v is a Rm+-descent direction for F at x
(there exists ε > 0 such that F(x + tv) < F(x) for all t ∈ (0, ε]), but it also estimates the Rm+-

function decrease. As we will see later on, this result allows us to implement, by a backtracking
procedure, an Armijo-like rule on all the multiobjective (descent) methods we will study here.

Lemma 2.1. Let F : Rn → R
m be continuously differentiable, v ∈ Rn such that J F(x)v < 0

and σ ∈ (0, 1). Then there exists some ε > 0 (which may depend on x, v and σ ) such that

F(x + tv) < F(x) + σ t J F(x)v for any t ∈ (0, ε]. (3)

In particular, v is a descent direction for F at x.

Proof. Since F is differentiable, ∇Fi (x)�v < 0 and σ ∈ (0, 1), we have

lim
t→0

Fi (x + tv)− Fi (x)

t
= ∇Fi (x)

�v < σ∇Fi (x)
�v for all i = 1, . . . ,m.

So there exists ε > 0 such that

Fi (x + tv)− Fi (x) < σ t∇Fi(x)
�v for all t ∈ (0, ε] and all i = 1, . . . ,m. �

Pesquisa Operacional, Vol. 34(3), 2014
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3 THE MULTIOBJECTIVE STEEPEST DESCENT METHOD

In this section we propose an extension of the classical steepest descent method. First we state
and prove some results that will allow us to define the algorithm. Then we present its convergence

analysis and, finally, we briefly expose a numerically robust version of the method which admits
relative errors on computing the search directions at each iteration.

3.1 The search direction for the multiobjective steepest descent method

For a given point x ∈ Rn , define the function ϕx : Rn → R by

ϕx (v) := max
i=1,...,m

∇Fi (x)
�v. (4)

As being the maximum of linear functions, ϕx is convex and positively homogeneous (ϕx (λv) =
λϕx (v) for all λ > 0 and all v ∈ Rn). Moreover, since u �→ maxi=1,...,m ui is Lipschitz continu-
ous with constant 1, we also have

ϕx (v +w) ≤ ϕx (v)+ ϕx (w),

|ϕx (v)− ϕy(w)| ≤ ‖J F(x)v − J F(y)w‖ (5)

for all v, w ∈ Rn . Consider now the unconstrained scalar-valued minimization problem

min
v
ϕx (v)+ 1

2
‖v‖2. (6)

Since the objective function is proper, closed and strongly convex, this problem has always a

(unique) optimal solution v(x), which we call steepest descent direction, and is therefore given
by

v(x) := argmin
v∈Rn

ϕx (v)+ 1

2
‖v‖2. (7)

Let us call θ(x) the optimal value of (6), that is to say,

θ(x) := ϕx (v(x)) + 1

2
‖v(x)‖2. (8)

If m = 1, we fall back to scalar minimization and ϕx (v) = ∇F(x)�v, so v(x) = −∇F(x) and
we retrieve the classical steepest descent direction at x ∈ Rn .

Note that, in order to get rid of the possible nondifferentiability of (6), we can reformulate the

problem as
minimize τ

subject to ∇Fi (x)�v + 1

2
‖v‖2 − τ ≤ 0, i = 1, . . . ,m,

a convex problem with variables (τ, v) ∈ R×Rn for which there are efficient numerical solvers.

Let us now give a characterization of stationarity in terms of θ(·) and v(·) and study some features
of these functions.

Pesquisa Operacional, Vol. 34(3), 2014
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Proposition 3.1. Let v : Rn → R
n and θ : Rn → R given by (7) and (8), respectively. Then, the

following statements hold.

1. θ(x) ≤ 0 for all x ∈ Rn.

2. The function θ(·) is continuous.

3. The following conditions are equivalent:

(a) The point x is nonstationary.

(b) θ(x) < 0.

(c) v(x) �= 0.

In particular, x is stationary if and only if θ(x) = 0.

Proof. 1. From (7) and (8), for any x ∈ Rn , we have θ(x) ≤ ϕx (0)+ 1
2‖0‖2 = 0.

2. Let us proof the continuity of θ in an arbitrary but fixed xo ∈ Rn . First let us show that the
function x �→ v(x) is bounded on compact subsets of Rn . Let C ⊂ R

n be compact. Note that

for all x ∈ C and all i = 1, . . . ,m, we have

−‖∇Fi (x)‖‖v(x)‖ + 1

2
‖v(x)‖2 ≤ ∇Fi (x)

�v(x)+ 1

2
‖v(x)‖2

≤ ϕx (v(x)) + 1

2
‖v(x)‖2

= θ(x)

≤ 0,

where we used the Cauchy-Schwarz inequality, the definitions of ϕx and θ , as well as item 1.

Therefore, since F is continuously differentiable, we conclude that there exists κ = κ(C) > 0
such that ‖v(x)‖ ≤ κ for all x ∈ C. In particular, there exists κ̄ > 0 such that

‖v(x)‖ ≤ κ̄ for all x ∈ B̄(xo, 1), (9)

where B̄(xo, 1) is the closed ball with center at xo and radius 1.

Now, for x ∈ B̄(xo, 1) and i ∈ {1, . . . ,m}, define

φx,i : Rn → R

by

z �→ ∇Fi (z)
�v(x) + 1

2
‖v(x)‖2.

From (9), the family {φx,i }(x,i)∈B̄ (xo,1)×{1,...,m} is equicontinuous. Consider now the family
{�x }x∈B̄ (xo,1), where �x = maxi=1,...,m φx,i . Since u �→ maxi ui is Lipschitz continuous with

Pesquisa Operacional, Vol. 34(3), 2014
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constant 1, {�x }x∈B̄ (xo,1) is also an equicontinuous family of functions. Then for any ε > 0 and

all x ∈ B̄(xo, 1), there exists 0 < δ < 1 such that

‖z − z̃‖ < δ ⇒ |�x (z)−�x (z̃)| < ε.

Hence for ‖z − xo‖ < δ, from the definitions of functions θ, v,�xo and the fact that �xo(xo) =
θ(xo), we have

θ(z) ≤ max
i=1,...,m

∇Fi (z)
�v(xo)+ 1

2
‖v(xo)‖2

= �xo(z)

≤ �xo(xo)+ |�xo(z)−�xo(xo)|
< θ(xo)+ ε,

so θ(z)− θ(xo) < ε. Interchanging the roles of z and xo , we conclude that, for ‖z − xo‖ < δ,

|θ(z) − θ(xo)| < ε.

3. (a) ⇒ (b). Suppose that x is nonstationary. Then, there exists v ∈ R
n such that ϕx (v) =

maxi ∇F(x)�v < 0. Therefore, from the optimality of v(x) and the fact that ϕx is positively
homogeneous,

θ(x) ≤ ϕx (τv)+ 1

2
‖τv‖2 = τ

(
ϕx (v)+ 1

2
τ‖v‖2

)
for all τ > 0. Taking 0 < τ < −2ϕx (v)/‖v‖2, we see that θ(x) < 0.

(b) ⇒ (c). Since, by item 1, θ(x) ≤ 0, it is enough to notice that v(x) = 0 implies θ(x) = 0.

(c) ⇒ (a). If v(x) �= 0, then maxi ∇Fi (x)�v(x) = ϕx (v(x)) < θ(x) ≤ 0, so J F(x)v(x) ∈
J F(x)(Rn ) ∩ [−Rm++] and x is nonstationary. �

Note that for a nonstationary point x , using the above characterization, we have θ(x) < 0 and
so, from (8), we get ϕx (v(x)) < −1

2‖v(x)‖2 < 0, which in turn implies that J F(x)v(x) < 0.
Whence, by Lemma 2.1, there exists ε > 0 such that

F(x + tv(x)) < F(x) + βt J F(x)v(x) for all t ∈ (0, ε],
and, in particular, v(x) is a descent direction, i.e., F(x + tv(x)) < F(x) ∀t ∈ (0, ε].
Finally, observe that, while proving Proposition 3.1, we saw that v : Rn → R

n , defined by (7), is
bounded on compacts sets of Rn . Actually, it can be seen something stronger, namely that v(·) is
a continuous function [28, Lemma 3.3].

3.2 The multiobjective steepest descent algorithm

We are now in conditions to define the extension of the classical steepest descent method for the
unconstrained multiobjective optimization problem (1).

Algorithm 3.2. The multiobjective steepest descent method (MSDM)

Pesquisa Operacional, Vol. 34(3), 2014
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1. Choose σ ∈ (0, 1) and x0 ∈ Rn . Set k := 0.

2. Compute vk := v(xk) = argmin
v∈Rn

ϕxk (v)+ 1

2
‖v‖2,

where ϕxk (v) := max
i=1,...,m

∇Fi (x
k )�v.

3. Compute θ(xk ) = ϕxk (vk)+ 1

2
‖vk‖2. If θ(xk ) = 0, then stop.

4. Choose tk as the largest t ∈ {1/2 j : j = 0, 1, 2, . . . } such that

F
(
xk + tvk) ≤ F(xk )+ σ t J F(xk)vk .

5. Set xk+1 := xk + tkvk , k := k + 1 and go to Step 2.

Some comments are in order. Since v �→ ϕxk (v) + 1
2‖v‖2 is strongly convex, vk exists and is

unique. Note that, by Proposition 3.1, the stopping rule θ(xk ) = 0 can be replaced by vk = 0.

Also note that, if at iteration k the algorithm does not reach Step 4, i.e., if it stops at Step 3, then,
by Proposition 3.1, xk is a stationary point for F .

If Step 4 is reached at iteration k, by our comments after Proposition 3.1 and Lemma 2.1, the
computation of the step length in Step 4 ends up in a finite number of half reductions. Observe

that instead of the factor 1/2 in the reductions of Step 4 we could have used any other scalar
ν ∈ (0, 1). If the algorithm does not stop, from Step 4 and the fact that J F(xk)vk < 0, we have
that the objective values sequence {F(xk )} is Rm+-decreasing, i.e.,

F(xk+1) < F(xk ) for all k.

If the algorithm stops at iteration k0, the above inequality holds for k = 0, 1, . . . , k0 − 1.

3.3 Convergence analysis of the MSDM: the general case

Since Algorithm 3.2 ends up with a stationary point or produces infinitely many iterates, from
now on, we assume that an infinite sequence {xk } of nonstationary points is generated. We be-
gin presenting a simple application of the standard convergence argument for the scalar-valued

steepest descent method.

Theorem 3.3. Let {xk } be a sequence produced by Algorithm 3.2. Every accumulation point of
{xk }, if any, is a stationary point.

Proof. Let x̄ be an accumulation point of the sequence {xk}. Consider v(x̄) and θ(x̄), given by
(7) and (8), respectively, i.e., the solution and the optimal value of (6) at x = x̄ . According to

Proposition 3.1, it is enough to prove that θ(x̄) = 0.

We know that the sequence {F(xk )} is Rm+-decreasing (i.e., componentwise strictly decreasing),
so we have that

lim
k→∞ F(xk ) = F(x̄).

Pesquisa Operacional, Vol. 34(3), 2014
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Therefore,

lim
k→∞ ‖F(xk )− F(xk+1)‖ = 0.

But, by Steps 2-5 of Algorithm 3.2,

F(xk)− F(xk+1) ≥ −tkβ J F(xk)vk ≥ 0,

and therefore
lim

k→∞ tk J F(xk)vk = 0,

which, componentwise, can be written as

lim
k→∞ tk∇Fi (x

k )�vk = 0 for all i = 1, . . . ,m. (10)

Considering that tk ∈ (0, 1] for all k, we have the following two possibilities:

lim sup
k→∞

tk > 0 (11)

or

lim sup
k→∞

tk = 0. (12)

First assume that (11) holds. Then there exists a subsequence {xk j } j converging to x̄ and t̄ > 0
such that lim j→∞ tk j = t̄ . So, using (10), we get

0 = lim
j→∞ ∇Fi (x

k j )�vk j ≤ lim
j→∞ϕxk j (v

k j )+ 1

2
‖vk j ‖2 = lim

j→∞ θ(x
k j ) = θ(x̄),

where the last equality is a consequence of Proposition 3.1, 2. So, by Proposition 3.1, 3, we
conclude that θ(x̄ ) = 0, and x̄ is stationary.

Now assume that (12) holds. Due to the the fact that v(·) is bounded on compacts, vk = v(xk ) for

all k and {xk} has a convergent subsequence, it follows that the sequence {vk} has also a bounded
subsequence. Therefore there exists v̄ ∈ Rn and a subsequence {vk j } j such that lim j→∞ vk j = v̄

and lim j→∞ tk j = 0. Note that we have

max
i

∇Fi (x
k j )�vk j ≤ θ(vk j ) < 0 for all j,

so letting j → ∞, we get

max
i

∇Fi (x̄)
�v̄ ≤ θ(x̄) ≤ 0. (13)

Take now a fixed but arbitrary positive integer q . Since tk j → 0, for j large enough, we have

tk j <
1

2q ,

which means that the Armijo-like condition at xk j in Step 4 of Algorithm 3.2 is not satisfied for
t = 1/2q , i.e.,

F
(
xk j + (1/2q)vk j

) �≤ F(xk j )+ σ(1/2q)J F(xk j )vk j .

Pesquisa Operacional, Vol. 34(3), 2014
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So for all j there exists i = i(k j ) ∈ {1, . . . ,m} such that

Fi
(
xk j + (1/2q)vk j

) ≥ Fi (x
k j )+ σ(1/2q)∇Fi (x

k j )�v̄k j .

Since {i(k j )} j ⊂ {1, . . . ,m}, there exists a subsequence {k j� }� and an index i0 such that
i0 = i(k j� ) for all � = 1, 2, . . . and

Fi0

(
xk j� + (1/2q)vk j�

) ≥ Fi0(x
k j� )+ σ(1/2q )∇Fi0 (x

k j� )�v̄k j� .

Taking the limit � → ∞ in the above inequality, we obtain

Fi0

(
x̄ + (1/2q)v̄

) ≥ Fi0 (x̄)+ σ(1/2q)∇Fi0 (x̄)
�v̄.

Since this inequality holds for any positive integer q and for i0 (depending on q), by Lemma 2.1
it follows that J F(x̄)v̄ �< 0, so

max
i

∇Fi (x̄)
�v̄ ≥ 0,

which, together with (13), implies θ(x̄) = 0. Therefore, we conclude that x̄ is a stationary
point. �

Assume now that x0 ∈ {x ∈ Rn : F(x) ≤ F(x0)}, a bounded level set. Since {F(xk )} is Rm+-
decreasing, the whole sequence {xk } is contained in the above set, so it is bounded and it has at
least one accumulation point, which, by the previous theorem, is stationary for F .

3.4 Full convergence of the MSDM: the Rm+-convex case

In order to characterize v(x), the optimal solution of (6), we begin this section by recalling a
well-known result on nonsmooth unconstrained optimization, which establishes optimality con-
ditions for max-type real-valued objective functions.

Proposition 3.4. Let hi : Rn → R be a differentiable function for i = 1, . . . ,m. If x̂ ∈ Rn is
an unconstrained minimizer of maxi=1,...,m hi (x), then there exists α = α(x̂) ∈ Rm, with αi ≥ 0
for all i and

∑m
i=1 αi = 1, such that, for τ̂ := maxi hi(x̂), it holds

m∑
i=1

αi∇hi (x̂) = 0, hi(x̂)− τ̂ ≤ 0 and αi
(
hi (x̂)− τ̂

) = 0, i = 1, . . . ,m.

If hi is convex for all i, the above conditions are also sufficient for the optimality of x̂ .

Proof. First note that the problem minx∈Rn maxi=1,...,m hi (x) can be reformulated as

minimize τ

subject to hi (x)− τ ≤ 0, i = 1, . . . ,m,
(14)

with optimal solution (τ̂ , x̂) ∈ R × R
n . Since the Lagrangian of this problem is given by

L((τ, x), α) := τ +∑m
i=1 αi

(
hi (x)−τ

)
, its Karush-Kuhn-Tucker (KKT) conditions at (τ̂ , x̂) are
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just those stated in this proposition. Note now that (14) has a Slater point (e. g., (τ̃ , 0) ∈ R×Rn,
where τ̃ > hi(0) for all i). So there exists a vector of KKT multipliers α = α(x̂) such that those
conditions are satisfied.

For the converse, just note that as (14) is a convex problem on the variables (τ, x), the KKT
conditions are sufficient for the optimality of (τ̂ , x̂). �

By (6)-(7), v(x) = argminv maxi ∇Fi (x)�v+(1/2)‖v‖2. Therefore, in view of the above propo-
sition, there exists ω(x) := α(v(x)) ∈ Rm+, with

∑m
i=1 ωi(x) = 1 such that

m∑
i=1

ωi (x)∇Fi (x)+ v(x) = 0,

and so

v(x) = −
m∑

i=1

ωi (x)∇Fi (x). (15)

The above equality can be rewritten as

v(x) = −J F(x)�w(x). (16)

Note that (15) tells us that the steepest descent direction v(x) is a classical steepest descent
direction for the scalar-valued problem minx

∑m
i=1 ωi Fi (x), whose weightsωi := ωi (x) ≥ 0 are

the a priori unknown KKT multipliers for problem (14), with hi = Fi for all i, at (θ(x), v(x)).

Let us now introduce an important concept. We say that the mapping F : Rn → R
m isRm+-convex

if

F
(
λx + (1 − λ)z

) ≤ λF(x) + (1 − λ)F(z) for all x, z ∈ Rn and all λ ∈ [0, 1]. (17)

Clearly, F : Rn → R
m is Rm+-convex if and only if its components Fi : Rn → R are all convex.

Under this additional assumption, we have the following extension of the well-known scalar
inequality which establishes that a convex differentiable function always overestimates its linear
approximation:

F(u) ≥ F(w)+ J F(w)(u −w) for any u, w ∈ Rn. (18)

In fact, this vector inequality is equivalent to the following m scalar inequalities Fi (u) ≥ Fi (w)+
∇Fi (w)

�(u − w) for all u, w ∈ Rn and all i.

Let us now state and prove a simple result relating Pareto optimality and stationarity.

Lemma 3.5. Let x̂ be a weak Pareto optimum for F. Then x̂ is a stationary point. If, in addition,
F is Rm+-convex, this condition is also sufficient for weak Pareto optimality. So, under Rm+-
convexity, the concepts of weak efficiency and stationarity are equivalent.

Proof. First, assume that x̂ is weak Pareto. As we know, if x̂ is not a stationary point, there
exists v ∈ R

n such that J F(x̂)v < 0, so (3) holds for x = x̂ , in contradiction with the weak
Pareto optimality of x̂ .
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Now suppose that x̂ is stationary for the Rm+-convex mapping F and take any x ∈ Rn . Since x̂ is
stationary, (2) holds for x = x̂ , v := x − x̂ and some j = j (x̂). Therefore, by (18) for u = x
and w = x̂ , Fj (x) ≥ Fj (x̂), and so x̂ is weak a Pareto optimum for F . �

We will keep on studying the case in which the algorithm does not have finite termination and
therefore it produces infinite sequences {xk }, {vk } and {tk}. Let us now state the additional as-
sumption under which, in the Rm+-convex case, we will prove full convergence of {xk} to a sta-
tionary point or, in view of the above lemma, to a weak unconstrained optimum of F .

Assumption 3.6. Every Rm+-decreasing sequence {yk } ⊆ F(Rn) := {F(x) : x ∈ R
n} is Rm+-

bounded from below by a point in F(Rn), i.e., for any {yk} contained in F(Rn) with yk+1 < yk

for all k, there exists x̂ ∈ Rn such that F(x̂) ≤ yk for all k.

Some comments concerning the generality/restrictiveness of this assumption are in order. In the
classical unconstrained (convex) optimization case, this condition is equivalent to existence of
solutions of the optimization problem. This assumption, known as Rm+- completeness, is standard
for ensuring existence of efficient points for vector optimization problems [35, Section 3].

We will need the following technical result in order to prove that the MSDM is convergent.

Lemma 3.7. Suppose that F is Rm+-convex and let x̂ ∈ Rn be such that F(x̂) ≤ F(xk ) for some
k. Then, we have

‖x̂ − xk+1‖2 ≤ ‖x̂ − xk‖2 + ‖xk − xk+1‖2.

Proof. By (16), there exists wk := w(xk ) ∈ Rm+ such that

vk = −J F(xk)�wk . (19)

Using the Rm+-convexity of F , we have that (18) holds, so F(xk ) + J F(xk)(x̂ − xk) ≤ F(x̂).
Since F(x̂) ≤ F(xk), we get

J F(xk)(x̂ − xk) ≤ 0.

Taking into account that wk ∈ Rm+ and using the above vector inequality as well as (19), we get

−(vk )�(x̂ − xk) = (wk)�J F(xk)(x̂ − xk ) ≤ 0.

Recall that xk+1 = xk + tkvk , with tk > 0. Therefore, from the above inequality we get

(xk − xk+1)�(x̂ − xk ) ≤ 0,

which implies the desired inequality, because

‖x̂ − xk+1‖2 = ‖x̂ − xk‖2 + ‖xk − xk+1‖2 + 2(xk − xk+1)�(x̂ − xk ). �

We still need a couple of technical results. The first one, basically, establishes that any accumu-
lation point of a sequence produced by the MSDM furnishes an Rm+-lower bound for the whole
objective values sequence. We state it for an arbitrary sequence of nonstationary points, because
we will also need it for the convergence analysis of another method.
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Lemma 3.8. Let {x (k)} be any infinite sequence of nonstationary points in Rn such that
F(x (k+1)) ≤ F(x (k)) for all k.

1. If x̄ is an accumulation point of {x (k)}, then

F(x̄) ≤ F(x (k) ) for all k (20)

and
lim

k→∞ F(x (k) ) = F(x̄).

Also, F is constant in the set of accumulation points of {x (k)}.
2. If {xk }, generated by Algorithm 3.2, has an accumulation point, then all results of item 1

hold for this sequence.

Proof. 1. Let {x (k j )} j be a subsequence that converges to x̄ . Take a fixed but arbitrary k. For j
large enough, we have k j > k and F(x (k j )) ≤ F(x (k) ). So letting j → ∞, we get

F(x̄) ≤ F(x (k)).

Since the above inequality holds componentwise and Fi (x (k j )) → Fi (x̄) as j → ∞ for all i, we
have limk→∞ F(x (k)) = F(x̄).

Now let x̂ be another accumulation point of {x (k)}. Then there exists a subsequence {x (k�)}� that
converges to x̂ . By (20), F(x̄) ≤ F(x (k�)) for all �, so letting � → ∞, we get F(x̄) ≤ F(x̂).
Interchanging the roles of x̄ and x̂ , by the same reasoning, we get F(x̂) ≤ F(x̄). These two
R

m+-inequalities imply that F(x̂) = F(x̄).

2. It suffices to note that any (infinite) sequence {xk} generated by Algorithm 3.2 satisfies
F(xk+1) < F(xk) for all k. �

We now study the speed of convergence to zero of the sequences {vk} and {θ(xk )}.
Lemma 3.9. Suppose that {F(xk )} is Rm+-bounded from below by ȳ. Then

∞∑
k=0

tk |θ(xk )| < ∞ and
∞∑

k=0

tk‖vk‖2 < ∞.

Proof. We know that Fi (xk+1) ≤ Fi (xk )+σ tk∇Fi (xk )�vk for any i and all k. Adding up from
k = 0 to k = N , we get

Fi (x
N+1) ≤ Fi (x

0)+ σ

N∑
k=0

tk∇Fi (x
k )�vk

≤ Fi (x
0)+ σ

N∑
k=0

tkϕxk (v
k)

= Fi (x
0)+ σ

N∑
k=0

tk

(
θ(xk )− 1

2
‖vk‖2

)
,
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where we used (4) and (8) for x = xk . As ȳi ≤ Fi(xk ) and θ(xk ) < 0 for all i, k (Proposition 3.1,
3), we obtain

N∑
k=0

tk

(
|θ(xk )| + 1

2
‖vk‖2

)
≤ 1

σ

(
Fi (x

0)− ȳi
)
.

Since the last inequality holds for any nonnegative integer N , the conclusions follow immedi-
ately. �

Before stating and proving the last theorem of this section, let us introduce the main tool for
the convergence analysis. Recall that a sequence {uk } ⊂ R

n is quasi-Fejér convergent to a set
U ⊂ R

n if for every u ∈ U there exists a sequence {εk} ⊂ R, εk ≥ 0 for all k and such that

‖uk+1 − u‖2 ≤ ‖uk − u‖2 + εk for all k = 0, 1, . . . , with
∞∑

k=0

εk <∞.

We will need the following well-known result concerning quasi-Fejér convergent sequences,
whose proof can be found in [7].

Theorem 3.10. If a sequence {uk} is quasi-Fejér convergent to a nonempty set U ⊂ R
n, then {uk}

is bounded. If, furthermore, {uk } has a cluster point u which belongs to U, then limk→∞ uk = u.

In [7] it is proved that the steepest descent method for smooth (scalar) convex minimization, with
step size obtained using the Armijo rule implemented by a backtracking procedure, is globally
convergent to a solution (essentially, under the sole assumption of existence of optima). Using
the same techniques, we extend this result to the multiobjective setting, that is to say, we show
that any sequence produced by the MSDM converges to an optimum of problem (1), no matter
how poor the initial guess might be.

Theorem 3.11. Suppose that F isRm+-convex and that Assumption 3.6 holds. Then any sequence
{xk } produced by Algorithm 3.2 converges to a weak Pareto optimal point x∗ ∈ Rn.

Proof. As {F(xk )} is an Rm+-decreasing sequence, by Assumption 3.6, there exists x̂ ∈ Rn such
that

F(x̂) ≤ F(xk ) for all k = 0, 1, . . . (21)

Now observe that 0 < tk ≤ 1 for all k, so

‖xk+1 − xk‖2 ≤ 1

tk
‖xk+1 − xk‖2 = tk‖vk‖2 for all k = 0, 1, . . .

Therefore, from (21), Lemma 3.9 and the above inequality, it follows that

∞∑
k=0

‖xk − xk+1‖2 < ∞ . (22)

Define
L := {

x ∈ Rn : F(x) ≤ F(xk), k = 0, 1, . . .
}
.

Pesquisa Operacional, Vol. 34(3), 2014



�

�

“main” — 2014/10/24 — 13:52 — page 599 — #15
�

�

�

�

�

�

ELLEN H. FUKUDA and L. M. GRAÑA DRUMMOND 599

Using the Rm+-convexity of F and (21), from Lemma 3.7, we see that for any x ∈ L

‖x − xk+1‖2 ≤ ‖x − xk‖2 + ‖xk − xk+1‖2 for all k = 0, 1, . . .

As L is nonempty, because x̂ ∈ L , from (22) and the above inequality, it follows that {xk } is
quasi-Fejér convergent to the set L . Therefore, {xk } has accumulation points. Let x∗ be one of
them. By Lemma 3.8, x∗ ∈ L . Then, using Theorem 3.10, we see that the whole sequence
{xk } converges to x∗. We finish the proof by observing that Theorem 3.3 guarantees that x∗ is
stationary and so, from the Rm+-convexity of F , by virtue of Lemma 3.5, x∗ is a weak Pareto
optimum. �

3.5 The MSDM with relative errors

Here we briefly sketch an inexact version of the MSDM. Instead of computing vk = v(xk ) =
argminv∈Rn ϕxk (v) + 1

2‖v‖2 in Step 2 of Algorithm 3.2, we accept approximate solutions of the
problem with some prespecified tolerance. For a nonstationary point x ∈ Rn and a given toler-
ance ε ∈ [0, 1), we say that a direction v ∈ Rn is an ε-approximate solution of minv∈Rn ϕx (v)+
1
2‖v‖2 if

ϕx (v)+ 1

2
‖v‖2 ≤ (1 − ε)θ(x),

where ϕx (v) = maxi=1,...,m ∇Fi (x)�v and θ(·) is the optimal value of the above optimization
problem. Calling hx the objective function in this problem, i.e., hx (v) := ϕx (v)+ 1

2‖v‖2, we see
that v is an ε-approximate solution if, and only if, the relative error of hx at v is at most ε, that is
to say, ∣∣∣∣hx(v) − hx (v(x))

hx (v(x))

∣∣∣∣ =
∣∣∣∣hx(v) − θ(x)

θ(x)

∣∣∣∣ ≤ ε.

Clearly, the exact direction v(x) is always ε-approximate at x for any ε ∈ [0, 1). Moreover,
v(x) is the unique 0-approximate direction at x . Also note that given a nonstationary point x ∈
R

n and ε ∈ [0, 1), an ε-approximate direction v is always a descent direction. Indeed, from
Proposition 3.1 and the definition of ε-approximate solution, it follows that ∇Fi (x)�v ≤ ϕx (v)+
1
2‖v‖2 ≤ (1 − ε)θ(x) < 0 for all i. Whence, J F(x)v < 0 and so, by Lemma 2.1, v is a descent
direction for F at x .

We can now define the inexact MSDM in almost the same way as its exact counterpart: in Step 1,
there is also the choice of the tolerance parameter ε ∈ [0, 1), in Step 2, vk is taken as an ε-
approximate solution of minv∈Rn ϕxk (v) + 1

2‖v‖2 and, finally, the stopping criterion in Step 3
becomes hxk (vk ) = 0. In [19, 28] it is shown that the method is well-defined and that it has the
same convergence features as the exact one.

4 THE MULTIOBJECTIVE PROJECTED GRADIENT METHOD

The scheme of this section is similar to the previous one. Here, for the constrained multiobjective
problem, we propose an extension of the classical scalar-valued projected gradient method. First,
we prove some technical results. Then, we present the convergence analysis of the method. And,
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finally, we sketch a numerically robust version of the method which admits relative errors on
computing the search directions at each iteration.

Let F : Rn → R
m be a continuously differentiable mapping and C ⊆ R

n be a closed and convex
set. We are now interested in the following constrained multiobjective optimization problem:

minimize F(x)
subject to x ∈ C.

(23)

For this problem, we seek a Pareto optimum (or efficient point), i.e., a feasible point (x∗ ∈ C)
such that there does not exist x ∈ C with F(x) ≤ F(x∗) and F(x) �= F(x∗), or we look for a
weak Pareto optimum (or weakly efficient point), that is to say, a feasible x∗ such that there does
not exist x ∈ C with F(x) < F(x∗).

4.1 The search direction for the multiobjective projected gradient method

For the constrained multiobjective problem, a necessary condition for optimality of a point x̄ ∈ C
is stationarity (or criticality):

J F(x̄)(C − x̄) ∩ [−Rm++] = ∅,
where J F(x̄)(C− x̄ ) := {J F(x̄)(x − x̄) : x ∈ C}. So x̄ ∈ C is stationary for F if, and only if, for
all v ∈ C − x̄ we have J F(x̄)v �< 0. Note that when m = 1, we retrieve the classical stationarity
condition for constrained scalar-valued optimization: 〈∇F(x̄ ), x − x̄〉 ≥ 0 for all x ∈ C.

Let us now develop an extension of the classical (scalar) projected gradient method for the vector-
valued problem (23). First, for x ∈ C, we extend the search direction, originally defined for
C = R

n in (7), by

v(x) := argmin
v∈C−x

βϕx (v)+ 1

2
‖v‖2, (24)

where β > 0 is a parameter and ϕx is defined in (4). Note that, in view of the strong convexity
of the minimand, for any x ∈ C, the projected gradient direction v(x) is always well-defined.

Now we extend the optimal value function θ(·) (given by (8) in the unconstrained case):

θ(x) := min
v∈C−x

βϕx (v)+ 1

2
‖v‖2 = βϕx (v(x)) + 1

2
‖v(x)‖2. (25)

We also need the following extension of Proposition 3.1 to the constrained case.

Proposition 4.1. Let v : C → R
n and θ : C → R be given by (24) and (25), respectively. Then,

the following statements hold.

1. θ(x) ≤ 0 for all x ∈ C.

2. The function θ(·) is continuous.

3. The following conditions are equivalent:
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(a) The point x ∈ C is nonstationary.

(b) θ(x) < 0.

(c) v(x) �= 0.

In particular, x is stationary if and only if θ(x) = 0.

Proof. 1. Recalling that 0 ∈ C − x , the result follows as in the proof of Proposition 3.1.

2. Let x ∈ C and {x (k)} ⊂ C be a sequence such that limk→∞ x (k) = x . Since v(x) ∈ C − x , we
have v(x)+ x − x (k) ∈ C − x (k) . Thus, from (24) and (25), we have

θ(x (k) ) ≤ βϕx(k) (v(x) + x − x (k))+ 1

2
‖v(x)+ x − x (k)‖2.

Hence, from the first inequality of (5), we obtain

θ(x (k) ) ≤ βϕx(k) (v(x)) + βϕx(k) (x − x (k))

+ 1

2
‖v(x)‖2 + 1

2
‖x − x (k)‖2 + 〈v(x), x − x (k)〉.

Since F is continuously differentiable and u �→ maxi {ui } is continuous, taking lim supk→∞
on both sides of the above inequality yields

lim sup
k→∞

θ(x (k)) ≤ θ(x) . (26)

Now, observe that since v(x (k)) ∈ C − x (k) , we have v(x (k)) + x (k) − x ∈ C − x . Once again
from (24) and (25), we obtain

θ(x) ≤ βϕx
(
v(x (k))+ x (k) − x

) + 1

2
‖v(x (k))+ x (k) − x‖2.

Using once again the first inequality of (5), we have

θ(x) ≤ βϕx
(
v(x (k) )

) + βϕx
(
x (k) − x

)
+ 1

2
‖v(x (k))‖2 + 1

2
‖x (k) − x‖2 + 〈v(x (k)), x (k) − x〉.

Note that for all i and any z ∈ C, from the Cauchy-Schwarz inequality and item 1, we have that
−‖∇Fi (z)‖‖v(z)‖ + 1

2‖z‖2 ≤ θ(z) ≤ 0. Therefore, since F is continuously differentiable and
{x (k)} is bounded, because it converges, we see that ‖v(x (k))‖ is bounded for all k. So, taking
lim infk→∞ on both sides of the above inequality, we get

θ(x) ≤ lim inf
k→∞

[
βϕx

(
v(x (k))

) + ‖v(x (k))‖/2
]

= lim inf
k→∞

[
θ(x (k))+ β

(
ϕx

(
v(x (k)

) − ϕx(k)
(
v(xk )

))]
≤ lim inf

k→∞

[
θ(x (k))+ β‖J F(x)− J F(x (k))‖‖v(x (k))‖

]
≤ lim inf

k→∞ θ(x (k) ),
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where the second inequality follows from (5). We complete the proof by combining this inequal-
ity with with (26).

3. All results follow as in the proof of Proposition 3.1. (A formal proof of this equivalences for
a more general case can be found in [25, Proposition 3].) �

4.2 The multiobjective projected gradient algorithm

We can now define the extension of the classical (scalar) projected gradient method for the con-
strained multiobjective optimization problem (23).

Algorithm 4.2. The multiobjective projected gradient method (MPGM)

1. Choose β > 0, σ ∈ (0, 1) and x0 ∈ C. Set k := 0.

2. Compute vk := v(xk) = argmin
v∈C−xk

βϕxk (v)+ 1

2
‖v‖2,

where ϕxk (v) := max
i=1,...,m

∇Fi (x
k )�v.

3. Compute θ(xk ) = βϕxk (v
k)+ 1

2
‖vk‖2. If θ(xk ) = 0, then stop.

4. Choose tk as the largest t ∈ {1/2 j : j = 0, 1, 2, . . . } such that

F
(
xk + tvk) ≤ F(xk )+ σ t J F(xk)vk .

5. Set xk+1 := xk + tkvk , k := k + 1 and go to Step 2.

Note that, whenever C = R
n , taking β = 1, we retrieve the MSDM. Observe that, by virtue of

Proposition 4.1, an alternative stopping criterion in Step 3 is vk = 0. Note also that Algorithm 4.2
either terminates in a finite number of iterations with a stationary point or it generates an infinite
sequence of nonstationary points (Proposition 4.1).

Now observe that if Step 4 is reached, by virtue of Lemma 2.1, in finitely many half reductions,
we obtain the step length which is used in Step 5 to define the next iterate. Note that instead of
the factor 1/2 in the reductions of Step 4, we could have used any other scalar ν ∈ (0, 1). Finally,
observe that since θ(xk ) < 0 implies J F(xk)vk < 0, from Steps 3-5, it follows that whenever
the method generates and infinite sequence, the objective values are Rm+-decreasing, i.e.,

F(xk+1) < F(xk ) for all k = 0, 1, . . .

If the method stops at iteration k0, this inequality hold for k = 0, 1, . . . , k0 − 1.

4.3 Convergence analysis of the MPGM: the general case

As we know, Algorithm 4.2 has finite termination, ending with a stationary point, or generates
an infinite sequence of nonstationary iterates. In the sequel we study the second case. First, we
show a simple fact: the algorithm produces feasible sequences.
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Lemma 4.3. Let {xk } ⊂ R
n be a sequence generated by Algorithm 4.2. Then, we have {xk} ⊂ C.

Proof. Let us use an inductive argument. From the initialization of the algorithm, x0 ∈ C.
Now assume that xk ∈ C. Observe that, by Step 4 of Algorithm 4.2, tk ∈ (0, 1] and, by Step 2,
vk ∈ C − xk . Then, for some zk ∈ C, vk = zk − xk and from the convexity of C, it follows that
xk+1 = xk + tkvk = (1 − tk)xk + tkzk ∈ C and the proof is complete. �

Now we see that whenever a sequence produced by Algorithm 4.2 has accumulation points, they
are all feasible stationary points for the problem.

Theorem 4.4. Every accumulation point, if any, of a sequence {xk} generated by Algorithm 4.2
is a feasible stationary point.

Proof. The feasibility follows combining the fact that C is closed with Lemma 4.3. The rest of
the proof is similar to the one of Theorem 3.3: it suffices to use the definitions of v(x) and θ(x)
given in (24) and (25), respectively. �

4.4 Full convergence of the MPGM: the Rm+-convex case

Let us note that, as being the maximum of convex functions, the objective of the minimization
problem which defines v(x) in (24) is also convex and, as we also have that C − x is a closed
convex subset of Rn , by [3, Proposition 4.7.2], a necessary condition for the optimality of v(x)
is the existence of w(x) ∈ Rm with

wi(x) ≥ 0 and
m∑

i=1

wi (x) = 1 (27)

such that 〈
β

m∑
i=1

wi (x)∇Fi (x)+ v(x), v − v(x)
〉
≥ 0 for all v ∈ C − x . (28)

This condition can be written as

〈
x − β

m∑
i=1

wi (x)∇Fi (x)− (
x + v(x)

)
, u − (

x + v(x)
)〉 ≤ 0 for all u ∈ C.

Now using a very well-known characterization of orthogonal projections (see, for instance, [3,
Proposition 2.2.1]), we have

x + v(x) = PC

(
x − β

m∑
i=1

wi(x)∇Fi (x)
)
,

where PC (z) := inf{‖u − z‖ : u ∈ C} is well-defined because C is closed and convex. We
conclude that there exists w(x) ∈ Rm satisfying (27) such that

v(x) = PC

(
x − β J F(x)�w(x)

)
− x . (29)
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Observe that in the constrained scalar-valued case (m = 1), we have J F(x)� = ∇F(x) and
w(x) = 1, which means that

v(x) = PC (x − β ∇F(x)) − x,

and this is precisely the search direction used in the projected gradient method for real-valued op-
timization. So this is an extension to the multiobjective setting of the classical projected gradient
method.

Lemma 4.5. Suppose that F is Rm+-convex. Let {xk } be an infinite sequence generated by
Algorithm 4.2. If for x̂ ∈ C and k ≥ 0, we have F(x̂) ≤ F(xk ), then

‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2 + 2βtk
∣∣〈wk, J F(xk)vk 〉∣∣,

where wk := w(xk ) ∈ Rm is such that (27) and (29) hold with x = xk.

Proof. Since xk+1 = xk + tkvk , we have

‖xk+1 − x̂‖2 = ‖xk − x̂‖2 + t2
k ‖vk‖2 − 2tk

〈
vk, x̂ − xk 〉. (30)

Let us analyze the rightmost term of the above expression. Since vk = v(xk) and wk = w(xk ),
by (28) with x = xk , we get

〈
β J F(xk )�wk + vk, v − vk〉 ≥ 0 for all v ∈ C − xk .

Taking v = x̂ − xk ∈ C − xk in the above inequality, we obtain

−〈
vk, x̂ − xk 〉 ≤ β

〈
wk, J F(xk)(x̂ − xk)

〉 − β
〈
wk, J F(xk)vk 〉 − ‖vk‖2. (31)

Now, observe that, the convexity of F and (18) yield J F(xk)(x̂ − xk) ≤ F(x̂) − F(xk ). This
fact, together with wk ≥ 0, and F(x̂) ≤ F(xk ) implies

〈
wk, J F(xk)(x̂ − xk)

〉 ≤ 〈
wk, F(x̂)− F(xk)

〉 ≤ 0.

Also, since J F(xk)vk < 0, because xk is nonstationary, we have
〈
wk, J F(xk)vk

〉
< 0. Thus,

recalling that β > 0, from (31) it follows that

−〈
vk, x̂ − xk 〉 ≤ β

∣∣〈wk, J F(xk)vk 〉∣∣ − ‖vk‖2.

The above inequality, together with (30), shows that

‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2 + t2
k ‖vk‖2 + 2βtk

∣∣〈wk, J F(xk)vk〉∣∣ − 2tk‖vk‖2.

And the result follows because tk ≥ 0. �

As in the unconstrained case, we need to make an extra assumption in order to prove full conver-
gence of the method.
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Assumption 4.6. Every Rm+-decreasing sequence {yk} ⊂ F(C) := {F(x) : x ∈ C} is Rm+-
bounded from below by an element of F(C).

We can now state and prove the main result on the convergence analysis of the MPGM: under
similar conditions of those of Theorem 3.11, regardless of the initial (feasible) guess, the method
converges to an optimum of problem (23).

Theorem 4.7. Assume that F : Rn → R
m is Rm+-convex and that Assumption 4.6 holds. Then,

any sequence {xk } generated by Algorithm 4.2 converges to a weak Pareto optimum.

Proof. Let us define the set

L := {
x ∈ C : F(x) ≤ F(xk ) for all k

}
,

and take x̂ ∈ L , which exists by Assumption 4.6. Since F is Rm+-convex, it follows from
Lemma 4.5 that

‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2 + 2βtk
∣∣〈wk, J F(xk)vk〉∣∣ for all k. (32)

First, we prove that the sequence {xk } is quasi-Féjer convergent to the set L . Let {e1, . . . , em} be
the canonical basis of Rm . We observe that, for each k, we can write

wk =
m∑

i=1

wk
i ei .

Let us note that, from (27), 0 ≤ wk
i ≤ 1 for all i and k. Thus, from (32), we have

∥∥xk+1 − x̂
∥∥2 ≤ ∥∥xk − x̂

∥∥2 + 2βtk

m∑
i=1

∣∣〈ei , J F(xk)vk〉∣∣ for all k.

Defining εk := 2βtk
∑m

i=1 |〈ei , J F(xk)vk〉|, we have that εk ≥ 0 and

∥∥xk+1 − x̂
∥∥2 ≤ ∥∥xk − x̂

∥∥2 + εk .

Thus, let us prove that
∑∞

k=0 εk < ∞. From the Armijo-like condition in Step 4 of the algorithm,
we obtain

−tk〈ei , J F(xk)vk〉 ≤ 1

σ

(
Fi (x

k )− Fi (x
k+1)

)
.

Since xk is nonstationary, we also have for all i and k that

〈ei , J F(xk)vk 〉 = ∇Fi (x
k )�vk < 0,

which means that −tk〈ei , J F(xk)vk 〉 = tk |〈ei , J F(xk)vk〉|. Hence, we obtain

εk ≤ 2β

σ

m∑
i=1

(
Fi (x

k )− Fi (x
k+1)

)
.
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Adding up from k = 0 to k = N at the above inequality, where N is any positive integer, we get

N∑
k=0

εk ≤ 2β

σ

m∑
i=1

(
Fi (x

0)− Fi (x
N+1)

)
.

Since N is an arbitrary positive integer, β, σ > 0 and F(x̂) ≤ F(xk ) for all k, we conclude
that

∑∞
k=0 εk < ∞. Therefore, recalling that x̂ was an arbitrary element of L , we see that {xk}

converges quasi-Féjer to L .

By Theorem 3.10, it follows that {xk } is bounded. So, since C is closed, {xk} ⊂ C has at least
one feasible accumulation point, say x∗, which is feasible and stationary by Theorem 4.4. Using
now the Rm+-convexity of F , from Lemma 3.5, it follows that x∗ ∈ C is a weak Pareto optimum.

As in the end of the proof of Theorem 3.11, we now see that x∗ ∈ L . Since F(xk+1) < F(xk ) for
all k, by Lemma 3.8, 1, F(x∗) ≤ F(xk ) for all k, and x∗ ∈ L . So, once again from Theorem 3.10,
we conclude that {xk } converges to x∗ ∈ C, a weak Pareto optimum. �

4.5 The MPGM with relative errors

As we did for the MSDM in Subsection 3.5, we present here a quick overview of an MPGM
version implemented with relative errors in the search directions. Given a nonstationary x ∈ C
and a tolerance ε ∈ [0, 1), we say that v ∈ C − x is an ε-approximate solution of the problem
minv∈C−x ϕx (v) + 1

2‖v‖2 if
hx (v) ≤ (1 − ε)θ(x),

where hx (v) := ϕx (v)+ 1/2‖v‖2, with ϕx given by (4).

Similar comments as those made in Subsection 3.5 for ε-approximate solutions for unconstrained
problems can be made here for the constrained case. The modification of the (exact) MPGM are
basically the same as those proposed in Subsection 3.5 for the (exact) MSDM: in Step 2 of
Algorithm 4.2, instead of defining vk as the exact solution of minv∈C−xk ϕxk (v) + 1/2‖v‖2, we
take vk as an ε-approximate solution of this problem. The stopping rule at Step 3 (θ(xk ) = 0) is
replaced by hxk (vk) = 0.

For a more general case (vector optimization), a comprehensive study of the inexact version of
the MPGM can be found in [22], where, under essentially the same hypotheses made here for the
(exact) MPGM, all convergence results are fully proved.

5 THE MULTIOBJECTIVE NEWTON METHOD

We now go back to the unconstrained multiobjective problem (1). In order to define a Newton-
type search direction for this kind of problems, we first recall some convexity notions for vector-
valued mappings. We say that F : Rn → R

m is strictly Rm+-convex if the inequality (17) is
satisfied strictly, that is, if F is componentwise strictly convex. We also say that F is strongly
R

m+-convex if there exists û ∈ Rm++ such that

F(λx + (1 − α)y) ≤ λF(x) + (1 − λ)F(y) − 1

2
λ(1 − λ)‖x − y‖2û
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for all x, y ∈ Rn and all λ ∈ (0, 1), which is equivalent to say that F is componentwise strongly
convex (each component Fi has ûi as its modulus of strong convexity). Clearly, as in the scalar
case, strong Rm+-convexity implies strict Rm+-convexity, which, in turn, implies Rm+-convexity.

The following result relates Pareto optimality with strict Rm+-convexity and characterizes strong
R

m+-convexity in terms of the eigenvalues of the objective functions’ Hessians.

Lemma 5.1. Assume that F : Rn → R
m is twice continuously differentiable. Then, the following

properties hold.

1. If F is strictlyRm+-convex and x̄ ∈ Rn is stationary for F, then x̄ is a Pareto optimal point.

2. The mapping F is strongly Rm+-convex if and only if there exists ρ > 0 such that

λmin(∇2 Fi (x)) ≥ ρ for all x ∈ Rn and all i = 1, . . . ,m,

where λmin : Rn×n → R denotes the smallest eigenvalue function.

Proof. It follows from [27, Corollary 2.2 and Proposition 2.3]. �

5.1 The search direction for the multiobjective Newton method

From now on, we will assume that F is strongly Rm+-convex and twice continuously differen-
tiable. For all i = 1, . . . ,m, let us define ψi : Rn × Rn → R by

ψi (x, s) := ∇Fi (x)
�s + 1

2
s�∇2 Fi (x)s. (33)

Hence, for any i, s �→ Fi (x) + ψi (x, s) is the local quadratic approximation of Fi at x . For
x ∈ Rn , we define the Newton direction for F at x as

s(x) := argmin
s∈Rn

max
i=1,...,m

ψi (x, s). (34)

Since ψi (x, ·) is strongly convex for all i, s �→ maxi ψi(x, ·) is also strongly convex and it has a
unique minimizer in Rn , and so s(x) is well-defined. Clearly, for m = 1 we retrieve the Newton
direction for unconstrained real-valued optimization.

Observe that whenever ∇2 Fi (x) is equal to I , the identity matrix of Rn×n , for all i, we have that
maxi=1,...,m ψi(x, s) = ϕx (s)+ (1/2)‖s‖2, where ϕ is given by (4). Therefore, in multiobjective
optimization, if ∇2 Fi (x) = I for all i, then, as it happens in the scalar case, the Newton and
the steepest descent directions coincide.

Let us call θ(x) the optimal value of the minimization problem mins∈Rn maxi=1,...,m ψi (x, s),
that is to say,

θ(x) := max
i=1,...,m

ψi (x, s(x)). (35)

In order to compute s(x), we can reformulate the (possibly nonsmooth) min-max problem as:

minimize τ

subject to ∇Fi (x)�s + 1
2s�∇2Fi (x)s − τ ≤ 0, i = 1, . . . ,m,
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a smooth convex problem with variables (τ, v) ∈ R × R
n for which there are many efficient

numerical solvers.

We now present analogous results as those of Propositions 3.1 and 4.1.

Proposition 5.2. Let s : Rn → R
n and θ : Rn → R be given by (34) and (35), respectively.

Then, the following statements hold.

1. θ(x) ≤ 0 for all x ∈ Rn.

2. The following conditions are equivalent:

(a) The point x is nonstationary.

(b) θ(x) < 0.

(c) s(x) �= 0.

In particular, x is stationary if and only if θ(x) = 0.

Proof. 1. By (33) and (35), θ(x) ≤ maxi ψi (x, 0) = 0.

2. (a) ⇒ (b). By (a), there exists s̃ ∈ R
n such that J F(x)s̃ ∈ −Rn++, which means that

∇Fi (x)�s̃ < 0 for all i. From (33) and (35), for τ > 0, we get

θ(x) ≤ τ
(

max
i

∇Fi(x)
�s̃ + τ

2
s̃�∇2 Fi (x)s̃

)
.

Therefore, for τ > 0 small enough the right hand side of the above inequality is negative and (b)
holds.

(b) ⇒ (c). Note that if θ(x) < 0 then, in view of (33) and (35), we have s(x) �= 0.

(c) ⇒ (a). From the strong Rm+-convexity of F , it follows that ∇2 Fi (x) is positive definite for all
i, so from (c) and item 1, we get

∇Fi (x)
�s(x) < ∇Fi (x)

�s(x) + 1

2
s(x)�∇2 Fi (x)s(x) ≤ θ(x) ≤ 0 for all i = 1, . . . ,m.

Hence, J F(x)s(x) < 0 and (a) holds. �

In particular, we just saw that, for any nonstationary x ∈ Rn , s(x) is a descent direction. The next
lemma supplies an implicit definition of s(x), which will be used in order to obtain bounds for
‖s(x)‖. These bounds will allow us to prove continuity of s(·), θ(·) and will be used to establish
the rate of convergence of the Newton method.

Lemma 5.3. For any x ∈ Rn, the Newton direction defined in (34) can be written as

s(x) = −
[

m∑
i=1

αi∇2 Fi (x)

]−1 m∑
i=1

αi∇Fi (x), (36)

with αi = αi(x) ≥ 0 and
∑m

i=1 αi = 1.

Pesquisa Operacional, Vol. 34(3), 2014



�

�

“main” — 2014/10/24 — 13:52 — page 609 — #25
�

�

�

�

�

�

ELLEN H. FUKUDA and L. M. GRAÑA DRUMMOND 609

Proof. We know that the convex problem mins maxi ψi (x, s), where ψi is defined in (33), has
a unique solution s(x). Applying Proposition 3.4, we see that there exists α := α(x) ∈ Rm such
that the following conditions hold at s = s(x) and τ = θ(x):

m∑
i=1

αi = 1,
m∑

i=1

αi

(
∇Fi (x) + ∇2 Fi (x)s

)
= 0, (37)

αi ≥ 0, ∇Fi (x)
�s + 1

2
s�∇2 Fi (x)s − τ ≤ 0, i = 1, . . . ,m, (38)

αi

(
∇Fi (x)

�s + 1

2
s�∇2Fi (x)s − τ

)
= 0, i = 1, . . . ,m. (39)

Since ∇2 Fi (x) is positive definite and the multipliers αi are nonnegative for all i, from both
conditions in (37), the result follows. �

So s(x), defined in (34), is a Newton direction for a standard scalar optimization problem
(minx

∑m
i=1 αi Fi (x)), implicitly induced by weighting the given objective functions by the non-

negative a priori unknown KKT multipliers. We now give upper bounds for the norm of the
Newton direction.

Corollary 5.4. For any x ∈ Rn , we have

‖s(x)‖ ≤ 2

ρ
‖J F(x)‖ and ‖s(x)‖2 ≤ 2

ρ
|θ(x)|,

where ρ > 0 is given by Lemma 5.1.

Proof. Let us proof the first inequality. By Proposition 5.2, we have θ(x) ≤ 0, which, by (35),
means that maxi ψi (x, s(x)) ≤ 0. Hence, by (33),

1

2
s(x)�∇2 Fi (x)s(x) ≤ −∇Fi (x)

�s(x) = −(
J F(x)s(x)

)
i for all i.

From Lemma 5.1, 2, we get

ρ

2
‖s(x)‖2 ≤ 1

2
s(x)�∇2 Fi (x)s(x) for all i.

The proof follows from these two inequalities and the operator norm properties.

We now proof the second inequality. We know that the complementarity condition (39) holds for
(τ, s) = (θ(x), s(x)). So, by (33) and (35), αi > 0 implies θ(x) = ψi (x, s(x)), and then, using
the first equality in (37), we have

θ(x) =
m∑

i=1

αiψi (x, s(x))

=
m∑

i=1

αi∇Fi (x)
�s(x) + 1

2
s(x)�

m∑
i=1

αi∇2Fi (x)s(x).
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Replacing
∑m

i=1 αi∇Fi (x) by its expression obtained from (36), using Lemma 5.1, 2 and the fact
that

∑
i αi = 1 with αi ≥ 0 for all i, we conclude that

θ(x) = −1

2
s(x)�

m∑
i=1

αi∇2 Fi (x)s(x) ≤ −ρ
2

‖s(x)‖2,

and the proof follows immediately from Proposition 5.2, 1. �

We now establish the continuity of the functions θ(·) and s(·).

Proposition 5.5. The functions θ : Rn → R and s : R→ R
n , given by (35) and (34) respectively,

are continuous.

Proof. Take x, x ′ ∈ Rn . Let s = s(x), s′ = s(x ′) and i0 such that maxi ψi (x ′, s′) = ψi0 (x
′, s).

Then, from (35), (33) and the Cauchy-Schwarz inequality,

θ(x ′) ≤ ∇Fi0 (x
′)�s + 1

2
s�∇2 Fi0(x

′)s

= ∇Fi0 (x)
�s + 1

2
s�∇2 Fi0 (x)s

+ (∇Fi0 (x
′)− ∇Fi0(x)

)�
s + 1

2
s�(∇2 Fi0(x

′)− ∇2 Fi0 (x)
)
s

≤ θ(x) + ‖s‖‖J F(x ′)− J F(x)‖ + 1

2
‖s‖2‖D2 F(x)− D2 F(x ′)‖,

where D2 F stands for the second derivative of F . Therefore, from the above inequality and
Corollary 5.4 we conclude that

θ(x ′)− θ(x) ≤ 2

ρ
‖J F(x)‖‖J F(x ′)− J F(x)‖ + 2

ρ2 ‖J F(x)‖2‖D2F(x) − D2 F(x ′)‖.

Since the above inequality also holds interchanging x and x ′ and F is twice continuously differ-
entiable, we conclude that θ(·) is continuous.

Now we prove the continuity of s(·). By the same reasoning as above,

θ(x) = maxi
[∇Fi (x)�s + 1

2 s�∇2 Fi (x)s
]

= maxi

[
∇Fi (x ′)�s + 1

2s�∇2Fi (x ′)s

+ (∇Fi (x)− ∇Fi (x ′)
)�

s + 1
2 s�(∇2 Fi (x)− ∇2 Fi (x ′)

)
s
]

≥ maxi
[∇Fi (x ′)s + 1

2 s�∇2 Fi (x ′)s
]

−‖s‖‖J F(x ′)− J F(x)‖ − 1
2‖s‖2‖D2F(x) − D2 F(x ′)‖

= maxi ψ(x ′, s)− ‖s‖‖J F(x ′)− J F(x)‖ − 1
2‖s‖2‖D2 F(x)− D2 F(x ′)‖,

(40)

where we used the Cauchy-Schwarz inequality and (33) with x = x ′. By Lemma 5.1,
2 λmin(∇2 Fi (x)) ≥ ρ for all x ∈ R

n and all i. Therefore, ψi (x ′, ·) is strongly convex with

Pesquisa Operacional, Vol. 34(3), 2014



�

�

“main” — 2014/10/24 — 13:52 — page 611 — #27
�

�

�

�

�

�

ELLEN H. FUKUDA and L. M. GRAÑA DRUMMOND 611

modulus ρ for all i and so is maxi ψi (x ′, ·). Hence, using the fact that maxi ψi (x ′, ·) is mini-
mized at s′, we have

max
i
ψi (x

′, s) ≥ max
i
ψi (x

′, s′)+ ρ

2
‖s − s′‖2 = θ(x ′)+ ρ

2
‖s − s′‖2.

Combining inequality (40) with the above one, we get

θ(x)− θ(x ′) ≥ ρ

2
‖s − s′‖2 − ‖s‖‖J F(x ′)− J F(x)‖ − 1

2
‖s‖2‖D2 F(x)− D2 F(x ′)‖.

Since θ(·) is continuous and F is twice continuously differentiable, using Corollary 5.4 and
taking the limit x ′ → x in both sides of the above inequality, we conclude that s′ → s and so
s(·) is continuous. �

5.2 The multiobjective Newton algorithm

Let us now describe the extension of the classical (scalar-valued) Newton method for the uncon-
strained multiobjective optimization problem (1).

Algorithm 5.6. The multiobjective Newton method (MNM)

1. Choose σ ∈ (0, 1) and x0 ∈ Rn . Set k := 0.

2. Compute sk := s(xk ) = argmin
s∈Rn

max
i=1,...,m

ψi (x
k , s),

where ψi (x
k , s) := ∇Fi (x

k )�s + 1

2
s�∇2Fi (x

k )s.

3. Compute θ(xk ) = max
i=1,...,m

ψi(x
k , sk ). If θ(xk ) = 0, then stop.

4. Choose tk as the largest t ∈ {1/2 j : j = 0, 1, 2, . . . } such that

Fi
(
xk + t sk) ≤ Fi (x

k)+ σ tθ(xk ) for all i = 1, . . . ,m.

5. Set xk+1 := xk + tksk , k := k + 1 and go to Step 2.

As usual, the stopping rule at Step 3 can be replaced by sk = 0 (Proposition 5.2). Now we show
that if, at Step 3, θ(xk ) �= 0, the backtracking procedure prescribed in Step 4 is well-defined, i.e.,
it ends up in a finite number of (inner) iterations. Indeed, it suffices to note that

Fi (x + t s(x)) ≤ Fi (x)+ σ t∇Fi(x)
�s(x) ≤ Fi(x) + σ tθ(x) (41)

for any nonstationary x , t > 0 and all i. As J F(x)s(x) < 0, from Lemma 2.1 it follows that
there exists ε = ε(x) > 0 such that the first, and therefore the second, inequality in (41) hold
for any t ∈ (0, ε]. So, for x = xk , we will need finitely many half reductions in order to obtain
tk ∈ (0, εk], where εk = ε(xk ). Observe also that the reducing factor 1/2 at Step 4 can be
substituted by any ν ∈ (0, 1).
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Moreover, when θ(xk ) �= 0 for all k, we know that we have θ(xk ) < 0, so from Step 4 it follows
that

F(xk+1) < F(xk ) for all k = 0, 1, . . .

This inequality holds for k = 0, . . . , k0 − 1 if the algorithm stops at iteration k0. Finally, we
point out that, by Proposition 5.2, whenever the method has finite termination, it ends up with a
stationary point and therefore a Pareto optimum for F (Lemma 5.1, 1). Therefore, the relevant
case for the convergence analysis is the one in which the algorithm generates infinite sequences
{xk }, {sk } and {tk}. So, from now on, we suppose that the method does not stop.

5.3 Convergence analysis of the MNM

Let us begin with a technical result which will be useful in the sequel.

Proposition 5.7. For all k = 0, 1, . . . and all i = 1, . . . ,m, we have

k∑
j=0

t j |θ(x j )| ≤ σ−1(Fi (x
0)− Fi(x

k+1)
)
.

Proof. From Step 3 of Algorithm 5.6, for any i and all j , we have

Fi (x
j+1) ≤ Fi (x

j )+ σ t j θ(x
j ).

We complete the proof by adding up for j = 1, . . . , k and taking into account that θ(x j ) < 0
for all j . �

We can now prove that if the sequence {xk } has accumulation points, they are all Pareto optima
for F .

Proposition 5.8. If x̄ ∈ Rn is an accumulation point of {xk }, then x̄ is Pareto optimum for F.

Proof. There exists a subsequence {xk j } j such that

xk j → x̄ as j → ∞.

Using Proposition 5.7 with k = k j and taking the limit j → ∞, from the continuity of F , we
conclude that ∞∑

�=0

t�|θ(x�)| < ∞.

Therefore, limk→∞ tkθ(xk ) = 0 and, in particular,

lim
j→∞ tk j θ(x

k j ) = 0. (42)

Suppose that x̄ is nonstationary, which, by Proposition 5.2, is equivalent to

θ(x̄) < 0 and s̄ = s(x̄) �= 0. (43)
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Define
g : Rm → R, g(u) = max

i=1,...,m
ui .

Using the definition of θ(·) and Lemma 2.1, we conclude that there exists a nonnegative integer
q such that

g
(
F(x̄ + 2−qs̄)− F(x̄)

)
< σ2−qθ(x̄).

Since s(·), θ(·) and g(·) are continuous,

lim
j→∞ sk j = s̄, lim

j→∞ θ(x
k j ) = θ(x̄) < 0 (44)

and, for j large enough

g
(
F(xk j + 2−qsk j )− F(xk j )

)
< σ2−qθ(xk j ),

which, in view of the definition of g and Step 4 of the algorithm, implies that tk j ≥ 2−q > 0 for
j large enough. Hence, from the second limit in (44), we conclude that lim inf j→∞ tk j |θ(xk j )| >
0, in contradiction with (42). Therefore, (43) is not true and, by Proposition 5.2, x̄ is stationary.
Whence, in view of Proposition 5.1, 1, x̄ is a Pareto optimal point for F . �

We can now show that, in order to have full convergence to a Pareto optimum, it suffices to take
the initial point x0 in a bounded level set of F .

Theorem 5.9. Let x0 ∈ R
n be in a compact level set of F and {xk } a sequence generated by

Algorithm 5.6. Then {xk} converges to a Pareto optimum x∗ ∈ Rn .

Proof. Let �0 be the F(x0)-level set of F , that is, �0 := {x ∈ Rn : F(x) ≤ F(x0)}. We know
that the sequence {F(xk )} is Rm+-decreasing, so we have xk ∈ �0 for all k. Therefore {xk} is
bounded, all its accumulation points belong to �0 and so, using Proposition 5.8, we conclude
that they are all Pareto optima for F . Moreover, applying Lemma 3.8, 1 with x (k) = xk for all
k, we see that all these accumulation points have the same objective value. As F is strongly (an
therefore strictly) Rm+-convex, there exists just one accumulation point of {xk }, say x∗, and the
proof is complete. �

5.4 Convergence rate of the MNM

Here we analyze the convergence rate of any infinite sequence {xk} generated by Algorithm 5.6.
First, we provide a bound for θ(xk+1) based on data at the former iterate xk . Then we show that
for k large enough, full Newton steps are performed, that is to say, tk = 1. Using this result,

we prove superlinear convergence. Finally, under additional regularity assumptions, we prove
quadratic convergence.

Lemma 5.10. For any k, there exist αk ∈ Rm such that
∑m

i=1 α
k
i = 1, αk

i ≥ 0 for all i with

m∑
i=1

αk
i

[∇Fi (x
k)+ ∇2 Fi(x

k )sk ] = 0 (45)
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and

θ(xk+1) ≥ − 1

2ρ

∥∥∥ m∑
i=1

αk
i ∇Fi (x

k+1)

∥∥∥2
, (46)

where ρ > 0 is given by Lemma 5.1.

Proof. By virtue of (37)-(38) with x = xk , s = sk , the Lagrangian condition (45) holds for any
k with a vector of KKT multipliers α = α(xk) =: αk ≥ 0 such that

∑m
i=1 α

k
i = 1.

In order to prove (46), observe that, from Steps 2-3 of Algorithm 5.6 and the properties of αk ,

θ(xk+1) =
m∑

i=1

αk
i max

j
ψ j (x

k+1, sk+1)

≥
m∑

i=1

αk
i ψi (x

k+1, sk+1)

≥ min
s

m∑
i=1

αk
i ψi (x

k+1, s)

≥ min
s

m∑
i=1

αk
i

[∇Fi (x
k+1)�s + ρ

2
‖s‖2], (47)

where the last inequality holds in view of Lemma 5.1 for x = xk+1. The function

s �→
m∑

i=1

αk
i

[∇Fi (x
k+1)�s + ρ

2
‖s‖2]

is convex, so its minimal value is attained where its gradient vanishes, i.e., at

s = − 1

ρ

m∑
i=1

αk
i ∇Fi (x

k+1).

So

min
s

m∑
i=1

αk
i

[
∇Fi (x

k+1)�s + ρ

2
‖s‖2

]
= − 1

2ρ
‖

m∑
i=1

αk
i ∇Fi(x

k+1)‖2.

The proof follows from this equality and (47). �

Let us now see that, for any sequence defined by Algorithm 5.6, full Newton steps will be even-

tually taken at Step 4.

Theorem 5.11. Let x0 ∈ Rn be in a compact level set of F and {xk } a sequence generated by
Algorithm 5.6. Then {xk } converges to a Pareto optimum point x∗ ∈ Rn. Moreover, tk = 1 for k
large enough and the convergence of {xk } to x∗ is superlinear.
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Proof. Convergence of {xk} to a Pareto optimum x∗ was established in Theorem 5.9. By

Lemma 3.5 and Proposition 5.2, 3, we know that x∗ is stationary and

s(x∗) = 0. (48)

Since F is twice continuously differentiable, for any ε > 0 there exists δ > 0 such that

‖∇2 Fi(x) − ∇2Fi (y)‖ < ε for all x, y ∈ B(x∗, δ) and i = 1, . . . ,m, (49)

where B(x∗, δ) stands for the open ball with center in x∗ and radius δ. As {xk} converges to
x∗, using (48) and the continuity of s(·) (Proposition 5.5), we conclude that {sk } converges to 0.

Therefore there exists kε such that for k ≥ kε we have

xk, xk + sk ∈ B(x∗, δ)

and using (49) for estimating the integral remainder on Taylor’s second order expansion of Fi at
xk , we conclude that for any i

Fi (x
k + sk) ≤ Fi (x

k )+ ∇Fi (x
k )�sk + 1

2
(sk )�∇2 Fi (x

k )sk + ε

2
‖sk‖2.

So, using (33), (35), Corollary 5.4 and the fact that σ < 1, we obtain

Fi (x
k + sk )− Fi (x

k ) ≤ ψi (x
k, sk )+ ε

2
‖sk‖2

≤ θ(xk )+ ε

2
‖sk‖2

= σθ(xk )+ (1 − σ)θ(xk )+ ε

2
‖sk‖2

≤ σθ(xk )+ [ε − (1 − σ)ρ]‖sk‖2

2
for all k ≥ kε.

The above inequality shows that if ε < (1 − σ)ρ, then, at Step 4, tk = 1 is accepted for k ≥ kε .
Suppose that

ε < (1 − σ)ρ.

Using (45) and (49) for estimating the integral remainder on Taylor’s first order expansion of∑m
i=1 α

i
k∇Fi at xk , in xk + sk , we conclude that for any k ≥ kε it holds

∥∥∥ m∑
i=1

αk
i ∇Fi (x

k+1)

∥∥∥ =
∥∥∥ m∑

i=1

αk
i ∇Fi (x

k + sk)

∥∥∥
=

∥∥∥ m∑
i=1

αk
i ∇Fi (x

k + sk)−
m∑

i=1

αk
i

[∇Fi (x
k )+ ∇2 Fi (x

k )sk ]∥∥∥
≤ ε‖sk‖,

which, combined with (46), shows that

|θ(xk+1)| ≤ 1

2ρ

[
ε‖sk‖

]2
.
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Using the above inequality and Corollary 5.4, we conclude that for k ≥ kε we have

‖xk+1 − xk+2‖ = ‖sk+1‖ ≤ ε

ρ
‖sk‖ = ε

ρ
‖xk − xk+1‖.

Therefore, if k ≥ kε and j ≥ 1 then

‖xk+ j − xk+ j+1‖ ≤
(
ε

ρ

) j

‖xk − xk+1‖. (50)

To prove superlinear convergence, take 0 < ξ < 1 and define

ε∗ = min

{
1 − σ,

ξ

1 + 2ξ

}
ρ.

If ε < ε∗ and k ≥ kε , using (50) and the convergence of {xk } to x∗, we get

‖x∗ − xk+1‖ ≤
∞∑
j=1

‖xk+ j − xk+ j+1‖

≤
∞∑
j=1

(
ξ

1 + 2ξ

) j

‖xk − xk+1‖ = ξ

1 + ξ
‖xk − xk+1‖.

Hence,

‖x∗ − xk‖ ≥ ‖xk − xk+1‖ − ‖xk+1 − x∗‖ ≥ 1

1 + ξ
‖xk − xk+1‖.

Combining the above two inequalities, we conclude that, if ε < ε∗ and k ≥ kε , then

‖x∗ − xk+1‖
‖x∗ − xk‖ ≤ ξ.

Since ξ was arbitrary in (0, 1), the above quotient tends to zero and the proof is complete. �

Recall that in the classical Newton method for minimizing a scalar convex twice continuously
differentiable function, the proof of quadratic convergence requires Lipschitz continuity of the
objective function’s second derivative. Likewise, under the assumption of Lipschitz continuity

of D2 F , we can see that the MNM also converges quadratically.

Theorem 5.12. Let x0 ∈ R
n be in a compact level set of F, {xk} a sequence generated by

Algorithm 5.6 and D2 F Lipschitz continuous on Rn . Then {xk} converges quadratically to a
Pareto optimal solution x∗ ∈ Rn .

Proof. By Theorem 5.11, {xk } converges superlinearly to a Pareto optimal point x∗ and tk =
1 for k large enough. Let L̂ be the Lipschitz constant for D2 F . Then, for αk ∈ R

m as in
Lemma 5.10, we have that

∑m
i=1 α

k
i ∇2 Fi is also L̂-Lipschitz continuous. Therefore, for k large

enough,

tk = 1, xk+1 − xk = sk and
∥∥∥ m∑

i=1

αk
i ∇Fi (x

k+1)

∥∥∥ ≤ L̂

2
‖sk‖2, (51)
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where the last inequality follows from the second equality, (45) and Taylor’s development of∑m
i=1 α

k
i ∇Fi at xk , in xk + sk . Using the above inequality and (46), we obtain

−θ(xk+1) ≤ 1

2ρ

[
L̂

2
‖sk‖2

]2

,

which, combined with Corollary 5.4 yields

‖sk+1‖ ≤ L̂

2ρ
‖sk‖2 for k large enough. (52)

Take ξ ∈ (0, 1). Since {xk } converges superlinearly to x∗, there exists k0 such that for k ≥ k0 we
have (51), (52) and

‖x∗ − xk+1‖ ≤ ξ‖x∗ − xk‖.
Therefore, applying the triangle inequality to ‖x∗ − x�‖ and then to ‖x�+1 − x�‖, for � ≥ k0 we
obtain

(1 − ξ )‖x∗ − x�‖ ≤ ‖x� − x�+1‖ ≤ (1 + ξ )‖x∗ − x�‖. (53)

Whence, using the above rightmost inequality for � = k ≥ k0 and the second equality in (51),
we have

‖sk‖ ≤ (1 + ξ )‖x∗ − xk‖,
while using the first inequality in (53) for � = k + 1 and the second equality in (51) (for k + 1

instead of k), we obtain
(1 − ξ )‖x∗ − xk+1‖ ≤ ‖sk+1‖.

Quadratic convergence of {xk} to x∗ follows from the two inequalities above and (52). �

6 FINAL REMARKS

Let us make some final comments. First, it is worth to notice that, by implementing the vec-
tor optimization versions of the steepest descent method [28] and the projected gradient method

[21, 22, 25], we can guarantee convergence to Pareto optima instead of just weak Pareto points.
Indeed, it suffices to take an underlying ordering (closed convex) cone K̂ with Rm+ \ {0} con-
tained in the interior of K̂ and such that a K̂ -version of Assumption 3.6 (Assumption 4.6) in the

unconstrained (constrained) case is satisfied [21, Section 6].

Without using this technique, in some cases, convergence of these two methods to (strong) Pareto
optima can also be obtained. For instance, if the objective function is strictly Rm+-convex, then,
under the assumptions of the convergence theorems, this will actually happen. Indeed, as we

saw in the proof of Theorem 3.11 (Theorem 4.7), sequences generated by the MSDM (MPGM)
converge to stationary points, which, in this case, are Pareto optima (Lemma 5.1, 1).

We also point out that, with these (and other) descent vector-valued methods, we are just con-
cerned with finding a single optimum and not all the points in the optimal set. Nevertheless, from
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a numerical point of view, we can expect to somehow approximate the solution set by just per-

forming any of these methods for different initial points (e.g., [18, Section 8]). In the so-called
weighting method, this kind of idea also appears. To be more precise, in such a case, one weight-
ing vector possibly gives rise to a Pareto optimal point, which means that we should perform

the method for different weights in order to find the Pareto frontier. However, in some cases, as
shown in [18, Section 7], almost any choices of the weighting vectors may lead to unbounded
problems. With arbitrary choices of initial points, we do not have this disadvantage in the de-

scent vector-valued methods discussed here. We believe this is one of the main motivations for
the study of such methods.
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[27] GRAÑA DRUMMOND LM, RAUPP FMP & SVAITER BF. 2011. A quadratically convergent Newton

method for vector optimization. Optimization, 2011. Accepted for publication.
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