
�

�

“main” — 2018/2/5 — 12:52 — page 545 — #1
�

�

�

�

�

�

Pesquisa Operacional (2017) 37(3): 545-570
© 2017 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
doi: 10.1590/0101-7438.2017.037.03.0545

COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED
MULTI-LAYER NETWORK DESIGN WITH UNSPLITTABLE DEMANDS

Amal Benhamiche1*, A. Ridha Mahjoub2,
Nancy Perrot1 and Eduardo Uchoa3

Received May 18, 2017 / Accepted October 23, 2017

ABSTRACT. We investigate a variant of the Multi-Layer Network Design problem where minimum cost

capacities have to be installed upon a virtual layer in such a way that (i) a set of traffic demands can be

routed AND (ii) each capacity (subband) is assigned a route in the physical layer. The traffic demands

cannot be splitted along several paths (nor even several capacities installed on the same link), which makes

the problem even more difficult. In this paper, we present new non-compact ILP formulations to model

the problem and provide column generation procedures, based on different Dantzig-Wolfe decomposition

schemes to solve it. More precisely, an arc-flow formulation is given for the problem and used to derive

two different paths formulations: non-aggregated and aggregated. The former contains two families of path

variables and requires a double column generation procedure to solve it, while the latter relies on a single

path variable with a specific structure. These alternative modeling approaches induce two Branch-and-Price

algorithms that allow to solve the problem efficiently for several classes of instances.

Keywords: multi-layer network design, linear programming, column generation, optical networks.

1 INTRODUCTION

1.1 Motivations

The emergence of multi-technology communication networks along with a continuous growth in
traffic have driven many works in the field of multi-layer network optimization these past few
years. In particular, recent trends observed in the optical fibers communications show up the
so-called Orthogonal Frequency Division Multiplexing (OFDM) as a very promising technol-
ogy, allowing for high and very high capacitated signals to reach long distances without being

*Corresponding author.
1Orange Labs, 92320 Chatillon, France. E-mails: amal.benhamiche@orange.com; nancy.perrot@orange.com
2Université Paris-Dauphine PSL Research University, CNRS [7243], LAMSADE, 75016 Paris, France.
E-mail: mahjoub@lamsade.dauphine.fr
3Universidade Federal Fluminense, Brazil. E-mail: uchoa@producao.uff.br

�

�

“main” — 2018/2/5 — 12:52 — page 546 — #2
�

�

�

�

�

�

546 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

regenerated. An OFDM-based network usually consists in a set of optical devices (ROADMs1)
that are interconnected by optical channels. The OFDM infrastructure thus formed is called
“virtual” layer, and lies on a “physical” layer that embeds and transports the signal carried out
by the optical channels. The physical layer is composed by a set of transmission nodes, intercon-
nected by optical fibers.

In fact, a specific feature of OFDM technology is precisely the opportunity to use only part of
the optical channel in order to carry traffic from one point to another. An optical channel is then
said to be divided into several units called “subbands”, each of which has a capacity (in terms of
bandwidth) and a cost installation. The subbands can be set up and processed separately, which
allows flexibility in the routing along with a more effective use of the whole capacity of the
network. In this context, we consider the Capacitated Multi-Layer Network Design with Unsplit-
table demands (CMLND-U) problem. Given a two-layer network and a set of traffic demands,
this problem consists in installing minimum cost subbands on the upper (OFDM) layer so that
each demand is routed along a unique “virtual” path (even using a unique subband on each link)
in this layer, and each installed subband is in turn associated a “physical” path in the lower layer.

Example 1.1. Figure 1 shows a bilayer network. The virtual layer includes four ROADMs de-
noted R1 , R2 , R3 and R4 , while physical layer contains six transmission nodes denoted T1 to T6.
We can see that R1 , R2 , R3 and R4 are connected to T1, T2, T3 and T4 via Optical-Electrical-
Optical (OEO) interfaces. In addition, there exists a link between each pair of installed ROADMs.
Remark that nodes R5 and R6 have not been represented in the figure, as they do not carry any
ROADM. Furthermore, three subbands are represented in the figure, respectively installed on the
links (R1, R2), (R1 , R3) and (R1, R4). The traffic using these virtual links is in fact transmitted
through paths made of optical fibers in the physical layer. Indeed, the link (R1, R2) is associated
with the path (T1, T2), while (R1 , R3) is assigned the path (T1, T4), (T4, T3) and (R1 , R4) is
physically routed by (T1, T6), (T6, T4).

It should be pointed out that there are two levels of routing in such networks. The traffic is
routed using subbands installed on the virtual links, and the subbands themselves may be seen
as demands for the physical layer. Thus, when given those two layers of network and a traffic
matrix, one may determine the set of virtual links that will receive the subbands, and the set of
physical links involved in the routing of those subbands, and establish the traffic commodities
routing.

1.2 State-of-the-art

Actually, the problem of designing layered networks have been studied first by Dahl and Stoer
in Dahl et al. (1999). The authors wish to set up a set of virtual links referred to as “pipes”
on the physical layer. They propose an integer linear programming formulation based on cut
constraints for the problem. They study the associated polytope and provide several classes of
valid inequalities that define facets under some conditions which are described. They also provide
a cutting planes based algorithm embedding their theoretical results.

1Reconfigurable Add/Drop Multiplexers.

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 547 — #3
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 547

Figure 1 – Example of multilayer network.

Earlier works on this topic address the problem of designing virtual layer over an existing infras-

tructure. They take into account engineering constraints such as traffic multiplexing and assign-
ment of wavelengths to the virtual links. In Zhu & Mukherjee (2002), Hu & Leida (2004), the
authors give decompositions of the problem in several subproblems solved sequentially. In Holler

& Voß(2006), the authors provide a heuristic approach to solve SDH over WDM network design.
They develop several procedures based on greedy algorithms, random start heuristic as well as a
metaheuristic based on a GRASP (greedy randomized adaptive search procedure) algorithm.

Additional works consider exact methods for different variants of the multilayer network design.

In fact, Orlowski et al. (2007) propose a cutting plane approach for solving two-layer network
design problems, using different MIP-based heuristics allowing to find good solutions early in
the Branch-and-Cut tree. Belotti et al. (2008) investigate the design of multilayer networks in

the context of MPLS networks. They propose a mathematical programming formulation based
on paths, that takes into account technical operations in MPLS technology for processing traf-
fic demands, called statistical traffic multiplexing. They apply a Lagrangian relaxation working

with a column generation procedure to solve their model. We also cite a more recent work of
Raghavan & Stanojević (2011) that study the two-layer network design arising in WDM optical
networks. They consider the non-splittable traffic demands and propose a path based formulation

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 548 — #4
�

�

�

�

�

�

548 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

for the problem. They provide an exact Branch-and-Price algorithm which solves simultaneously

the WDM topology design and the traffic routing. Orlowski et al. (2010) address the problem of
planning multilayer SDH/WDM networks. They consider the minimum cost installation of link
and node hardware for both layers, under various practical constraints such as heterogeneity of

traffic bit-rates, node capacities and survivability issues. They propose a mixed integer program-
ming formulation and develop a Branch-and-Cut algorithm using strong inequalities, from the
single-layer network design problem, to solve it. Fortz & Poss (2009) study the multi-layered net-

work design problem. They propose a Branch-and-Cut algorithm to solve a capacity formulation
based on the so-called metric inequalities, enhancing the results obtained by Knippel & Lardeux
(2007) for the same formulation. Mattia (2013) studies two versions of the two-layer network

design problem. The author was particularly interested in capacity formulations for both ver-
sions and investigates the associated polyhedron. Some polyhedral results are provided for both
versions of the problem, specifically proving that tight metric inequalities define all the facets
of the considered polyhedra (Avella et al., 2007). Also the author shows how to extend these

polyhedral results to an arbitrary number of layers. Borne et al. (2006) study the problem of de-
signing an IP-over-WDM network with survivability against failures of the links. They conduct
a polyhedral study of the problem and give several facet defining valid inequalities along with a

Branch-and-Cut algorithm to solve the problem.

1.3 Our contribution

The CMLND-U has been specifically addressed in Benhamiche et al. (2017). The authors pro-

pose a cut-based formulation for the problem and study the associated polyhedron then they
use the obtained results within a Branch-and-Cut algorithm. In this work, we also focus on
the CMLND-U, and present new non-compact ILP formulations to model it. We provide two
column generation procedures, based on different Dantzig-Wolfe decomposition schemes for the

problem. More precisely, an arc-flow formulation is given for the problem and used to derive
two different paths formulations: non-aggregated and aggregated. The former contains two fam-
ilies of path variables and requires a double column generation procedure to solve it, while the

latter relies on a single path variable with a specific structure. These alternative modeling ap-
proaches induce two Branch-and-Price algorithms that allow to solve the problem efficiently
for several classes of instances.

1.4 Paper organization

The rest of the paper is organized as follows. We first introduce the problem formally in Section 2,
and propose three ILP formulations to model it along with two column generation procedures for
the path-based formulations. Then we describe our Branch-and-Price algorithms in Section 3

and present a set of experiments in Section 4. Finally, some concluding remarks are given in
Section 5.

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 549 — #5
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 549

2 MODELS

2.1 Notations

In terms of graphs, the CMLND-U problem can be stated as follows. We associate with the
virtual layer, a directed graph G1 = (V1, A1). G1 is a complete graph where V1 is the set of
nodes and A1 the set of arcs. Each node v ∈ V1 corresponds to a ROADM and each arc e ∈ A1

corresponds to a virtual link between a pair of ROADMs. In addition, G1 is a bi-directed graph,
i.e. there exists two arcs (u, v) ∈ A1 and (v, u) ∈ A1, connecting each pair of nodes u and v of
V1. Consider the directed graph G2 = (V2, A2) that represents the physical layer of the optical

network. V2 denotes the set of nodes and A2 is the set of arcs. Each node v′ ∈ V2 corresponds to
a transmission node and each arc a ∈ A2 corresponds to an optical fibre. Every node u in V1 has
its corresponding node u′ in V2. The graph G2 is such that if there exists an arc (u′, v′) between

two nodes u′ and v′ of V2, then (v′, u′) is also in A2. In this way, the link can be used in both
directions between u′ and v′.

Suppose that we have n ∈ Z+ available subbands. We denote by W = {1, 2, . . . , n}, the set of
indices associated with these subbands. Every subband w ∈ W has a certain capacity C and a

cost c(w) > 0. Moreover, a subband installed over an arc e ∈ A1 can be seen as a copy of this
arc. Each pair (e, w) such that w is installed over the arc e = (u, v), is associated with a path
in G2 connecting nodes u′ and v′. The same path in G2 may be assigned to different subbands

of W . Nevertheless, an arc a ∈ A2 can be assigned at most once to a given subband w. In other
words, if the subband w is installed p times, p ∈ Z+, over different arcs e1, . . . , ep of A1, then
the pairs (ei , w), i = 1, . . . , p, have to be assigned p paths in G2 that are arc-disjoint. This
comes from an engineering restriction and will be called disjunction constraints. In addition to

the design cost, we will also attribute a physical routing cost denoted bew(a) for every arc a of
A2 involved in the routing of a pair (e, w) such that w is installed on e.

Now let K be a set of commodities in G1. Each commodity k ∈ K has an origin node ok ∈ V1,
a destination node dk ∈ V1 and a traffic value Dk > 0. We suppose, that Dk ≤ C, for all k ∈ K .

Note that there might exist different commodities with the same origin and destination. A routing
path in G1 has to be assigned to each commodity k ∈ K connecting its origin and its destination.
Every section of a routing path uses the subbands installed over the arcs of A1. Thereby, we will

say that a pair (e, w), e ∈ A1 , w ∈ W is used by a commodity k, if w is installed on e and (e, w)

is involved in the routing of k. Furthermore, several commodities are allowed to use the same
subband (e, w), if they fit in its capacity. However, one commodity can not be split into several

subbands or several paths. A feasible routing for a commodity k is a path in G1 between the
origin ok and the destination dk that has enough capacity to carry the traffic value of k.

Definition 2.1. Capacitated Multi-Layer Network Design with Unsplittable demands (CMLND-
U) problem: Given two bi-directed graphs G1 and G2, a set of subbands W , the installation

cost c(w) for each subband w, and a set of commodities K , determine a set of subbands to be
installed over the arcs of G1 such that

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 550 — #6
�

�

�

�

�

�

550 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

1. the commodities can be routed in G1 using these subbands,

2. paths in G2 , respecting the disjunction constraint, are associated with the installed sub-

bands,

3. the total cost is minimum.

In what follows, we first introduce a compact (arc-flow) formulation for the CMLND-U prob-
lem, that will be the starting point of two Dantzig-Wolfe decomposition schemes to get path
formulations.

2.2 Compact formulation

Let us first introduce some necessary notations. We introduce the design variables y ∈
{0, 1}|A1 ||W | that are such that yew takes the value 1 if the subband w is installed on the arc e
and 0 otherwise, for all e ∈ A1 and w ∈ W . Also, let z ∈ RA1×W×A2 and x ∈ RK×A1×W be two
flow variables defined as follows. zew

a takes the value 1 if a belongs to a path in G2 associated

with the pair (e, w) and 0 otherwise, for all e ∈ A1 , w ∈ W and a ∈ A2. Moreover, xk
ew takes

the value 1 if the commodity k uses the pair (e, w) for its routing and 0 otherwise, for all k ∈ K ,
e ∈ A1 and w ∈ W .

We will denote by m1 and m2 the number of arcs of G1 and G2, respectively. That is to say, m1

= |A1| and m2 = |A2|. Furthermore, for each node s in V1, we let δ+(s) (resp. δ−(s)) be the set
of arcs in A1 outgoing (resp. incoming) from s. Similarly, we denote by δ+(s′) (resp. δ−(s′))
the set of arcs in A2 outgoing (resp. incoming) from s′, for each node s′ in V2.

Consider the following integer programming formulation:

min
∑
e∈A1

∑
w∈W

c(w)yew

∑
e∈δ−(s)

∑
w∈W

xk
ew −

∑
e∈δ+(s)

∑
w∈W

xk
ew =

⎧⎪⎨
⎪⎩

1, if s = dk,

−1, if s = ok,

0, otherwise,

∀k ∈ K ,

∀s ∈ V1,
(1)

∑
k∈K

Dk xk
ew ≤ Cyew, ∀e ∈ A1, w ∈ W, (2)

∑
a∈δ−(s′)

zew
a −

∑
a∈δ+(s′)

zew
a =

⎧⎪⎨
⎪⎩

yew, if s′ = v′,
−yew, if s′ = u′,

0, otherwise,

∀e = (u, v) ∈ A1,

∀w ∈ W,

∀s′ ∈ V2,

(3)

∑
e∈A1

zew
a ≤ 1, ∀w ∈ W, ∀a ∈ A2, (4)

xk
ew ∈ {0, 1}, ∀k ∈ K , e ∈ A1, w ∈ W, (5)

yew ∈ {0, 1}, ∀e ∈ A1, w ∈ W, (6)

zew
a ∈ {0, 1}, ∀e ∈ A1, w ∈ W, a ∈ A2. (7)

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 551 — #7
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 551

In this formulation, there are m1|W | binary design variables, |K |m1|W | flow variables for the

routing of the commodities in G1, and m1|W |m2 flow variables for the routing of the installed
subbands in G2. The objective is to minimize the total cost of the design, which is the overall
cost driven by the subbands installation. Equalities (1) are the flow conservation constraints for

the commodities of K . They will be referred to as commodities routing constraints. They en-
sure that a path is associated with each commodity between its origin and its destination, using
the subbands installed over the arcs of A1. Inequalities (2) are the capacity constraints for the

installed subbands. They guarantee that the flow using an arc does not exceed the capacity of
any subband installed over that arc. Equalities (3) are the flow conservation constraints for the
installed subbands. They ensure that a path in G2 is associated with each pair (e, w) ∈ A1 ×W ,

between nodes corresponding to the extremities of e. Inequalities (4) are the disjunction con-
straints for the subbands of W . They express the fact that an arc of G2 can be used by at most
one path associated to a given subband w ∈ W . Finally, (5) to (7) are the trivial and integrality
constraints associated with the variables of the formulation.

Note that the linear relaxation of this formulation is obtained by considering inequalities

0 ≤ xk
ew ≤ 1, ∀k ∈ K , e ∈ A1, w ∈ W, (8)

0 ≤ yew ≤ 1, ∀e ∈ A1, w ∈ W, (9)

0 ≤ zew
a ≤ 1, ∀e ∈ A1, w ∈ W, a ∈ A2. (10)

instead of inequalities (5)-(7). It is straightforward to see that formulation (1)-(7) is equivalent
to the CMLND-U problem. Formulation (1)-(7) will be referred to as compact formulation since
both, the variables and the constraints of the model, are in polynomial number.

This model suffers from many symmetries due to the large number of possible subbands location,

and routing alternatives for both commodities and subbands. Thus, it is unlikely that handling
the compact formulation by using a Branch-and-Bound approach will allow to solve the problem
efficiently for realistic instances. In fact, the compact formulation rather suggests that underly-

ing structures in the problem would benefit from being exploited. Furthermore, a solution of the
CMLND-U problem is essentially given by a set of paths in both graphs G1 and G2 (correspond-
ing to virtual and physical layer respectively), which leads naturally to a reformulation of the

problem using path variables. In what follows, we apply Dantzig-Wolfe decomposition to the
compact formulation (1)-(7) in order to obtain a first path formulation.

2.3 Path formulation

The Dantzig-Wolfe decomposition was originally introduced by Dantzig and Wolfe, in 1960,

for solving large scale integer linear programming problems (Vanderbeck, 1994). This technique
becomes now widely used for providing reformulations of ILP problems having specific struc-
ture, and tighter linear relaxation bounds (see Vanderbeck, 1994; 2000) and references therein

for more details on this approach). In what follows, we will introduce some necessary notations
in order to describe our Dantzig-Wolfe decomposition.

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 552 — #8
�

�

�

�

�

�

552 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

Recall that the subbands installed over G1 are used independently by the commodities for their

routing. In other words, every subband set up on an arc is considered as a copy of that arc.
Consequently, G1 is such that there exists |W | parallel arcs between each pair of nodes u, v ∈
V1 × V1. We will re-use the notation (e, w) ∈ A1 × W to designate a pair such that w may be

installed on e. (e, w) also denotes the copy having index w, of arc e. Throughout the paper, we
will consider a path in G2 between two nodes u′, v′ ∈ V2 as a sequence of arcs {a1, a2, . . . , ar },
such that a1 = (u′, i′), i′ ∈ V2 \ {u′} and ar = (j ′, v′), j ′ ∈ V2 \ {v′}. Similarly, we define a path

in G1 between nodes u and v as a sequence of pairs {(e1 , w1), (e2, w2), . . . , (er , wr)}, where e1

= (u, i), i ∈ V1 \ {u}, er = (j, v), j ∈ V1, and w1, w2, . . . , wr are the copies of e1, e2, . . . , er

used (see Fig. 2).

w3

w2

w1

v1 v2
w2

w1

w3 v3

v1
w3

w2

w1

w3v2
w2

w1

v3

Figure 2 – Two non equivalent paths in G1.

We let then �k be the set of paths associated with the routing of the commodity k. The elements
of �k are computed in G1 and use pairs (e, w) ∈ A1 × W . By the same way, we denote by Pew

the set of paths in G2 associated with (e, w), and using arcs of A2. We define the coefficients
aew

k (π), e ∈ A1, w ∈ W , k ∈ K , π ∈ �k and ba
ew(p), a ∈ A2, e ∈ A1, w ∈ W , p ∈ Pew, that

are such that:

aew
k (π) =

{
1, if (e, w) belongs to a path π in G1 between nodes ok and dk,

0, otherwise.

ba
ew(p) =

{
1, if a is involved in the path p in G2 associated with (e, w),

0, otherwise.

For each commodity k ∈ K and each path π ∈ �k , we define the variable xk(π), that takes the

value 1 if π is used for the routing of k, and 0 otherwise. xk (π) will be referred to as commodity
path variables. Also, for each pair (e, w)∈ A1 path p ∈ Pew, we define the binary variable
zew(p) that takes the value 1 if p is selected to be assigned to (e, w), and 0 otherwise. zew(p)

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 553 — #9
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 553

will be referred to as subband path variables. Both families of path variables are linked with the

original “arc” variables. This relationship is given by

xk
ew =

∑
π∈�k

aew
k (π)xk (π), for all k ∈ K , (e, w) ∈ A1 × W, (11)

zew
a =

∑
p∈Pew

ba
ew(p)zew(p), for all (e, w) ∈ A1 × W, a ∈ A2. (12)

Replacing xk
ew and zew

a by the right hand-side of equalities (11) and (12) in formulation (1)-(7),
yields a new formulation, given in what follows

min
∑
e∈A1

∑
w∈W

c(w)yew

∑
π∈�k

xk(π) ≥ 1, ∀k ∈ K , (13)

∑
k∈K

∑
π∈�k

aew
k (π)Dk xk (π) ≤ Cyew, ∀(e, w) ∈ A1 ×W, (14)

∑
p∈Pew

zew(p) ≥ yew, ∀(e, w) ∈ A1 ×W, (15)

∑
e∈A1

∑
p∈Pew

ba
ew(p)zew(p) ≤ 1, ∀a ∈ A2, w ∈ W, (16)

xk(π) ∈ {0, 1}, ∀k ∈ K , π ∈ �k, (17)

yew ∈ {0, 1}, ∀(e, w) ∈ A1 ×W, (18)

zew(p) ∈ {0, 1}, ∀(e, w) ∈ A1 × W, p ∈ Pew. (19)

By a commonly admitted result in network flow theory, inequalities (13) and (15) are equivalent

to inequalities (1) and (3), respectively (see Ahuja et al., 1993), while (14) and (16) express
the capacity and disjunction constraints, respectively. Inequalities (13)-(19) constitute a path
formulation for CMLND-U problem, and replacing inequalities (17)-(19) by the following

0 ≤ xk(π) ≤ 1, ∀k ∈ K , π ∈ �k, (20)

0 ≤ yew ≤ 1, ∀(e, w) ∈ A1 × W, (21)

0 ≤ zew(p) ≤ 1, ∀(e, w) ∈ A1 × W, p ∈ Pew. (22)

yields the linear relaxation of the path formulation. The formulation thus obtained holds a poly-
nomial number of constraints with the same structure as in formulation (1)-(7). However, the
number of variables may possibly be exponential. Indeed, there is a huge number of candidate

paths in both graphs G1 and G2. In what follows, we describe a column generation procedure
and show how it can be applied to solve the problem given by (13)-(22).

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 554 — #10
�

�

�

�

�

�

554 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

2.3.1 Double column generation

Column generation is a technique for solving linear programming formulations having a huge
(exponential) number of variables. This approach consists in solving iteratively the problem with
a subset of columns (path variables). We start the process by solving the linear program restricted

to a subset of variables. Then at each iteration, an auxiliary (pricing) problem identifies the
variables that should enter the current basis. If the auxiliary problem fails to identify additional
variables, then the current solution is optimal for the linear program with all the variables.

In our case, formulation (13)-(22) holds two families of path variables that cannot appear explic-

itly in the formulation due to their very large number. Those families of variables correspond to
paths computed in two different graphs, namely G1 and G2, by considering different weights on
the arcs of both graphs. Therefore, we use two pricing problems, each one providing a subset of

paths belonging to one of the families. In what follows, we describe the procedure that is used to
generate the subset of variables that will appear in the initial linear program.

2.3.2 Initial solution

We use a greedy heuristic procedure in order to obtain a feasible solution for the CMLND-U

problem. Briefly, this consists in building iteratively a graph denoted by H = (VH , AH) that
corresponds to the final topology of the virtual layer. In other words, H is a subgraph of G1 such
that AH contains the pairs (e, w) associated with the solution in terms of design variables. The

idea is to start with AH = ∅, then for a given commodity k, either find a feasible route in H using
existing pairs (arc, subband) or add the arc (ok , dk) to AH and set a subband, say wk, to the
created arc. Every pair (e, w) thus added to the solution is assigned a path in G2 that satisfies the
disjunction constraints. If such a path does not exist, then we replace w by the first subband that

is not yet used.

We assume that the set of available subbands W is large enough so that a feasible solution,
even expensive, can be identified. Let us denote by P1 and P2, the set of paths identified in H
and G2, respectively. We then start the column generation procedure with a subset of variables

corresponding to paths of P1 ∪ P2. The linear programming formulation (13)-(16)-(20)-(22),
restricted to the design variables along with the path variables induced by P1 ∪ P2, will be
referred to as Restricted Master Problem (RMP).

2.3.3 Pricing problems

Now, let us denote by (x∗, y∗, z∗) a solution given by the restricted master problem. We will
denote by α, β, γ and δ the dual variables associated with inequalities (13)-(16) of the path
formulation, respectively. These dual variables are such that αk ∈ R+ for each k ∈ K , βew ∈ R−
and γ ew ∈ R+ for each (e, w) ∈ A1 × W , while δaw ∈ R− for each a ∈ A2, w ∈ W . The

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 555 — #11
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 555

reduced cost associated with each path variable xk(π), k ∈ K , π ∈ �k denoted by rck (π), is

then given by the following expression

rck (π) = −(αk +
∑
e∈A1

∑
w∈W

aew
k (π)Dkβew), (23)

while the reduced cost related to each path variable zew(p), where (e, w) ∈ A1 × W , p ∈ Pew

denoted by rcew(p), is given by

rcew(p) = −(γ ew +
∑

a∈A2

bew
a (p)δaw). (24)

Therefore, we define for each commodity k ∈ K and each path π ∈ �k the pricing problem as
looking for a path such that rck = min{rck (π) : π ∈ �k} and rck < 0, or concluding that no
such path exists. Observe that, for each k ∈ K , and for each path π ∈ �k , rck (π) is composed

by a fixed term, namely −αk that depends only of k, and a second term, which is related to
(e, w) ∈ A1 × W . Recall that a path in G1 is supposed to be formed by a sequence of pairs
(e, w) ∈ A1 ×W , such that w is installed on e. Thus, one may consider every dual variable βew

as a weight assigned to the pair (e, w). Accordingly,
∑

e∈A1

∑
w∈W βew might be viewed as the

length of the path π . Since we are looking for a path in �k that minimizes the function rck (π),
this problem can be seen as a shortest path problem in the graph G1.

In a similar fashion, we define the pricing problem related to subband path variables as follows.

For each pair (e, w) ∈ A1 × W , we wish to identify a path such that rcew = min{rcew(p) : p ∈
Pew} and rcew < 0, or concluding that no such path exists. Again, for each pair (e, w) ∈ A1×W ,
and for each path p ∈ Pew, rcew(p) is composed by a fixed term −γ ew, and a term depending

on the arcs of A2. Dual variables δ may be viewed as weights impacted on arcs of A1. Thus, the
pricing problem in this case is also equivalent to a shortest path problem in the graph G2.

Remark 1. Both pricing problems for commodity and subband path variables can be solved in
polynomial time.

Indeed, since βew < 0 for all (e, w) ∈ A1 × W , and δaw < 0, for all a ∈ A2, the weights on

pairs (e, w) and arcs a are non-negative. Thus, both pricing problems can be solved efficiently
using Dijkstra’s algorithm (Dijkstra, 1959) for example.

If the value of the shortest path in G1 is such that rck < 0 for some k ∈ K , then, at least one
commodity path variable should be added to the RMP. Similarly, if the shortest path in G2 is such

that rcew < 0 for some (e, w) ∈ A1 × W , then at least one subband path variable has to enter
the current basis. If no path variable is identified by pricing problems (rck > 0, for all k ∈ K ,
and rcew > 0, for all (e, w) ∈ A1 × W), then the optimal solution of the current linear program

is also optimal for the linear relaxation of path formulation.

Figure 3 shows an example of solution obtained by solving linear relaxation of the path formu-
lation. This instance includes a unique commodity going from node v1 to node v3. The path in
G1 associated with this commodity is given by {(e1, w2), (e2, w1)}. First section of this routing

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 556 — #12
�

�

�

�

�

�

556 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

Figure 3 – A solution of the path formulation.

path, namely (e1, w2), is itself assigned the path {a5, a6, a7} in G2, while the pair (e2, w1) is as-
signed the path {a2} in G2. Now suppose that we are looking for new path variables to be added
to the current linear programming formulation. Then, Figure 4 shows how dual variables may be

distributed on both graphs G1 and G2 to solve the pricing problems.

Figure 4 – Graphs G1 and G2 with dual variables.

Observe that, in G1, the pairs (e1, w2), (e2, w1) that are involved in the routing of our commodity
receive the weights −Dkβe1w2 and −Dkβe2w1 . The path {(e1, w2), (e2, w1)} then has a length

given by−Dkβe1w2−Dkβe2w1 . Note that only dual variables related to pairs (e, w) ∈ A1×W are
distributed on G1 since the fixed term −αk can be considered after shortest path computation.
Similarly, the section (e1, w1) for example is assigned a path in G2 having weights −δa5w2 ,
−δa6w2 and −δa7w2 . Again, the weights of arcs in G2 are only given by dual variables related to

arcs of A2, while the fixed term given by −γ ew is added to the length of the shortest path, after
it has been identified.

2.4 Aggregated paths formulation

In this section, we describe an alternative modeling approach for the CMLND-U problem whose
purpose is to bypass the utilization of two pricing problems that operate independently.
Instead, we attempt to get benefits from the relationship between G1 and G2 to express a dou-

ble information within a unique path variable. We introduce a two-stage procedure to price out

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 557 — #13
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 557

those path variables, and present how the obtained column generation can be integrated within a

Branch-and-Price framework.

We will introduce a new notation, say �k , for the set of feasible paths associated with the com-
modity k. Now consider the design variables yew, e ∈ A1, w ∈ W and the commodity path
variables xk(λ), k ∈ K , λ ∈ �k defined in the previous section. For any commodity k of K ,

an element λ ∈ �k is actually composed by a path π ∈ �k AND by a path in Pew for each
(e, w) ∈ π . In order to describe this specific column, we will define a set of coefficients, denoted
ϕ such that for each pair (e, w) ∈ A1 × W and each arc a ∈ A2

ϕew
a (λ) =

{
1 if λ uses the pair (e, w) in G1 and it is assigneda path in G2 using a,
0 otherwise.

Example 2.1. Figure 5 depicts a path in G1 between nodes v1 and v4, that will be denoted
λ. This path is composed by the pairs (e1, w2), (e2, w1) and (e3, w2). Each section of λ is itself
associated with a path in G2. For example, (e2, w1) is assigned the path {a2, a3}. In this example,

coefficients ϕ will take the following values: ϕ
e1w2
a1 (λ) = 1, ϕ

e2w1
a2 (λ) = ϕ

e2w1
a3 (λ) = 1, ϕ

e3w2
a4 = 1,

while ϕew
a (λ) = 0 for the remaining entries.

Figure 5 – Two associated paths.

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 558 — #14
�

�

�

�

�

�

558 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

Using this new coefficient, together with the design and commodity path variables, we give the
following integer linear programming formulation for the CMLND-U problem:

min
∑
e∈A1

∑
w∈W

c(w)yew

∑
λ∈k

xk(λ) ≥ 1, ∀k ∈ K , (25)

∑
k∈K

∑
λ∈�k

ϕew(λ)Dk xk (λ) ≤ Cyew, ∀e ∈ A1, w ∈ W, (26)

∑
e∈A1

∑
k∈K

∑
λ∈�k

ϕew
a (λ)xk (λ) ≤ 1, ∀a ∈ A2, w ∈ W, (27)

xk(λ) ∈ {0, 1}, ∀k ∈ K , λ ∈ �k, (28)

yew ∈ {0, 1}, ∀(e, w) ∈ A1 × W. (29)

In this formulation there is a polynomial number of constraints and design variables, but a huge
number of path variables. Observe that all the constraints of the problem are expressed by for-
mulation (25)-(29). Indeed, inequalities (25) are the commodity routing constraints. They ensure
that a path in G1 is associated with each commodity for its routing. Inequalities (26) are the ca-
pacity constraints for every pair (e, w) of A1×W . Remark that they also appear for each a ∈ A2,
since a is involved in the definition of ϕ. Inequalities (27) express indirectly the disjunction con-
straints for every arc a ∈ A2 and every subband w ∈ W . In fact, each arc a used in a path
associated with some section of λ (λ ∈ �k , for k ∈ K) is assigned at most once with subband w.
This formulation will be referred to as aggregated path formulation, and replacing inequalities
(28)-(29) by the following

0 ≤ xk(λ) ≤ 1, ∀k ∈ K , λ ∈ �k , (30)

0 ≤ yew ≤ 1, ∀(e, w) ∈ A1 × W. (31)

Yields the linear relaxation of the problem. Notice that, since we projected out subband path
variables z, the solution will be given by a set of subbands to install on the arcs of G1 (given by
the design variables y) as well as a set of paths for commodities routing (given by the variables
x). However, it is possible to recover a complete description of the solution for the CMLND-
U problem, as coefficient ϕ will somehow bring out the path in G2 associated with each pair
(e, w) ∈ A1 × W such that w is installed on e. Similarly to formulation (13)-(19), the number
of commodity path variables here may be exponential. Therefore, using column generation to
solve the linear relaxation of (25)-(29) is required. In what follows, we describe the details of the
column generation procedure that we propose for the aggregated path formulation.

2.4.1 Column generation

In this procedure, we solve the linear relaxation of (25)-(29) with an initial subset of paths (RMP).
These paths are computed in G1 and generated using the procedure described in Section 2.3.2.

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 559 — #15
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 559

Then we look for the missing paths with negative reduced cost by solving a two-stage pricing

problem that we describe here. If such paths are identified, we add them to the RMP and repeat
the process until no additional path may be generated.

Let us denote by α, β and δ the dual variables associated with the constraints (25)-(27), respec-
tively. The dual variable α is such that for each k ∈ K , αk is inR−, β is such that βewa ∈ R+, for

each e ∈ A1, w ∈ W and a ∈ A2. Finally, dual variables δ are such that δaw ∈ R+. Therefore,
the reduced cost related to each commodity path variable xk(λ), k ∈ K , λ ∈ �k , is given by the
following expression

rck (λ) = −
⎛
⎝αk +

∑
e∈A1

∑
w∈W

∑
a∈A2

ϕew
a (λ)

(
Dkβewa + δaw

)⎞⎠ .

Hence, we define for each commodity k ∈ K , the pricing problem, as trying to identify a path

such that rck = min{rck (λ) : λ ∈ �k} and rck < 0. Note that here, this operation can be
performed in two stages. First, dual variables δ are distributed on the arcs of G2, so that for each
(e, w), every arc a ∈ A2 receives −δaw. Then, for each (e, w), we compute the shortest path

in G2 using the weights δ. Let us denote by p this path, and l(e, w) its length. The second step
consists in setting on each pair (e, w) ∈ A1 × W , a weight given by −Dkβew

a + l(e, w), where
a ∈ p. This weight is therefore used in order to compute the shortest path in G1 between nodes
ok and dk . If the length of the identified path is such that rck (λ) < 0, then the corresponding

commodity path variable should be added to the current linear program.

Note that, even though the generated variable expresses a path in the graph G1, the associated
reduced cost takes into account the dual information impacted on both graphs G1 and G2. In this

way, we merge both path variables within a single pricing problem and we still can reconstruct
the complete solution thanks to the indicator ϕ.

Example 2.2. Figure 6 shows an example of instance where each set of arcs carries its corre-
sponding weight in terms of dual variables. In fact, we can see in Figure 6 (a) the first step of the
pricing process, which consists in reporting the weights based on dual variables δ on each arc

of A2 .

For example, the shortest path in G2, corresponding to (e1, w2) is {a5, a6, a7}. The length of
this shortest path is a part of the weight assigned to pair (e1, w2), that receives −Dk(β

e1w2
a5 +

β
e1w2
a6 + β

e1w2
a7) + l(e1w2), where l(e1w2) = −(δa5w2 + δa6w2 + δa7w2) (see Figure 6 (b)). It

remains then to compute the shortest path in G1, using weights based on the first step, together
with dual variables β.

Notice that all the weights based on the dual variables distributed on the arcs of G1 and G2

are positive, hence we can use Dijkstra’s shortest path algorithm for both steps of the pricing

procedure. Again here, the column generation procedure does not necessarily allow to get a
feasible solution for the CMLND-U problem, since this solution might not be integer.

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 560 — #16
�

�

�

�

�

�

560 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

Figure 6 – Graphs G1 and G2 with dual variables (from the aggregated path formulation).

In what follows, we describe how both column generation procedures are embedded within a
Branch-and-Bound framework, to get the so-called Branch-and-Price algorithm, and to solve the
CMLND-U problem efficiently.

3 BRANCH-AND-PRICE ALGORITHMS

3.1 Overview

Consider given two graphs G1, G2, a set of commodities K and a set of available subbands
W . Also recall that a cost c(w) > 0 along with a capacity denoted C are associated with each
subband of W . In both path formulations, we consider that this cost increases with the index of

the subband. Typically, we let c(w1) ≤ c(w2) ≤ c(w3) ≤ . . . ≤ c(wr), where r = |W |. This
assumption comes from a practical requirement, that is subbands i + 1 should not be installed
before subband i is installed. In some sense, this assumption is helpful for the model handling,

since it also allows to break some symmetries on pairs (e, w) whose total number can be very
large in comparison with the few pairs that are actually used in the solution.

To start the optimization, we set up both linear relaxations of (13)-(19) and (25)-(29), restricted
to a subset of path variables. The initial subset of path variables is generated using the procedure

described in Section 2.3.2 for both formulations. Let us denote by (x , y, z) (respectively (x, y))
the optimal solution of the restricted linear relaxation of path formulation (respectively aggre-
gated path formulation). We solve the two pricing problems (respectively the two stage pricing
problem), and add the generated path variables to the current LP, if any.

The main steps of the Branch-and-Price algorithm for path formulation (13)-(19) are summarized
in Algorithm 1. Note that for the aggregated path formulation, steps 3 to 9 are replaced by solving
the two stage pricing problem for every commodity k ∈ K .

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 561 — #17
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 561

Algorithm 1: Branch-and-Price algorithm for the path formulation

Data : two graphs G1 = (V1, A1) and G2 = (V2, A2), a set of commodities K , a set of
available subbands W , and a cost vector c ∈ IRW .
Output : optimal solution of CMLND-U problem, or best feasible upper bound.

1: LP← LPinit ial ;
2: solve the linear program LP;

let (x , y, z) be the optimal solution of LP;
3: Consider the dual variables and solve the two pricing problems;
4: If for all (e, w) ∈ A1 ×W , p ∈ Pew, rcew > 0 then
5: If for all k ∈ K , π ∈ �k, rck > 0 then
6: go to 10;
7: else
8: Add the variables induced by rcew and rcew with negative reduced cost;
9: go to 2
10: If (x , y, z) is integer then
11: (x , y, z) is optimal for CMLND-U. Stop;

12: else
13: Create two sub-problems by branching on design variables first;
14: forall open sub-problem do
15: go to 2;
16: return the best optimal solution for all sub-problems.

3.2 Branching

Let (P) denote the linear program at a given node of the Branch-and-Bound tree. Suppose that the
optimal solution of linear relaxation of (P) is fractional. Let (x , y, z) be this fractional solution.

The branching phase, consists in choosing a fractional variable say x1 among those in (x, y, z),
and create two sub-problems (P1) and (P2) by adding either constraint x1 ≤ �x1� or x1 ≥
x1�
to (P). In our problem, it is to fix x1 either to 0 or 1.

Several branching strategies have been developed to choose efficiently a fractional variables to

branch on. In particular, most of the branching strategies proposed for path-based formulations
are defined on original (arc flow) variables. Barnhart et al. (2000) propose a generalization of
Ryan & Foster (1981) branching rule for origin-destination integer multicommodity flow prob-

lems. This strategy consists in forbidding the use of some specific arcs in the considered paths.
Such operation may be performed either by adding branching constraints that correspond to the
forbidden arcs, or by removing those arcs from the graph when computing the shortest path (see

Feillet (2010) for a good tutorial on column generation and branch-and-price applied to vehicle
routing problems). We refer the reader to Vanderbeck (1994, 2000, 2005) for more details on
branching schemes in IP column generation.

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 562 — #18
�

�

�

�

�

�

562 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

In our case, we have observed that branching first on design variables was very effective in prac-

tice, and only few path variables remain fractional after that, for both formulations. This can be
explained by the strong relationship between those families of variables in both formulations.
Thus, we have used the following strategy. First we perform branching on fractional design vari-

ables y by choosing the variable with fraction close to 0.5 and high absolute objective function
coefficient. Fixing design variables helps to get few remaining path variables that still fractional.
If all the design variables are integer, then we perform branching on path variables by setting

their value either to 0 or 1.

Based on these features, we have implemented our Branch-and-Price algorithms for the
CMLND-U problem by solving both the path and aggregated path formulations. We have
tested our approaches on a set of random and SNDlib based instances. The obtained results are

shown and reviewed in the coming section.

4 COMPUTATION EXPERIMENTS

4.1 Implementation’s feature

We have implemented the Branch-and-Price algorithms described in the previous section in
C++ using ABACUS 3.2 [1] to handle the Branch-and-Price tree, and CPLEX 12.5 [2] as LP
solver. Our approach was tested on a processor Intel Core i5-3210M CPU 2.50 GHz × 4 with

3.7 Gb RAM, running under ubuntu 12.10 platform. We fixed the maximum CPU time to 3 hours.

Both algorithms were tested on random and realistic instances. The realistic instances are ob-
tained from SNDlib data for instances dfn bwin, dfn gwin, newyork and france. The entries of
the different tables presented in the sequel are the following:

V2 : number of nodes in G2,

A2 : number of arcs,
K : number of commodities,
Gap : the relative distance between the best upper bound (optimal

solution if the problem has been solved to optimality) and the lower
bound obtained provided by the compact formulation,

columns : number of generated path variables,

nodes : number of nodes in the Branch-and-Cut tree,
TT : total CPU time in h:m:s
TTpricing : CPU time spent in pricing out path variables (in %).

4.2 Managing infeasibility

Branching by setting variables to 0 or 1 may induce an infeasible linear program at a given level

of the Branch-and-Price tree in ABACUS. Therefore, to avoid such situation, we have considered
a set of “artificial” variables appearing in the critical constraints. We denote by τ and θ these
variables and we let τ k ∈ R+, 0 ≤ τ k ≤ 1, for each k ∈ K , and θew ∈ R+, 0 ≤ θew ≤ 1, for

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 563 — #19
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 563

each (e, w) ∈ A1 × W . Variables τ are involved in inequalities (13) (path formulation) and (25)

(aggregated path formulation), while θ appears in inequality (15) in path formulation.

Notice that we do not use such variables in inequalities (14), (16), (26), and (27), since fixing
variables to 0 does not affect feasibility of those constraints. We associate with all the artificial
variables a large cost in the objective function, so as to avoid using them unnecessarily in the

solution. However, these variables ensure that a feasible solution, even costly, can always be
identified.

4.3 Computational results

Our first series of experiments involve random instances, whose topologies as well as the com-
modities were randomly generated. We have considered connected graphs with 6 to 14 nodes,
and at most 18 commodities per instance. Tables 1 and 2 report the results given by the column
generation and the Branch-and-Price approaches on solving both path and aggregated path for-

mulations, for random instances. The reported results concern 35 instances with a number of
nodes in the physical layer (graph G2) varying from 6 to 14 nodes, and a number of arcs varying
from 16 to 40. We have considered up to 18 commodities for each kind of graph, and the number

of available subbands is |W | = 4 except for the 14 nodes instances where |W | = 5.

Table 1 shows in particular the results obtained by both column generation procedures for linear
relaxation of formulations (13)-(19) and (25)-(29). The two last columns contain results provided
by the compact formulation, namely the gap and CPU time computation. Note that the compact

formulation is solved by Branch-and-Bound procedure. It appears from this table that the gap
provided by the path formulation is equivalent to the one of the compact formulation. Indeed,
this is predicted by theory, since we are replacing flow constraints in the compact formulation by

their equivalent representation in terms of paths. We also remark that for most of the instances,
the gap provided by the path formulation is better than the one of the aggregated path formulation.
In fact, except for instances with |V2| = 6, |K | = 8, 10 and 11, and |V2| = 14, |K | = 8, the gap

value for the path formulation is smaller than the one of the aggregated path formulation.

We can see that our column generation procedures do not behave the same way for both path
formulations. Indeed, although the number of generated variables in the first procedure is not so
important (less than 100 path variables, except for the last instance), it is significantly higher for

the second procedure. This can be due to the fact that the aggregated approach might somehow
induce a loss of information provided by the bi-layer structure of the problem, and the interaction
between the path variables in both graphs G1 and G2.

Table 2 summarizes the results obtained by both Branch-and-Price algorithms for solving path

and aggregated path formulations. We can see that all the instances presented in this table were
solved to optimality by our Branch-and-Price algorithms within the time limit. In particular,
note that the CPU time for both algorithms is smaller then the one of the Branch-and-Bound

algorithm (last column of Table 1). We can see for example that, even instances with |V2| = 14
and |K | = 6 to 16, for which the Branch-and-Bound algorithm could not prove the optimality of

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 564 — #20
�

�

�

�

�

�

564 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

Table 1 – Comparing linear relaxations.

Compact Path Aggregated path
formulation formulation formulation

|V2| |A2| |W | |K | Gap (%) Columns Gap (%) Columns

6 16 4 2 25.00 8 25.00 39
6 16 4 4 47.50 16 47.50 73

6 16 4 6 45.00 24 53.33 86
6 16 4 8 41.43 32 37.14 211

6 16 4 10 47.14 49 41.43 281
6 16 4 12 48.75 57 43.75 165

8 24 4 2 0.00 8 0.00 51

8 24 4 4 25.00 16 25.00 95
8 24 4 6 33.33 24 33.33 140

8 24 4 8 6.25 36 6.25 147

8 24 4 10 15.50 40 28.00 223
8 24 4 12 12.92 48 26.67 211

8 24 4 14 21.92 56 25.38 311
8 24 4 16 32.31 68 33.08 377

8 24 4 18 35.63 76 36.25 383

10 36 4 2 0.00 8 0.00 64
10 36 4 4 50.00 16 50.00 139

10 36 4 6 3.33 24 3.33 524

10 36 4 8 44.44 38 55.55 381
10 36 4 10 57.31 46 59.23 433

10 36 4 12 56.07 54 57.86 533

12 46 4 2 0.00 8 0.00 80
12 46 4 4 33.33 16 33.33 165

12 46 4 6 46.67 24 46.67 433
12 46 4 8 47.14 33 47.14 598

12 46 4 10 33.13 41 37.50 668
12 46 4 12 20.63 49 25.00 1047

14 40 5 2 0.00 11 25.00 218
14 40 5 4 0.00 21 12.50 768

14 40 5 6 14.29 31 14.29 799
14 40 5 8 44.40 46 41.11 693

14 40 5 10 37.51 50 39.23 1079
14 40 5 12 10.63 61 11.92 836

14 40 5 14 34.47 71 35.00 943
14 40 5 16 12.47 130 20.59 1103

the identified solution within 3 hours, we could reach the optimal solution in only few minutes
by solving the path formulations. This clearly shows that a column generation based approach

performs much better than a Branch-and-Bound algorithm on the compact formulation. Note

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 565 — #21
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 565

T
ab

le
2

–
B

ra
nc

h-
an

d-
P

ri
ce

re
su

lts
fo

r
ra

nd
om

in
st

an
ce

s.

C
om

pa
ct

fo
rm

ul
at

io
n

Pa
th

fo
rm

ul
at

io
n

A
gg

re
ga

te
d

pa
th

fo
rm

ul
at

io
n

|V 2
|
|A

2
|
|W
|
|K
|

T
T

co
lu

m
ns

no
de

s
T

T
T

T
pr

ic
in

g
(%

)
co

lu
m

ns
no

de
s

T
T

T
T

pr
ic

in
g

(%
)

6
16

4
2

00
:0

5:
32

8
3

00
:0

0:
01

0
98

3
00

:0
0:

00
72

6
16

4
4

00
:0

7:
53

24
10

7
00

:0
0:

02
17

46
7

31
00

:0
0:

02
74

6
16

4
6

00
:1

0:
49

36
21

9
00

:0
0:

23
19

11
9

5
00

:0
0:

01
81

6
16

4
8

00
:4

9:
32

39
40

3
00

:0
0:

04
18

23
4

11
00

:0
0:

04
88

6
16

4
10

01
:0

0:
23

39
9

38
93

00
:0

0:
49

21
45

7
11

00
:0

0:
03

93
6

16
4

12
01

:4
5:

03
62

49
24

81
9

00
:0

3:
45

19
35

7
11

00
:0

0:
02

92
8

24
4

2
00

:0
8:

56
8

1
00

:0
0:

01
0

51
1

00
:0

0:
01

54
8

24
4

4
00

:2
1:

51
16

15
00

:0
0:

01
9

97
15

00
:0

0:
01

63
8

24
4

6
00

:2
9:

23
24

65
00

:0
0:

03
17

14
3

65
00

:0
0:

03
87

8
24

4
8

01
:0

2:
14

32
65

00
:0

0:
03

22
41

5
3

00
:0

0:
02

92
8

24
4

10
01

:1
2:

09
40

11
89

00
:0

0:
26

18
37

8
5

00
:0

0:
01

88
8

24
4

12
01

:0
2:

14
48

25
85

00
:0

0:
59

19
67

0
5

00
:0

0:
01

89
8

24
4

14
02

:3
1:

46
56

20
48

00
:0

8:
31

18
68

8
10

00
:0

0:
03

86
8

24
4

16
02

:4
9:

01
74

32
80

00
:1

6:
44

18
59

8
7

00
:0

0:
01

91
8

24
4

18
02

:5
2:

21
82

35
80

00
:1

7:
00

19
72

0
15

00
:0

0:
23

89
10

36
4

2
00

:1
0:

37
8

1
00

:0
0:

00
27

64
1

00
:0

0:
00

82
10

36
4

4
00

:1
8:

22
16

73
00

:0
0:

05
15

15
0

9
00

:0
0:

04
88

10
36

4
6

00
:3

2:
51

62
12

7
00

:0
0:

06
18

64
5

11
00

:0
0:

12
79

10
36

4
8

01
:4

4:
02

20
5

85
9

00
:0

1:
18

18
43

6
17

00
:0

0:
20

82
10

36
4

10
02

:0
5:

39
48

1
35

59
00

:0
3:

06
20

54
3

23
00

:0
0:

57
86

10
36

4
12

02
:5

5:
01

10
60

18
52

7
00

:2
8:

46
19

71
2

15
9

00
:0

1:
39

88
12

46
4

2
01

:1
5:

22
8

1
00

:0
0:

00
20

80
1

00
:0

0:
01

87
12

46
4

4
01

:3
5:

22
16

73
00

:0
0:

11
14

16
5

1
00

:0
0:

01
86

12
46

4
6

02
:0

9:
59

77
12

7
00

:0
0:

12
17

65
0

17
00

:0
0:

04
87

12
46

4
8

02
:2

3:
51

52
80

1
00

:0
1:

17
17

67
0

15
00

:0
0:

03
88

12
46

4
10

02
:4

5:
33

40
16

95
00

:0
2:

44
18

76
9

7
00

:0
0:

07
91

12
46

4
12

03
:0

0:
00

26
0

50
9

00
:0

1:
30

24
26

10
11

7
00

:0
0:

02
92

14
40

5
2

01
:4

9:
32

11
1

00
:0

0:
00

17
21

8
1

00
:0

0:
00

79
14

40
5

4
02

:3
3:

01
26

1
00

:0
0:

00
31

93
2

17
9

00
:0

0:
58

85
14

40
5

6
03

:0
0:

00
36

17
00

:0
0:

08
13

10
79

23
7

00
:0

1:
01

92
14

40
5

8
03

:0
0:

00
11

2
49

1
00

:0
3:

25
13

10
11

55
9

00
:0

1:
59

89
14

40
5

10
03

:0
0:

00
50

2
27

71
00

:1
8:

49
15

23
92

35
91

00
:2

0:
53

95
14

40
5

12
03

:0
0:

00
78

6
27

71
00

:1
9:

12
18

12
21

23
75

00
:1

6:
41

93
14

40
5

14
03

:0
0:

00
29

4
34

79
00

:2
0:

45
17

10
79

32
77

00
:2

3:
54

87
14

40
5

16
03

:0
0:

00
17

22
20

51
00

:1
1:

12
30

24
67

35
59

00
:2

8:
37

88

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 566 — #22
�

�

�

�

�

�

566 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

that, except for some instances, the number of variables generated within the second Branch-

and-Price algorithm is still higher than the one in the first Branch-and-Price. Also we can remark
that most of the added variables are generated at the root node of the Branch-and-Price tree for
both algorithms. It should be pointed out that the number of nodes in the first Branch-and-Price

tree is more important than in the second Branch-and-Price tree. In other words, we can observe
that in the second algorithm, most of the columns are generated in the upper level nodes of the
tree. By contrast, there is a sparsity in the first Branch-and-Price tree where fewer columns are

generated along a large-size tree.

Our second series of experiments concern realistic instances based on data from SNDlib for
networks dfn bwin, dfn gwin, newyork and france. Those instances have graphs with 10 to 25
nodes, while the number of commodities varies between 4 and 30 for dfn gwin and newyork (we

have considered up to 18 commodities for dfn bwin and 16 commodities for france). The results
of the Branch-and-Price algorithm based on the double column generation are summarized in
Table 3. Table 4 shows the results provided by the Branch-and-Price algorithm using the two-

stage column generation.

It appears from Table 3 that all the considered instances have been solved to optimality using the
Branch-and-Price approach, within the fixed time limit. In fact, 30 instances have been solved to
optimality in less than 10 minutes. Moreover, note that 11 among the 40 tested instances were

solved to optimality at the root node. This can show that our data-preprocessing performs well
on realistic instances. Due to the size and structure of some instances, we can observe that the
CPU time spent by the algorithm in pricing operations increases compared to its average value
for random instances (see Table 1). However, the number of generated columns in the whole

tree is not so important regarding to the size of the instances. This is allowed by our procedure
to generate initial paths, that helps to identify a first set of interesting variables and thus to
form a good initial basis. For the remaining instances, the number of generated path increases

with the size of the instance, except for some instances where our algorithm may have atypical
behavior. Basically, more path variables are generated for instance newyork with |K | = 25, than
for instance newyork with |K | = 30. We can explain such a result by the fact that the routing of

some commodities may be challenged by the size (traffic amount) of other commodities. Indeed,
the more commodities will induce “conflicts” due to their size and the subband capacity, the
more an instance will be difficult to solve. Indeed, in this case many arcs might be saturated, thus

requiring further path to be explored in order to identify feasible (and good) solutions.

Table 4 shows the results of Branch-and-Price algorithm for the aggregated path formulation.
We can see from this table that this algorithm, similarly to the previous one, allowed to solve
to optimality all the tested instances within the CPU time limit. Observe that the gap values are

quite comparable to those presented in Table 3. Also remark that, similarly to column generation
procedures, both Branch-and-Price algorithms do not work in the same way.

In fact, the number of generated columns remains generally higher in the latter algorithm. How-
ever, it seems that from to a certain threshold of instance size and difficulty, the second Branch-

and-Price tree becomes slightly easier to manage than in the first algorithm. Basically, instance

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 567 — #23
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 567

Table 3 – Branch-and-Price results for SNDlib-based instances – Path formulation.

Instance |V2| |A2 | |W | |K| Gap (%) columns nodes TT TTpricing (%)

dfn bwin 10 90 4 2 25.00 8 3 0:00:00.28 28.5714%
dfn bwin 10 90 4 4 12.50 16 3 0:00:00.28 28.5714%
dfn bwin 10 90 4 6 8.33 41 3 0:00:00.37 45.9459%
dfn bwin 10 90 4 8 43.75 166 397 0:00:26.60 31.8797%
dfn bwin 10 90 4 10 40.00 247 859 0:00:44.09 32.4563%
dfn bwin 10 90 4 12 29.17 49 381 0:00:19.66 29.5015%
dfn bwin 10 90 4 14 27.59 81 2419 0:02:08.20 30.4992 %
dfn bwin 10 90 4 16 27.27 510 4265 0:04:00.16 32.82 %
dfn bwin 10 90 4 18 26.32 219 5913 0:05:42.10 31.48 %
dfn gwin 11 94 4 2 0.00 10 1 0:00:00.44 36.36 %
dfn gwin 11 94 4 4 0.00 20 1 0:00:00.44 34.0909%
dfn gwin 11 94 4 6 0.00 36 1 0:00:00.40 52.5%
dfn gwin 11 94 4 8 0.00 53 1 0:00:00.5 66.0714%
dfn gwin 11 94 4 10 0.00 60 1 0:00:00.52 59.6154%
dfn gwin 11 94 4 12 0.00 78 1 0:00:00.39 58.9744%
dfn gwin 11 94 4 14 0.00 89 1 0:00:00.42 59.5238%
dfn gwin 11 94 4 16 5.88 117 7 0:00:02.03 43.34 %
dfn gwin 11 94 4 18 19.44 133 587 0:01:41.22 28.37 %
dfn gwin 11 94 4 20 25.00 2499 2755 0:10:50.70 34.05 %
dfn gwin 11 94 4 25 21.28 1620 2931 0:10:47.54 33.10 %
dfn gwin 11 94 4 30 20.41 830 2931 0:10:32.60 31.08 %
newyork 16 92 5 2 0.00 10 1 0:00:00:10 28.5714%
newyork 16 92 5 4 0.00 20 1 0:00:00.72 33.33 %
newyork 16 92 5 6 0.00 30 1 0:00:00.77 36.36 %
newyork 16 92 5 8 37.50 567 807 0:08:09.32 26.46 %
newyork 16 92 5 10 40.00 172 2905 0:16:03.30 27.62 %
newyork 16 92 5 12 41.67 1358 6331 0:49:34.92 26.95 %
newyork 16 92 5 14 0.00 104 1 0:00:01.30 58.4615%
newyork 16 92 5 16 6.25 114 35 0:00:13.78 31.35 %
newyork 16 92 5 18 16.67 90 221 0:02:10.97 29.31 %
newyork 16 92 5 20 20.00 100 659 0:07:01.98 28.73 %
newyork 16 92 5 25 20.00 148 4165 0:29:09.84 31.84 %
newyork 16 92 5 30 20.00 100 659 0:06:44.59 29.06 %
france 25 90 5 2 50.00 10 23 0:00:35.99 11.86 %
france 25 90 5 4 37.50 20 91 0:02:25.19 13.75 %
france 25 90 5 6 41.67 30 147 0:06:33.75 15.57 %
france 25 90 5 8 37.50 40 511 0:25:54.95 17.28 %
france 25 90 5 10 40.00 50 2611 1:18:20.44 19.385%
france 25 90 5 12 33.33 60 1987 3:00:00 23.526%
france 25 90 5 14 21.43 70 2245 3:00:00 25.03 %
france 25 90 5 16 26.03 2639 16581 3:00:00 45.23 %

dfn gwin with |K | = 20 for example, where the number of nodes in the first Branch-and-Price
tree is 2755, while it is 101 in the second Branch-and-Price tree. Also the two last rows given by

instances france with |K | = 14 and 16, that are solved to optimality using the second approach,
while the first algorithm could not complete the process within 3 hours. This can be explained by
the fact that, in aggregated path formulation, a good trade-off between the number of generated

columns and the size of the tree, can be achieved. Also, the branching scheme here induces some
decisions that directly affect the size and the shape of the tree. Indeed, the relationship between
families of variables might make difficult to perform an efficient branching on the variables, and

induce a large and unbalanced tree. In some sense, the aggregated formulation could help us to

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 568 — #24
�

�

�

�

�

�

568 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

Table 4 – Branch-and-Price results for SNDlib-based instances – Aggregated path formulation.

Instance |V2| |A2 | |W | |K | Gap (%) columns nodes TT TTpricing (%)

dfn bwin 10 90 4 2 0.00 129 1 0:00:03.04 87.75%
dfn bwin 10 90 4 4 12.50 340 3 0:00:04.55 92.70%
dfn bwin 10 90 4 6 8.33 546 15 0:00:12.00 92.83%
dfn bwin 10 90 4 8 43.75 588 23 0:00:57.00 89.17 %
dfn bwin 10 90 4 10 40.00 724 23 0:01:33.00 92.52 %
dfn bwin 10 90 4 12 29.17 873 35 0:01:44.00 93.46 %
dfn bwin 10 90 4 14 27.59 1023 129 0:03:56.00 92.08 %
dfn bwin 10 90 4 16 27.27 1165 253 0:16:32.00 90.38 %
dfn bwin 10 90 4 18 26.32 876 311 0:20:31.00 94.17 %

dfn gwin 11 94 4 2 0.00 241 1 0:00:05.47 94.14%
dfn gwin 11 94 4 4 0.00 537 1 0:00:14.53 98.21%
dfn gwin 11 94 4 6 0.00 448 1 0:00:09.38 96.80%
dfn gwin 11 94 4 8 0.00 658 1 0:00:10.77 97.02%
dfn gwin 11 94 4 10 10.23 785 3 0:00:19.07 95.96%
dfn gwin 11 94 4 12 13.00 688 7 0:00:57.00 86.83%
dfn gwin 11 94 4 14 8.73 843 7 0:01:39.00 87.92%
dfn gwin 11 94 4 16 32.98 926 17 0:03:28.00 93.96%
dfn gwin 11 94 4 18 5.88 1023 51 0:08:05.00 92.22%
dfn gwin 11 94 4 20 19.44 876 101 0:10:55.00 88.9%
dfn gwin 11 94 4 25 25.00 947 127 0:14:48.00 91.9%
dfn gwin 11 94 4 30 21.28 1034 205 0:28:34.00 94.38%

newyork 16 92 5 2 20.41 526 3 0:00:37.80 95.74 %
newyork 16 92 5 4 12.50 830 7 0:00:50.26 95.80 %
newyork 16 92 5 6 33.2 2188 19 0:02:29.30 94.86 %
newyork 16 92 5 8 25.00 1634 239 0:03:28.00 88.9%
newyork 16 92 5 10 37.50 1435 431 0:07:31.00 89.32 %
newyork 16 92 5 12 40.00 1289 511 0:21:58.00 91.43 %
newyork 16 92 5 14 41.67 2076 873 0:00:12.00 88.74 %
newyork 16 92 5 16 12.50 2198 1021 0:16:53.00 91.28 %
newyork 16 92 5 18 6.25 4389 3287 0:20:42.00 90.33 %
newyork 16 92 5 20 16.67 3741 2719 0:26:18.00 91.28 %
newyork 16 92 5 25 20.00 3827 2501 1:08:37.00 92.33 %
newyork 16 92 5 30 20.00 4659 3283 1:40:53.00 88.84 %

france 25 90 5 2 20.00 51 1 0:00:03.00 90.33 %
france 25 90 5 4 50.00 88 3 0:01:48.00 94.37 %
france 25 90 5 6 37.50 103 7 0:01:44.00 95.12 %
france 25 90 5 8 41.67 114 7 0:00:53.00 94.22 %
france 25 90 5 10 37.50 2378 537 0:43:37.95 88.54 %
france 25 90 5 12 40.00 3439 721 1:40:20.44 89.17 %
france 25 90 5 14 33.33 4392 1077 2:37:48.76 90.27 %
france 25 90 5 16 21.43 5283 1259 2:10:30.09 95.39 %
france 25 90 5 18 27.44 6239 3423 3:00:00 88.28 %

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 569 — #25
�

�

�

�

�

�

AMAL BENHAMICHE, A. RIDHA MAHJOUB, NANCY PERROT and EDUARDO UCHOA 569

translate an explicit definition of path variables associated with both physical and virtual layer, to

an embedded definition of variables. In other words, the aggregated path formulation performs
better, since we handle a unique family of “double” path variables (defined in G1 but implicitly
related to a path in G2), instead of two families, which is somehow easier.

5 CONCLUDING REMARKS

In this paper we have introduced a compact formulation for the CMLND-U problem. Based
on this formulation, we have derived two different path formulations for the problem. The first
one considers an explicit decomposition approach, and induces a column generation procedure

requiring two pricing sub-problems. The second model, namely aggregated path formulation,
attempts to give an implicit decomposition of the problem, where the virtual layer includes in-
formations of the physical layer. This is allowed by a new family of path variables that have a

specific structure and can be priced out with a unique subproblem. We have devised a Branch-
and-Price algorithm to solve each of the formulations and compared the obtained results to show
empirically that they are more efficient than a Branch-and-Bound for the compact formulation.

Finally, we have presented some experiments to show the effectiveness of our approach and to
compare both algorithms.

We could see that both Branch-and-Price algorithms perform generally well on the tested in-
stances but can be still enhanced. Indeed, Several interesting perspectives can be considered to

boost their performances. For instance, we could consider more sophisticated branching strat-
egy to handle the size of Branch-and-Price tree concerning the first path formulation. Besides,
a deeper investigation of the pricing problem for the aggregated formulations should enable to

better control the column generation procedure. Finally, a good primal heuristic should allow to
prune much more efficiently the nodes of the tree whose exploration is not relevant.

ACKNOWLEDGMENTS

Authors are very grateful to the anonymous referees for their constructive comments on a previ-

ous version of the paper.

REFERENCES

[1] http://www.informatik.uni-koeln.de/abacus/.

[2] http://www-01.ibm.com/software/integration/optimization/

cplex-optimizer/.

[3] AHUJA RK, MAGNANTI TL & ORLIN JB. 1993. Network flows: theory, algorithms, and applica-
tions. Prentice-Hall, Inc.

[4] AVELLA P, MATTIA S & SASSANO A. 2007. Metric inequalities and the network loading problem.
Discrete Optimization, 4(1): 103–114.

[5] BARNHART C, HANE CA & VANCE PH. 2000. Using branch-and-price-and-cut to solve origin-
destination integer multicommodity flow problems. Oper. Res., 48(2): 318–326.

Pesquisa Operacional, Vol. 37(3), 2017

�

�

“main” — 2018/2/5 — 12:52 — page 570 — #26
�

�

�

�

�

�

570 COLUMN GENERATION BASED ALGORITHMS FOR THE CAPACITATED MULTI-LAYER NETWORK DESIGN

[6] BELOTTI P, CAPONE A, CARELLO G & MALUCELLI F. 2008. Multi-layer mpls network design:
The impact of statistical multiplexing. Computer Networks, 52(6): 1291–1307.

[7] BENHAMICHE A, MAHJOUB AR, PERROT N & UCHOA E. Capacitated multi-layer network de-
sign with unsplittable demands: Polyhedra and branch-and-cut (technical report). https://www.
lamsade.dauphine.fr/sites/default/IMG/pdf/cahier_383.pdf, 2017.

[8] BORNE S, GOURDIN E, LIAU B & MAHJOUB AR. 2006. Design of survivable ip-over-optical net-
works. Annals of Operations Research, 146(1): 41–73.

[9] DAHL G, MARTIN A & STOER M. 1999. Routing through virtual paths in layered telecommunication
networks. Operations Research, 47(5): 693–702.

[10] DIJKSTRA EW. 1959. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1): 269–271, December.

[11] FEILLET D. 2010. A tutorial on column generation and branch-and-price for vehicle routing prob-
lems. 4OR, 8(4): 407–424.

[12] FORTZ B & POSS M. 2009. An improved benders decomposition applied to a multi-layer network
design problem. Operations Research Letters, 37(5): 359–364.

[13] HOLLER H & VOSS S. 2006. A heuristic approach for combined equipment-planning and routing in
multi-layer sdh/wdm networks. European Journal of Operational Research, 171(3): 787–796.

[14] HU JQ & LEIDA B. 2004. Traffic grooming, routing, and wavelength assignment in optical wdm
mesh networks. In: Proceedings of the IEEE INFOCOM 2004, pages 495–501.

[15] KNIPPEL A & LARDEUX B. 2007. The multi-layered network design problem. European Journal of
Operational Research, 183(1): 87–99.

[16] MATTIA S. 2013. A polyhedral study of the capacity formulation of the multilayer network design
problem. Networks.

[17] ORLOWSKI S, KOSTER AMCA, RAACK C & WESSÄLY R. 2007. Two-layer network design by
branch-and-cut featuring mip-based heuristics. In: Proceedings of the INOC 2007 also ZIB Report
ZR-06-47, Spa, Belgium.

[18] ORLOWSKI S, RAACK C, KOSTER AMCA, BAIER G, ENGEL T & BELOTTI P. 2010. Branch-and-
cut techniques for solving realistic two-layer network design problems. In: Graphs and Algorithms
in Communication Networks, pages 95–118. Springer Berlin Heidelberg.

[19] RAGHAVAN S & STANOJEVIĆ D. 2011. Branch and price for wdm optical networks with no bifur-
cation of flow. INFORMS J. on Computing, 23(1): 56–74.

[20] RYAN DM & FOSTER BA. 1981. An integer programming approach to scheduling. In: Computer
Scheduling of Public Transport: Urban Passenger Vehicle and Crew Scheduling, pages 269–280.

[21] VANDERBECK F. 1994. Decomposition and column generation for integer programming. PhD thesis,
Université Catholique de Louvain, Belgium.

[22] VANDERBECK F. 2000. On dantzig-wolfe decomposition in integer programming and ways to per-
form branching in a branch-and-price algorithm. Operations Research, 48(1): 111–128.

[23] VANDERBECK F. 2005. Implementing mixed integer column generation. In Guy Desaulniers, Jacques
Desrosiers, and MariusM. Solomon, editors, Column Generation, pages 331–358. Springer US.

[24] ZHU K & MUKHERJEE B. 2002. Traffic grooming in an optical wdm mesh network. IEEE Journal

on selected areas in communications, 20(1): 122–133.

Pesquisa Operacional, Vol. 37(3), 2017

