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ABSTRACT. The purpose of this study is to verify the efficiency and the applicability of the Least-Squares

Monte Carlo method for pricing American interest rate options. Results suggest that this technique is a

promising alternative to evaluate American-style interest rate options. It provides accurate option price

estimates which are very close to results provided by a binomial model. Besides, actual implementation

can be easily adapted to accept different interest rate models.
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1 INTRODUCTION

In spite of the increasing variety of financial instruments with American-style embedded options
there isn’t a closed-form valuation formula for pricing these securities. In general, the valuation
of these types of derivatives requires not only the choice of a stochastic process to represent the
interest rate evolution, but also the description of the fixed income instrument price behavior.
This article suggests the use of the Least-Squares Monte Carlo method, proposed by Longstaff
& Schwartz (2001) as a solution for the valuation of American-style interest rate options. The
Least-Squares Monte Carlo method is a well-suited technique for pricing fixed income American
options, because it accepts many stochastic processes for the interest rate and supports several
risk factors, such as the credit risk and the liquidity risk.

A technique widely applied in the valuation of American interest rate options is the binomial
model. Rendleman & Bartter (1980) use this technique for pricing European and American
bond options. Their model supposes that the short rate follows the geometric Brownian motion
dynamics. Nelson & Ramaswamy (1990) present the binomial model as a practical and effective
tool for pricing interest rate options. Through the development of a general technique of building
recombining binomial trees, the authors suggest that the method can be applied to all dynamics
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used for modeling the interest rate behavior. Black, Derman & Toy (1990) apply the binomial
model to evaluate options embedded in American Treasury Bonds, considering that the short
rate follows a lognormal distribution. Boyle, Evnine & Gibbs (1989) present a multidimensional
extension of the binomial model that can be used for pricing European and American options
subject to several risk factors. However, it is necessary to stand out that the binomial model is
hardly used for pricing interest rate options subject to two or more risk factors, since the number
of nodes in the tree grows exponentially with the number of risk factors.

The use of Monte Carlo simulation for pricing American-style options still remains a challenge
in finance. Bossaerts (1989) was one of the first authors to suggest that the method could be
applied to value American options. Bossaerts’ approach, known as parametric approach, con-
sists of modeling the exercise region of an American option by a parametric function and then
finding the highest value of the option in this area. A few years later, Broadie & Glasserman
(1997) presented another simulation approach for pricing American-style options: the random
tree approach. Both approaches, however, have strong limitations. The parametric approach can’t
always be applied to price securities with several risk factors, while the random tree approach
is not appropriate for pricing American-style options with six or more exercise dates. In 2001,
Longstaff & Schwartz developed a promising technique to evaluate American-style options by
simulation that supports any number of risk factors and exercise dates: the Least-Squares Monte
Carlo method. The purpose of this method is to provide the optimal exercise strategy and to value
the American type option, through an optimization algorithm based on least-squares regression.
The authors applied this technique to evaluate American put options, American-Asian options,
swaptions and cancelable index amortizing swaps.

The purpose of this study is to verify the efficiency and the applicability of the Least-Squares
Monte Carlo (LSM) method for pricing American-style interest rate options. The efficiency of
LSM method is evaluated by comparing its estimates with the results provided by a binomial
model. All options in this study are American options embedded in zero-coupon fixed income
bonds. In general, it intends to evaluate the efficiency of LSM algorithm under different in-
terest rate dynamics and, consequently, under different fixed income bond dynamics. Although
the algorithm has been originally developed to evaluate American options subject to several
risk factors, it is important to stand out that the options evaluated here are subject to only one
risk factor: the short rate risk. The short rate behavior will be represented by three popular
dynamics whose binomial representations are available in the literature: Rendleman & Bart-
ter (1980), Vasicek (1977) and Cox, Ingersoll & Ross (1985) models. The construction of the
Binomial examples of these dynamics are provided by Cescato (2008). The main differences
between these models are their short rate probability distribution functions. In the Rendleman
and Bartter model, the short rate follows a geometric Brownian motion dynamics represented by
a lognormal distribution. In Vasicek & Cox, Ingersoll & Ross (CIR) models, the short rate fol-
lows, respectively, a normal distribution and a non-centralized qui-square distribution. Besides,
it is necessary to say that the short rate exhibits mean reversion behavior, which is realistic and
supported by the economic theory.
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2 METHODOLOGY

The Least-Squares Monte Carlo (LSM) method is a technique for pricing American options that
combines Monte Carlo Simulation with an optimization algorithm based on regression. Accord-
ing to Longstaff & Schwartz (2001), it is a flexible approach that supports several risk factors and
accepts any type of dynamics for those factors. Simplicity, easiness to apply and computational
efficiency are other advantages of their technique. On the other hand, as every simulation method
it can produce biased estimates for option prices when the number of trials is small.

The purpose of LSM method is to provide the optimal exercise strategy of the American option
and, consequently, its price. The intuition behind the method is that the holder of an American
option decides to exercise it by comparing the payoff from immediate exercise with the expected
payoff from continuation, that is, the expected option value if it’s not exercised. In other words,
the estimation of the conditional expectation function for each exercise date defines the optimal
exercise strategy of the option. The expected payoff from continuation can be estimated by a
least-squares regression, in which the independent variables are basic functions of option state
variables and the dependent variable is the discounted payoff from keeping the option alive and
exercising it at future dates.

The use of LSM algorithm for pricing American-style interest rate options requires the choice of
the dynamics that represents the option state variables behavior and the description of option un-
derlying asset dynamic under the risk-neutral measures. In the American put valuation example
presented by Longstaff & Schwartz (2001), such definitions are made at the same time, since the
option state variable and the option underlying asset are the same variable: the stock price. In
the particular case of interest rate options evaluated here, the state variable is the short rate and
the underlying asset is the zero-coupon bond, whose stochastic process under the risk-neutral
measure is:

Bt (T ) = FV .E Q
t



exp



−

T∫

t

r(s).ds







 (1)

where: Bt (T ) is the price, at time t , of a zero-coupon bond with face value FV , maturing at time
T , r is the short rate and Q is the risk-neutral measure.

One of the critical issues of applying the algorithm for pricing the interest rate options consid-
ered here is to correctly describe the stochastic process for the bond price, through the analytic
resolution of Equation 1. In other words, the success of the algorithm depends on the prop-
erly generation of paths for the bond, starting from the simulation of the short rate paths. The
formulae applied to generate these paths are presented in Appendixes I and II.

2.1 A Simple Example of LSM Algorithm

In order to illustrate the use of LSM method for pricing American-style interest rate options, we
present a simple example of the valuation of an American interest rate put embedded in a zero-
coupon bond. In this example, short rate follows the Vasicek dynamics. Exhibit 1 summarizes
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the data used in the illustration. The option can be exercised at any time prior or equal to its
maturity date, except at time Zero.

Exhibit 1 – Example of Valuation of an American Interest Rate Put by The LSM Method.

FV Face Value of The Bond $ 100

T2 Time to Maturity of The Bond 2 years (504 working days)

T Time to Maturity of The American Put 1 year (252 working days)

K Strike Price of The American Put $ 81

n2 Simulation Number of Periods until The Bond Maturity 8*

n Simulation Number of Periods until Put Maturity 4

N Number of Simulated Paths for The Short Rate 8

r0 Annual Short Rate at Time Zero (continuous compounding) 15% per annum

1t Time Interval (year’s fraction) 0.25(= T2/n2)

* Each period is equal to a quarter of the year.

The first step of the algorithm consists in generating paths for the short rate using the discreet
version of Vasicek dynamics’ stochastic differential equation, i.e., Appendix I, Equation (3),
from Time Zero until the expiration time of the option. Exhibit 2 shows the simulated values for
the short rate in each one of the eight paths.

Exhibit 2 – Simulated Values for The Short Rate.

Path
Time 0 Time 1 Time 2 Time 3 Time 4

(t = 0) (t = 0.25) (t = 0.5) (t = 0.75) (t = 1)

1 0.1500 0.1798 0.1760 0.2951 0.4173

2 0.1500 0.1361 0.1842 0.1952 0.1713

3 0.1500 0.2453 0.2790 0.2885 0.3205

4 0.1500 0.2427 0.3260 0.1960 0.1662

5 0.1500 0.1385 0.1460 0.0818 0.0603

6 0.1500 0.0356 0.1354 0.2038 0.1760

7 0.1500 0.1408 0.1257 0.1459 0.1607

8 0.1500 0.1000 0.1662 0.1796 0.2814

The next step is to generate bond prices from Time Zero until Time 4, the expiration time of
the option. The bond prices follow the Vasicek dynamics summarized in Appendix II Equa-
tions (6), (7) and (8). Exhibit 3 presents the simulated bond prices for each path. The put value
at the expiration time is equal to the difference between the strike price and the bond price for
the paths where this difference is positive, and zero for the other cases. In Path 1, for example,
since the bond price at the option maturity ($71.8814) is smaller than the strike price ($81), the
put value at the expiration time is ($81 − $71.8814) = $9.1186. In Path 2, since the bond price
at the option maturity ($85.1444) is greater than the strike price ($81), the put value at maturity
is zero. Bond values for which the option can be exercised are marked with an asterisk. For
instance, at the expiration time (Time 4), the option can be exercised in Paths 1, 3 and 8.
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Exhibit 3 – Bond Prices.

Path
Time 0 Time 1 Time 2 Time 3 Time 4

(t = 0) (t = 0.25) (t = 0.5) (t = 0.75) (t = 1)

1 75.4940 75.8527 * 78.8476 * 74.4078 * 71.8814 *

2 75.4940 79.0407 * 78.2865 * 80.5227 * 85.1444

3 75.4940 71.3172 * 72.0613 * 74.7971 * 76.8335 *

4 75.4940 71.4915 * 69.1654 * 80.4688 * 85.4395

5 75.4940 78.8621 * 80.9409 * 88.0709 91.8996

6 75.4940 86.8806 81.6938 79.9789 * 84.8681

7 75.4940 78.6918 * 82.3856 83.7203 85.7658

8 75.4940 81.7721 79.5232 * 81.5187 78.9295 *

For each simulated path, starting from Time 3, the time immediately before the expiration time
until Time 1, the algorithm chooses between exercising the option at that time or waiting to
exercise the option in the future. Therefore, at each time, from Time 3 to Time 1, the algorithm
compares the payoff from immediate exercise with the expected option payoff from continuation.
If the payoff from immediate exercise is greater than the payoff from continuation, the option
is exercised. Otherwise, the option stays alive. The payoff from continuation at each time is
estimated by a least-squares regression. In this example, a multiple regression is used, where
the independent variables are the short rate (X) at a given time and its square (X2), while the
dependent variable (Y ) is the discounted value of cash flows due to exercise of the option at the
following periods.

The regression estimated function is called Conditional Expectation Function. Only the paths
where the option can be exercised are used in the estimation procedure. At Time 3, the option
can be exercised in Paths 1, 2, 3, 4 and 6. Exhibit 4 shows the values of the dependent variable
(Y ) and the independent variables (X and X2) used for estimating the Conditional Expectation
Function at Time 3. The value of the dependent variable (Y ) at Time 3 is the payoff from
exercising the option at Time 4 discounted back to Time 3 by the short rate at Time 3. For
example, in the case of Path 1, in which the option value at the expiration time is $9.1186,
the value of Y is $9.1186 x e −(0.2951x0.25) = $8.4700. The Conditional Expectation Function
estimated at Time 3 is presented at the bottom of Exhibit 4.

Exhibit 4 – Time 3 Data used for Estimating the Conditional Expec-

tation Function and the Estimated Conditional Expectation Function.

Path Y∗ Short rate (X) Short rate2 (X2)

1 8.4700 0.2951 0.0871

2 0.0000 0.1952 0.0381

3 3.8766 0.2885 0.0832

4 0.0000 0.1960 0.0384

6 0.0000 0.2038 0.0415

* Present value of cash flows due to exercise of the option at
Time 4 discounted back to Time 3 by the short rate at Time 3.

E[Y |X ] = 147.39 − 1295.11X + 2780.38X2
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The Estimated Conditional Expectation Function is used to calculate the expected payoff
from continuation for the paths where the option can be exercised (1, 2, 3, 4 and 6). Exhibit
5 presents the payoffs from immediate exercise, the expected payoffs from continuation and
the exercise decisions made at Time 3. The payoff from immediate exercise at Time 3 is equal
to the difference between the option strike price and the bond price at Time 3. For example,
in Path 1, the payoff from immediate exercise is ($81 − $74.4078) = $6.5922. The expected
payoff from continuation of the option at Time 3 is ($147.39−$1295.11×0.2951+$2780.38×
(0.2951)2) = $7.3424. Since this value is greater than the payoff from immediate exercise, the
resulting decision is to wait to exercise the option in the future. Exhibit 5 summarizes Time 3
exercise results.

Exhibit 5 – Time 3 Optimal Early Exercise Decision.

Path
Immediate Expected payoff

Decision
exercise from continuation

1 6.5922 7.3424 <=== wait

2 0.4773 0.5320 <=== wait

3 6.2029 5.1783 <=== exercise

4 0.5312 0.3563 <=== exercise

6 1.0211 –1.0624 <=== exercise

Exhibit 6 presents the resulting option cash flows for the exercise procedures obtained above.
Path 1 cash flow at Time 3 is zero because the option is not exercised at this time, and the cash
flow at Time 4 (expiration time) is $9.1186, the option value at expiration time. In this case, the
waiting decision is followed by an exercise decision. For Path 2, the waiting decision at Time 3 is
not followed by an exercise decision at Time 4, because the bond price at expiration ($85.1444)
is greater than the option strike price ($81).

Exhibit 6 – Time 3 Option Partial Cash Flows.

Path
Time 3 Time 4

(t = 0.75) (t = 1)

1 – 9.1186

2 – –

3 6.2029 –

4 0.5312 –

5 – –

6 1.0211 –

7 – –

8 – 2.0705

The above described procedure is repeated for Times 2 and 1. Bond prices presented in Exhibit
3 show that, at Time 2, the option can be exercised for Paths 1, 2, 3, 4, 5 and 8. Exhibit 7
presents the values of the dependent variable (Y ) and the independent variables (X and X2) used
for estimating the Conditional Expectation Function of the option at Time 2 and its equation.
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Exhibit 7 – Time 2 Data Used for Estimating the Conditional Expectation

Function and The Estimated Conditional Expectation Function.

Path Y∗ Short rate (X) Short rate2(X2)

1 8.1055 0.1760 0.0310

2 0.0000 0.1842 0.0339

3 5.7850 0.2790 0.0778

4 0.4896 0.3260 0.1063

5 0.0000 0.1460 0.0213

8 1.8990 0.1662 0.0276

* Present value of cash flows due to exercise of the option at
Times 3 or 4 discounted back to Time 2.

E[Y |X ] = −34.88 + 345.67X − 724.83X2

Exhibit 8 shows the payoffs from immediate exercise, the expected payoffs from continuation
and the exercise decisions for Time 2. According to these decisions, the algorithm builds the
partial cash flows of all paths starting from Time 2, presented in Exhibit 9. Paths 1, 6 and 8 cash
flows are maintained, while Paths 3 and 4 cash flows are modified, due to the decisions made by
the algorithm at Time 2.

Exhibit 8 – Time 2 Optimal Early Exercise Decision.

Path
Immediate Expected payoff

Decision
exercise from continuation

1 2.1524 3.4996 <=== wait

2 2.7135 4.1915 <=== wait

3 8.9387 5.1353 <=== exercise

4 11.8346 0.7758 <=== exercise

5 0.0591 0.1309 <=== wait

8 1.4768 2.5460 <=== wait

Exhibit 9 – Time 2 Option Partial Cash Flows.

Path
Time 2 Time 3 Time 4

(t = 0.5) (t = 0.75) (t = 1)

1 – – 9.1186

2 – – –

3 8.9387 – –

4 11.8346 – –

5 – – –

6 – 1.0211 –

7 – – –

8 – – 2.0705
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At Time 1, according to Exhibit 3, the option can be exercised in Paths 1, 2, 3, 4, 5 and 7.
Exhibit 10 shows the values of the dependent variable (Y ) and the independent variables (X and
X2) used for estimating the Conditional Expectation Function of the option at Time 1 and its
equation. Exhibit 11 presents the payoffs from immediate exercise, the expected payoffs from
continuation and the decisions about the early exercise of the option at Time 1.

Exhibit 10 – Time 1 Data Used for Estimating the Conditional Expectation

Function and The Estimated Conditional Expectation Function.

Path Y∗ Short rate (X) Short rate2 (X2)

1 7.7492 0.1798 0.0323

2 0.0000 0.1361 0.0185

3 8.4071 0.2453 0.0601

4 11.1380 0.2427 0.0589

5 0.0000 0.1385 0.0192

7 0.0000 0.1408 0.0198

* Present value of cash flows due to exercise of the option at
Times 2, 3 or 4 discounted back to Time 1.

E[Y |X ] = −62.91 + 660.27X − 1485.75X2

Exhibit 11 – Time 1 Optimal Early Exercise Decision.

Path
Immediate Expected payoff

Decision
exercise from continuation

1 5.1473 7.7721 <=== wait

2 1.9593 -0.5774 <=== exercise

3 9.6828 9.6555 <=== exercise

4 9.5085 9.8231 <=== wait

5 2.1379 0.0288 <=== exercise

7 2.3082 0.5923 <=== exercise

Finally, the algorithm provides the Option Cash Flow Matrix from Time 1 until the expiration
time, for all the eight simulated paths. The American put estimated value provided by the algo-
rithm is $4.5518, obtained by averaging the discounting cash flows presented in Exhibit 12.

2.2 The Script for Pricing American-Style Interest Rate Options by The LSM Method

The script used for pricing American-style interest rate options is summarized in Exhibit 13.
It’s a synthesis of Section 2.1 Example, constructed to facilitate the implementation of LSM
method.

2.3 Data and Conventions

Exhibit 14 presents the stochastic differential equations regarding the interest rate dynamics used
in this study. The dynamics are implemented, intentionally, with the same values of the diffu-
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Exhibit 12 – Option Cash Flow Matrix.

Path
Time 1 Time 2 Time 3 Time 4

(t = 0.25) (t = 0.5) (t = 0.75) (t = 1)

1 – – – 9.1186

2 1.9593 – – –

3 9.6828 – – –

4 – 11.8346 – –

5 2.1379 – – –

6 – – 1.0211 –

7 2.3082 – – –

8 – – – 2.0705

Exhibit 13 – Script for Pricing American-Style Interest Rate Options by The LSM Method.

1. Generate 1,000 (or 10,000) paths for the short rate from Time Zero until the expiration time

of the option, using the formulas presented in Appendix I.

2. Generate 1,000 (or 10,000) paths for the fixed income bond price from Time Zero until the

expiration time of the option, using the formulas presented in Appendix II.

3. Calculate the option payoff at the expiration time for each simulated path.

4. From the time immediately before the expiration time until Time 1:

– Estimate the Conditional Expectation Function by least-squares regression.

– Calculate the option payoff from immediate exercise for the paths where the option

can be exercised.

– Calculate the expected option payoff from continuation for the paths where the option

can be exercised.

– Decide to exercise the option if the expected payoff from continuation is smaller than

the payoff from immediate exercise.

– Build the partial cash flows of all paths, starting from current time until the expiration

time of the option.

5. Calculate the option value estimate corresponding to one simulation run by averaging the

discounting cash flows of all paths.

6. Execute 20 simulation runs in order to get 20 estimates for the American interest rate

option. The final estimate of the American interest rate option is obtained by averaging

the 20 estimates. The standard error of the final estimate is obtained by calculating the

standard deviation of the 20 estimates.
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sion coefficient, in order to present a more similar behavior. Besides, the drift of Rendleman
and Bartter model was eliminated, assuring that the short rate exhibits the same mean reversion
behavior found in Vasicek and CIR models.

Exhibit 14 – Interest Rate Dynamics.

Rendleman and Bartter Model: dr = μrdt + σrdz

σ Diffusion coefficient
10% per annum

20% per annum

μ Drift coefficient
0.5% per annum (= σ 2/2)∗

2% per annum (= σ 2/2)∗

Vasicek Model: dr = a(b − r)dt + σdz

b Annual long-term interest rate (continuous compounding) 15% per annum

a Reversion speed of short rate to long-term interest rate 80%

σ Diffusion coefficient
10% per annum

20% per annum

CIR Model: dr = a(b − r)dt + σ
√

rdz

b Annual long-term interest rate (continuous compounding) 15% per annum

a Reversion speed of short rate to long-term interest rate 80%

σ Diffusion coefficient
10% per annum

20% per annum

Note: r is the short rate, dt is the infinitesimal time interval and dz is the random component,

extracted from a Normal distribution with mean zero and variance dt (Wiener process).

*The choice of these values for the drift coefficient eliminates the process trend.

Exhibit 15 – Data Used in Simulations and Binomial Trees.

FV Face value of the bond $100

T2 Times to maturity of the bond
42 working days (0.17 years)

84 working days (0.33 years)

T Times to maturity of the options
21 working days (0.08 years)

42 working days (0.17 years)

K
Strike prices of the calls ($) 94.5, 95, 95.5 and 96

Strike prices of the puts ($) 99.5, 100, 100.5 and 101

r0 Annual short rate at Time Zero (continuous compounding) 15% per annum

ns Number of steps (dimensions) 168

1t Time interval (year’s fraction) (T2/252)/ns

N Number of trials of each simulation run (paths)
10,000 (Vasicek and CIR)

1,000 (Rendleman and Bartter)

nr Number of simulation runs 20

Exhibit 15 summarizes the data used in the simulation procedures and for the construction of
the binomial trees. Short term bonds are intentionally designed, so that the time to maturity of
the embedded American Options are close to the Stock Options negotiated in BM&F. Rendle-
man and Bartter binomial model trees are built based on their work (1980), while the Vasicek
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and CIR trees are built based on the methodology developed by Nelson & Ramaswamy (1990).
Regarding the implementation of LSM method, the independent variables used for estimating
the Conditional Expectation Function are the short rate (X), its square (X2) and its cube (X3),
as suggested by Longstaff & Schwartz. Besides, in order to minimize the standard error of the
estimates provided by the algorithm, simulations are executed with a variance reduction tech-
nique and with, at least, 1,000 paths. The variance reduction technique used in this study is the
Descriptive Sampling (DS), suggested by Saliby (1990) as a sampling procedure that is better
than a Simple Random Sampling (SRS) regarding statistical accuracy and simulation processing
time. Saliby, Gouvêa & Marins (2007) use Descriptive Sampling on a Monte Carlo simulation
to price European stock options and conclude that the estimates provided by this technique are
more accurate than the estimates provided by SRS.

2.4 Rendleman & Bartter, Vasicek and CIR Dynamic Preliminary Tests

In order to test the implementation of the discreet versions of interest rate dynamics as well as the
implementation of bond stochastic processes we performed several preliminary tests focusing on
the valuation of European interest rate options by simulation. Simulations using the Rendleman
and Bartter dynamics are executed with only 1,000 paths for short rates and bond prices, because
bond price calculations require a high computational time.

Results are shown in Tables 1 and 2. The observed biases are very close to zero, indicating
that the European interest rate option estimates provided by Monte Carlo Simulation converge
to the available analytic solutions and to the results provided by the binomial model. Besides,
standard errors and the root mean squared errors (RMSE) are very small indicating that estimates
are accurate. For all dynamics, an increase of the diffusion coefficient from 10% to 20% does
not affect the estimate bias. Indeed, test repetition with other values for the diffusion coefficient
shows that the estimate bias is not affected by the variation of this parameter. Test results also
reveal that varying the strike price of the in-the-money or at-the-money options does not impact
the standard error of the estimates. A complete analysis of the results for the European interest
rate options is presented by Cescato (2008).

3 RESULTS

Least-Squares Monte Carlo estimates for the values of the American interest rate options are
shown in Tables 3 and 4. The estimates are generated through the simulation of 1,000 (or 10,000)
paths for the short rate, with 168 steps. Descriptive Sampling (DS) variance reduction technique
is used in all simulations. The valuation of American options regarding Vasicek and CIR dy-
namics required a time around 10 minutes using a 2,8 GHz Phenom II X4 processor, while the
valuation of American options regarding Rendleman and Bartter dynamics required 4 hours and
20 minutes using the same processor. The estimates provided by the method are reliable, since
they are very close to the results provided by the binomial model, regardless of the dynamics
used. Besides, the accuracy of estimates is high, since the standard errors and the root mean
squared errors (RMSE) are very close to zero. The quality of estimates is not affected by vary-
ing the diffusion coefficient of the interest rate dynamics, but it reduces as the options exercise
probability decreases, as it is showed in Figures 1 and 2.
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Figure 1 – Values of an American Put Embedded in a Zero-Coupon Fixed Income Bond for Different

Diffusion Coefficients of Vasicek Dynamics. The American put value curve provided by the binomial

model and the American put value curve provided by the LSM method are overlapped, i.e., the convergence

of Least-Squares Monte Carlo estimates to results provided by the binomial model does not depend on the

diffusion coefficient value of Vasicek dynamics. The estimates are generated through the simulation of

10,000 paths (with 168 steps) for the short rate, using Descriptive Sampling. The bond’s face value is $100

and it expires in 4 months (84 working days). The strike price of the American put is $96, the current short

rate is 15% per annum, the long-term interest rate is 15% per annum and the reversion speed of short rate

to long-term interest rate is 80%.

Figure 2 – Relative Standard Errors of The Estimated Values of an American Call Embedded in a Zero-

Coupon Fixed Income Bond. Short rate follows the CIR dynamics. The relative standard error of the

Least-Squares Monte Carlo estimate is defined as the ratio between the standard error of the estimate and

the estimate. The relative standard error of the estimate grows as the strike price of the call increases.

The results are generated through the simulation of 10,000 paths (with 168 steps) for the short rate, using

Descriptive Sampling. The bond’s face value is $100 and it expires in 4 months (84 working days). The

current short rate is 15% per annum, the long-term interest rate is 15% per annum, the reversion speed of

short rate to long-term interest rate is 80% and the diffusion coefficient of CIR dynamics is 20% per annum.
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Results presented in Tables 1 and 3 reveal that there is no value to the right of the early exercise
of an American interest rate call since their values are very close to the European interest rate
calls with the same strike price. According to the literature, this occurs because the payoff from
the early exercise of an American call is always smaller than the derivative value. Indeed, this
conclusion applies to any dynamics which does not accept negative interest rates, like Rendleman
and Bartter and CIR dynamics, but it does not apply to the Vasicek dynamics. Figure 3 reveals
that, in the specific case of Vasicek dynamics, as the diffusion coefficient reaches higher levels,
the values of the American calls depart from the values of the European calls, i.e., it becomes
better to exercise the American call before the expiration time. Regarding the American puts,
Tables 2 and 4 reveal that their values are greater than the values of the corresponding European
puts. For example, the values of the American puts with strike price equal to $100 are about
twice the values of the European puts with the same strike price. The difference between the
value of an American put and the value of a European put with the same strike price is explained
by the value due to the right of the early exercise. Unlike the European put, which can only be
exercised at the expiration time, the American put can be exercised at any time before or equal
to the expiration time. As the early exercise of an American put can provide a cash flow greater
than the value paid for the option, the value of an American put will always be greater than the
value of a European put with the same strike price.

Figure 3 – Values of an American Call Embedded in a Zero-Coupon Fixed Income Bond for Different

Diffusion Coefficients of Vasicek Dynamics. As the diffusion coefficient reaches higher levels, it becomes

better to exercise the American call before the expiration. The estimates are generated through the simula-

tion of 10,000 paths (with 168 steps) for the short rate, using Descriptive Sampling. The bond’s face value

is $100 and it expires in 4 months (84 working days). The strike price of the American call is $97, the

current short rate is 15% per annum, the long-term interest rate is 15% per annum and the reversion speed

of short rate to long-term interest rate is 80%.

Another interesting result is that the estimates of the American puts are sensible to the time
interval used in the simulations. It is verified that, as the binomial model results, the Least-
Squares Monte Carlo method provides biased estimates for these options when the time interval
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is not very small. This bias can be eliminated increasing the number of dimensions used in the
simulations, as illustrated in Figure 4.

Figure 4 – Values of an American Put Embedded in a Zero-Coupon Fixed Income Bond for Different

Numbers of Simulation Steps (Dimensions). Short rate follows the CIR dynamics. The Least-Squares

Monte Carlo estimates converge to results provided by the binomial model, regardless of the number of

dimensions used. The estimates are generated through the simulation of 1,000 paths for the short rate,

using Descriptive Sampling. The bond’s face value is $100 and it expires in 4 months (84 working days).

The strike price of the American put is $99.5, the current short rate is 15% per annum, the long-term interest

rate is 15% per annum, the reversion speed of short rate to long-term interest rate is 80% and the diffusion

coefficient of CIR dynamics is 10% per annum.

4 CONCLUSION

The purpose of this study is to verify the efficiency and the applicability of the Least-Squares
Monte Carlo (LSM) method for pricing American interest rate options. Rendleman and Bartter,
Vasicek and CIR models, which are very popular, are used to model the interest rate behavior.
Results from several simulations show that the LSM method is an effective tool for pricing Amer-
ican interest rate options. It provides accurate estimates which are very close to results provided
by the binomial model.

Concerning the possibility of early exercise, results show that the American interest rate put
values are greater than the European put values with the same strike price in all simulations.
Regarding the American calls, results suggest that the payoff from early exercise is tied to the
dynamics used to model the interest rate behavior. For the dynamics that accepts negative interest
rates, the case of Vasicek model, it can be profitable to exercise the American call before the
expiration time. Otherwise, if the chosen dynamics does not accept negative interest rates, the
case of Rendleman and Bartter and CIR models, it will never be better to exercise the American
call before maturity.

The flexibility of LSM method and its large utility for pricing American-style interest rate options
are verified. Concerning the flexibility, the LSM method has proven to be much better than the
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binomial model. Unlike the binomial model, the LSM method, once implemented, can be easily
adapted to accept any new interest rate dynamics. The flexibility of LSM method makes itself an
important technique for pricing options and derivatives subject to market risk, since there is no
consensus among financial agents about which dynamics must be used to model the interest rate
behavior.
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APPENDIX I – FORMULAE USED TO GENERATE SHORT RATE PATHS

Rendleman and Bartter Model

ri = ri−1 e

[
(μ− σ 2/2)∗ 1t + σ∗

√
1t∗ Zi

]

(2)

where:

ri is the short rate value at Step (Period) i ,

ri−1 is the short rate value at Step (Period) i − 1,

1t is the time interval (year’s fraction),

μ is the drift coefficient of the dynamics,

σ is the diffusion coefficient of the dynamics and

Zi is the Standard Normal random variable of Step (Period) i .

Vasicek Model

ri = (1 − a.1t).ri−1 + a.b.1t + σ.
√

1t . Zi (3)

where:

ri is the short rate value at Step (Period) i ,

ri−1 is the short rate value at Step (Period) i − 1,

1t is the time interval (year’s fraction),

b is the long-term interest rate,

a is the reversion speed of short rate to long-term interest rate,

σ is the diffusion coefficient of the dynamics and

Zi is the Standard Normal random variable of Step (Period) i .

CIR Model

ri = (1 − a.1t).ri−1 + a.b.1t + σ.
√

ri−1.
√

1t . Zi (4)

where:

ri is the short rate value at Step (Period) i ,

ri−1 is the short rate value at Step (Period) i − 1,

1t is the time interval (year’s fraction),

b is the long-term interest rate,

a is the reversion speed of short rate to long-term interest rate,

σ is the diffusion coefficient of the dynamics and

Zi is the Standard Normal random variable of Step (Period) i .
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APPENDIX II – FORMULAE USED TO GENERATE FIXED INCOME BOND PATHS

Rendleman and Bartter Model

P(t, T ) = FV . 1
N .

N∑

j=1
exp

(

−
(T/1t)−1∑

i=t/1t
r j (i).1t

)∗

(5)

where:

P(t, T ) is the price, at time t (or Period t/1t), of a zero-coupon bond with face

value FV maturing at time T ,

r j (i) is the short rate value at Period i in path j ,

1t is the time interval (year’s fraction) and

N is the number of simulated paths, set at 200, due to limitations of computational

resources used in this study.

*Due to the absence, in literature, of a closed-form formula for calculating the fixed

income bond price, the bond price at time t is estimated through the generation of

200 paths for the short rate, starting from time t (until time T ), for each simulated

short rate path.

Vasicek Model

P(t, T ) = FV .A(t, T ).e−B(t,T ).r(t) (6)

B(t, T ) = 1−e−a.(T −t)

a (7)

A(t, T ) = exp
[

(B(t,T )−T +t)(a2.b−σ 2/2)

a2 − σ 2.B(t,T )2

4.a

]
(8)

where:

P(t, T ) is the price, at time t (or Period t/1t), of a zero-coupon bond with face

value FV maturing at time T ,

r(t) is the short rate value at time t ,

a is the reversion speed of short rate to long-term interest rate,

b is the long-term interest rate and

σ is the diffusion coefficient of the dynamics.

CIR Model

P(t, T ) = FV .A(t, T ).e−B(t,T ).r(t) (9)

h =
√

a2 + 2.σ 2 (10)

B(t, T ) = 2.(eh.(T −t)−1)

2h+(a+h).(eh.(T −t)−1)
(11)

A(t, T ) =
[

2.h.e(a+h).(T −t)/2

2h+(a+h).(eh.(T −t)−1)

]2ab/σ 2

(12)

where:

P(t, T ) is the price, at time t (or Period t/1t), of a zero-coupon bond with face

value FV maturing at time T ,

r(t) is the short rate value at time t ,

a is the reversion speed of short rate to long-term interest rate,

b is the long-term interest rate and

σ is the diffusion coefficient of the dynamics.
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