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ABSTRACT. In some industrial contexts, such as in the molded pulp, paper, furniture and electrofused
grain industries, items or final products are obtained by processes that can produce several types of prod-
ucts simultaneously. These processes are considered here as any specific mode of operation or configuration
of a production system that can produce several different items simultaneously and in varied quantities. The
production planning and scheduling in these industrial contexts involve decisions of: i) configuration selec-
tion of these processes; ii) production lot sizing of selected configurations; and iii) decisions of scheduling
these selected configurations. In this work, a mixed integer programming model (MIP) is presented to ade-
quately represent this integrated problem, called the general lotsizing and scheduling problem with process
configuration selection. In order to achieve effective production plans at acceptable computational times
in practice, Relax-and-Fix and Fix-and-Optimize heuristics based on this model are also presented. Com-
putational experiments were performed solving the model with an optimization solver and applying the
proposed heuristics in examples inspired in molded pulp, furniture and electrofused grain packaging com-
panies. The results show that MIP-heuristics can solve the problem more effectively (good quality solution
in acceptable time) than simply using the solver for the mathematical model.

Keywords: Lot sizing and scheduling, process configuration selection, mixed integer programming, MIP-
heuristics.

1 INTRODUCTION

The short-term production planning problem for intermittent processes, in general, is a lotsiz-
ing and scheduling problem. Lot sizing involves decisions of how much to produce to meet the
demand of the final products, respecting the production capacities and considering the costs
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2 MODELING AND MIP-HEURISTICS FOR THE GENERAL LOTSIZING

involved. When the change of production from one product to another consumes resources
(time, material, labor) and generates costs dependent on the production sequence of the lots, the
scheduling decisions of the lots become more important. As resource consumption influences lot
sizing, it is increasingly common to integrate these decisions into decision making (Clark et al.,
2011). In some literature reviews, such as in Drexl & Kimms (1997), Jans & Degraeve (2008)
and Copil et al. (2017), the integration of lotsizing problems and scheduling can be observed.

In several industrial contexts, such as the chemical, oil, paper and cardboard, furniture, molded
pulp, electrofused grains, wood and foundry industries, among others, products demanded are, in
general, manufactured using production processes that produce several products simultaneously
(Johnson & Montgomery, 1974). These processes are considered here as any specific mode of
operation or configuration of a production system that can produce several different items simul-
taneously and in varied quantities. For example, in a furniture company, a sheet of wood can be
cut in several ways, i.e., there are several possible cutting patterns to cut the sheets and to obtain a
set of items from each pattern. A cutting pattern can be configured in cutting equipment to obtain
a single type of item in several quantities, or several types of items in different quantities of each
type. In the latter case, each cutting pattern is configured as a simultaneous production process
of several types of items. To produce all the items demanded in a planning horizon, a combina-
tion of process configurations (cutting patterns) must be selected to cut the sheets (Melega et al.,
2018).

In another example, in an electrofused grain company, the raw material (quartz and petroleum
coke, for example) is transformed into grains through a series of industrial processes. These grain
are classified according to their size by a set of different vibrating sieves, which together separate
the grains into different granulometric ranges. That is, each set of sieves allows the simultaneous
production of several grain sizes and in different quantities of each size, similar to the example
of the cutting pattern in the furniture company. To produce the grains in the required sizes and
quantities, various process configurations (i.e., various combinations of different vibrating sieves)
must be selected for use (Luche et al., 2009).

Selecting the configuration and scheduling of these configurations can influence planning and
production control decisions, that is, the quantity and variety of products produced, the con-
sumption of resources and the use of capacities. The problem of this production planning can be
called a general lotsizing and scheduling problem with process configuration selection. Note that
this problem involves configuration selection decisions of these processes, production lotsizing
decisions of the selected configurations and scheduling decisions of these configurations. Each
production lot contains several types of products being produced simultaneously. It should be
noted that this problem is different from the general problem of lot sizing and scheduling, where
each lot contains only one type of product.

Several examples of industries that use processes with simultaneous production of different prod-
ucts have already been studied in the literature. However, these papers are applied to specific
cases of these industries, considering the particularities of their production processes and other
specificities of their planning environments. In general, the solution methods are also customized
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and specific to the cases studied and difficult to adapt to the cases of other industries, whether
specialist or mathematical programming heuristics. Therefore, the objective of this study is to
present a mathematical modelling and solution methods for the general lotsizing and scheduling
problem with process configuration selection. To the best of our knowledge, there are few stud-
ies addressing this problem in the literature in contrast to the traditional lotsizing and scheduling
problem, which has been extensively studied.

The main contributions of this paper are: (i) the presentation of an integer mixed programming
model (MIP) that includes the objectives and constraints of the problem integrated with process
configuration selection. The model must consider inventory balancing constraints to meet de-
mands, capacity constraints and identification of changes in production process configurations.
These process configuration changes result in times and costs dependent on the production se-
quence of the configurations. The proposed model represents the decision making for this type
of problem and presents the traditional constraints adapted from the lotsizing and scheduling
problem, besides the process configuration selection decisions. The objective function aims to
minimize inventory costs, delay and change of production process settings. (ii) The proposal of
a set of heuristics based on mathematical programming as the solution method for the model.
These heuristics can be easily adapted when additional specificities need to be considered in
the problem and incorporated into the mathematical model. Several solving strategies are inves-
tigated that comprise constructive and improvement heuristics, specifically the MIP-heuristics
Relax-and-Fix and Fix-and-Optimize.

In Section 2, we discuss how a process and its configurations compose the industrial environment
of a process industry. The lotsizing and scheduling problem with process configuration selection
is defined in Section 3 and a general mathematical model is proposed. MIP-heuristic solution
methods are proposed for the problem in Section 4. The results of the computational tests, with
examples inspired by molded pulp packaging, furniture and electrofused grain companies, are
presented in Section 5. Finally, the conclusions and future directions of the research are presented
in Section 6.

2 LOTSIZING AND SCHEDULING PROBLEM WITH PROCESS CONFIGURATION
SELECTION

Process industries are those that add value to materials by mixing, separating, forming or chem-
ical reactions (Kopanos & Puigjaner, 2019). Processes can be continuous or batch-based and
generally require strict process control and high investments. Fransoo & Rutten (1994) classify
process industries as presented in Table 1. The production flow differentiates between batch pro-
duction and continuous production. Process industries that produce in batches have a large set
of types of items produced in small quantities. On the other hand, continuous production flow
presents a low variety of items produced in large volumes. The difference between the items is
small since the processing of the items follows very similar production routings and, in general,
the value added in the item is low.
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4 MODELING AND MIP-HEURISTICS FOR THE GENERAL LOTSIZING

Table 1 – Typology for Process Industries. Fransoo & Rutten (1994).

Batch/mix Process/flow

Drugs Speciality Rubber Major Paper Brewers Steel Oil
chemicals chemicals

In these industries, the same process can produce more than one type of product and one type of
product can be produced by several alternative process configurations. Figures 1, 2 and 3 show
examples of this feature in process industries. Figure 1 presents an example of a process used in
the molded pulp packaging industry. This type of industry uses a set of molds to produce pack-
aging for eggs and fruits, made from pulp produced from recyclable paper. In this example, the
selected process configuration can produce 3 different types of products at each mold stamping:
two packs for 12 eggs, one pack for 24 eggs and two packs for 4 fruits. Other mold configura-
tions can be used to produce different types of products and/or in other quantities. An alternative
configuration could produce only 2 different types of products at each stamping: three packs for
12 eggs and four packs for 4 fruits. Having different possible configurations, the sequence of the
configurations and the time of use of each one should be defined.

Figure 1 – Example of a production process configuration in a molded pulp packaging industry.

Figure 2 – Example of a production process configuration in a furniture industry.
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Figure 3 – Example of a production process configuration in a paper industry.

Figures 2 and 3 show the case where the process configuration is a cutting pattern that cuts
larger units (raw material) into smaller units ordered by customers. Figure 2 depicts the case
of a furniture industry, where a sheet of wood (or a pack of sheets) is cut according to a two-
dimensional cutting pattern for the production of items used in furniture assembly. Note that
in this process three types of items are produced in different quantities. Figure 3 shows a one-
dimensional cutting pattern (configuration) in a paper industry, where a large reel of paper is cut
into smaller-sized reels to obtain different products.

Note that, in each case, there may be many possible process configurations to be used, and the
process configuration selection decision must be integrated with the remaining production plan-
ning decisions. Unlike the flexibility problem of Fiorotto et al. (2018), which studies different
known paths in the production process among the available machines, our proposal addresses the
different configurations of a process (mixing, separation, conformation or chemical reactions)
that are known a priori.

The flexibility of the selection of these configurations and the integration with lotsizing and
scheduling decisions can allow important reductions in inventory and waste of materials.

2.1 Lot sizing and scheduling

The lotsizing and scheduling problem has been presented in the literature in different types
of industries, such as beverages (Toscano et al., 2019, 2020), foundries (Furtado et al., 2019;
de Araujo et al., 2008), textile (Camargo et al., 2014), glass packaging (Fachini et al., 2018),
animal nutrition (Clark et al., 2010), poultry (Boonmee & Sethanan, 2016), paper (Leao et al.,
2017), pulp (Furlan et al., 2015), food (Claassen et al., 2016), among others. The complexity
of these problems is influenced by the characteristics of the production system, such as time
horizon, number of levels in product production, number of products, capacity and resource con-
straints, damage to items in inventory, demand, presence of exchanges, lack of products, among
others (Karimi et al., 2003).
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6 MODELING AND MIP-HEURISTICS FOR THE GENERAL LOTSIZING

In the manufacturing of some products such as feed, soft drinks, beer, foundry among others, the
production sequence influences their costs and production times (Ferreira et al., 2012; Toledo
et al., 2009). This problem can be solved in two phases: in the first, the quantity to be produced
is defined, considering demand, production capacity and inventories (lotsizing problem). In the
second phase, the sequence of this production is defined, considering the times and costs of pro-
duction changeovers between products. In this case, the changeover times and costs depend on
the defined sequence of production of the lots. For a better solution approach, several authors
(see Drexl & Kimms (1997) and Copil et al. (2017)) present models considering the integrated
problem of lot sizing and scheduling, which define what to produce, lot quantities and the se-
quence of the lots. In general, each lot refers to the quantity produced of a single type of product
at a time.

The lotsizing and scheduling problem can be represented by several different mathematical mod-
els, depending on the characteristics of the problem, as can be seen in Drexl & Kimms (1997).
Among the models, the General Lotsizing and Scheduling Problem (GLSP) is a mathematical
model that integrates the lot sizing and scheduling of several products in a single machine, sub-
ject to capacity constraints (Karimi et al., 2003). According to Almada-Lobo et al. (2015), the
GLSP, together with CLSD (Capacitated Lotsizing Problem with sequence-dependent setups),
are the most studied models in the literature. Fleischmann & Meyr (1997) present GLSP consid-
ering a planning horizon of |T | periods, which are divided into a set of |St | sub-periods. A single
item is produced by sub-periods, therefore it is easy to differentiate the production sequence.
This model has been used in several papers for this facility (for example: Ferreira et al. (2008),
Toso et al. (2009), Martı́nez et al. (2016) and others).

2.2 Process configuration selection

Lotsizing and scheduling models used for industries with discrete production can be adapted
to process industries to address the production specificity following alternative process config-
urations. Some authors have already studied some formulations and methods of resolution for
the lotsizing and scheduling problem with process configuration selection for different indus-
tries. Sahinidis & Grossmann (1992) present a model for lot sizing and scheduling and pro-
cess configuration selection for the chemical industry. Lu & Qi (2011) presented models for the
chemical and poultry industries and proposed heuristics. Gaudreault et al. (2011) proposed two
mathematical models for the problem of process configuration selection and its sequencing in
the wood industry, the first based on mixed integer programming and the second on constraint
programming.

In oil refineries (Shi et al., 2014; Persson et al., 2004; Göthe-Lundgren et al., 2002), production
decisions involve selecting process configurations for each production unit over the planning
horizon to determine the quantities of diesel, gasoline and other types of products that depend
on the process configurations. Chunpeng & Gang (2009) proposed two strategies to integrate
production planning and process configuration scheduling in refineries, the first uses a rolling
horizon and the second uses a two-stage decomposition. In the electrofused grain industry, the
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size of the manufactured grain depends on the set of sieves used. Luche & Morabito (2005)
proposed a mathematical model that consists of a combination of the problem of process con-
figuration selection and the lot sizing problem. A constructive heuristic was also proposed as a
solution method for this problem in Luche et al. (2009).

Martı́nez et al. (2016) and Martı́nez et al. (2018) studied a molded pulp packaging industry
and proposed models aimed at reducing setup and inventory costs. Due to the large number
of existing molding patterns, which are difficult to enumerate in advance, the selection of the
process configuration is also a model decision. Martı́nez et al. (2019) proposed solution methods
to solve the models based on Branch-and-Check. In the furniture, paper and steel industries this
integration also occurs regarding lot sizing, scheduling and process configuration selection with
the generation of configurations. In these cases, items are obtained by cutting larger objects
following a cutting pattern. Each cutting pattern is a process configuration and is usually done
by solving several cutting and packaging problems. These studies can be found in Gramani et al.
(2009) and Alem & Morabito (2013) for the furniture industry, in Poltroniere et al. (2008) for the
paper industry and in Nonås & Thorstenson (2008) for the steel industry. The proposed solution
methods are Lagrangean heuristics, column generation methods and specialist heuristics for sub-
problems.

2.3 Research proposal

In this paper, the mathematical model proposed for the general lotsizing and scheduling problem
with process configuration selection is in line with the basis of the models presented in the litera-
ture. The GLSP is adapted to include process configuration selection decisions and, thus, several
products can be produced per subperiod. Each lot is related to the production time of a process
according to the selected configuration (instead of the produced quantity of an item, as in GLSP).
That is, the quantity of items is determined by the usage time of each of the configurations of the
production process and the scheduling of configurations must be defined in the planning horizon.
In this case, it can be stated that the set of configurations is known a priori.

The proposed solution methods for the problem are mathematical programming heuristics which
are generally easy to adapt to possible changes in the mathematical model. In the literature,
although some heuristics of the Relax-and-Fix and Fix-and-Optimize types can be found, most
of the solution methods are specific to the problem of each industry addressed. Therefore, we
propose a set of constructive and improvement heuristics combinations based on mathematical
programming.

3 PROBLEM DEFINITION

The lotsizing and scheduling problem with process configuration selection aims to determine
the quantity of items to be produced during a planning horizon to meet a known demand. The
production of the items occurs by processes, therefore it is necessary to select the configuration
of production processes that will be used. It is worth mentioning that all possible configurations

Pesquisa Operacional, Vol. 41 (spe), 2021: e200000



8 MODELING AND MIP-HEURISTICS FOR THE GENERAL LOTSIZING

are known a priori. The case of generating new configurations is not dealt with in this paper
and depends largely on specific characteristics of the production process involved. For example,
generating process configurations in molded pulp packaging industries involves several specifici-
ties of the equipment and is not a simple task, as discussed in Martı́nez et al. (2016, 2018). The
planning horizon comprises |T | time periods, which are divided into |St | subperiods. In each sub-
period, only one configuration of the production process can be used, but several types of items
can be produced. In the case of changeover between two different production process configura-
tions during the planning horizon, there is production time consumption and the changeover also
incurs costs dependent on the production sequence. The total time consumed in a period, which
includes the setup times of the machines and the production of the items, is limited to the time
available in the period.

The production plan must consider that inventories and backlogs are allowed but they incur
costs. Consequently, a production plan with minimum costs of inventory and backlogging of
items and setup of production processes is desired. By considering the characteristics of the
problem, the GLSP (General Lotsizing and Sequencing Problem) with some adaptations can
represent the problem described. After presenting the model, some considerations are made about
the differences from the classic GLSP model.

Consider the following indexes, parameters and decision variables:

Indexes
i ∈ N products;
j,k ∈ K process configurations;
t ∈ T periods;
s ∈ St subperiods;
Ft first sub-period of the period t
Lt last sub-period of the period t

Parameters
Ii0 initial inventory of the product i;
dit product demand i in the period t ;
pi j units of the product i obtained from the process configuration j per unit of time

(hours);
capt available capacity (hours) in the period t ;
st jk setup time required in the change of configuration j to the configuration k of the

process;
c jk setup cost involved in the change of configuration j to the configuration k of the

process;
hi inventory cost of one unit of the product i per period;
bi backlogging cost of one unit of the product i per period.
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Variables
X js process usage time in configuration j in subperiod s;
Iit inventory of product i at end of period t;
Bit backlog of product i at the end of the period t;
Yjs 1, if the machine is prepared for the configuration j in the subperiod s; 0, otherwise;
Z jks 1, if a changeover from the configuration j to the configuration k occurs in the

subperiod s; 0, otherwise.

Minimize ∑
i∈N

∑
t∈T

(hiIit +biBit)+ ∑
j,k∈K

∑
s∈S

c jkZ jks (1)

Subject to

Ii(t−1)−Bi(t−1)+ ∑
j∈K

∑
s∈St

pi jX js = dit + Iit −Bit , ∀i, t (2)

∑
j∈K

∑
s∈St

X js + ∑
j,k∈K

∑
s∈St

st jkZ jks ≤ capt , ∀t (3)

X js ≤ captYjs, ∀ j, t,s (4)

∑
j∈K

Yjs = 1, ∀t,s ∈ St (5)

YjL(t−1) = ∑
k∈K

Z jkFt , ∀ j, t (6)

Yj(s−1) = ∑
k∈K

Z jks, ∀ j, t,s ∈ St\Ft (7)

Yks = ∑
j∈K

Z jks, ∀k, t,s ∈ St (8)

Yjs ∈ {0,1},X js ≥ 0 ∀ j, t,s ∈ St (9)

Iit ,Bit ≥ 0 ∀i, t (10)

Z jks ≥ 0 ∀ j,k, t,s ∈ St (11)

The objective function (1) aims to minimize the costs of inventory, backlogging and change of
production process configurations. Constraints (2) define the inventory balance for each product
i in each period t. Constraints (3) ensure that process usage time and machine setup time are
limited by capacity in each period t. In case of production using configuration j in subperiod s,
the constraints (4) impose that the machine must be prepared for this process configuration in
this subperiod. Constraints (5) impose that the machine is prepared for one configuration in each
subperiod of the planning horizon. Constraints (6) - (8) are replacements for constraints (Z jks ≥
Yj(s−1)+Yks−1, ∀ j,k,s) and define Z jks, i.e. when there is a change of process configurations on
the machine (for more details on the disaggregated form of these constraints, see Wolsey (1997)).

Constraints (6) relate the configuration j prepared in the last sub-period of the period t−1 (Lt−1)
to a change identified at the beginning of period t (sub-period Ft ). Constraints (7) relate con-
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figuration j prepared in subperiod s− 1 to an identified change in the next subperiod s. Finally,
constraints (8) define that if configuration k is prepared in subperiod s, there is a process change in
that subperiod. Note that variables Z jks can assume values 1 when j = k. In this case, it is enough
to have the costs c jk properly parameterized. The decision variable domains are described in
constraints (9) and (11).

By simplicity and without loss of generality, the costs are considered period independent. If
the characteristic of the problem requires that the costs be different from period to period,
cost parameters such as hit , bit and c jkt and changes according to the objective function can
be considered.

As can be seen, variables I and B are interpreted identically to the classic GLSP model. However,
variables X , Y and Z in the classic GLSP represent respectively: the lot sizes of the products, the
setup to produce the products and, the changeover of setups for the products in the machines.
In the extension proposed in this paper, variables X , Y and Z represent respectively: the usage
time of a specific process configuration, the setup for a specific configuration, the changeover of
setups between two different configurations. The demand balance constraints are also modified,
where the lotsizing variables X are multiplied by a factor which represents the number of units
of each product obtained by each process per time unit.

4 MIP-HEURISTICS

A heuristic is a set of steps that aims to achieve a good quality solution in a short computational
time. Karimi et al. (2003) divide heuristics for lotsizing problems into two categories: specialized
heuristics and heuristics based on mathematical programming.

Despite the similarity of the lotsizing and scheduling problem and the problem addressed in this
paper, the specialized heuristics are not easily adapted to the case that includes the process config-
uration selection. When adapting, the configuration that produces the demanded products must be
selected. In order to avoid an accumulation of stocks, the configuration should not produce large
quantities of non-demanded items. In addition, the configuration considering the changeover
times and costs between these two configurations used must be selected.

4.1 Heuristics based on mathematical programming

Heuristics based on mathematical programming, or hybrid heuristics, combine heuristics with
exact mathematical programming methods. These heuristics usually provide good solutions to
the lotsizing and scheduling problem, they are more general and can be easily adapted to differ-
ent problems. However, in general they are more difficult to implement than specialized heuris-
tics due to the necessary technical concepts and have a higher computational complexity for
real problems (Maes & Wassenhove, 1988; Karimi et al., 2003). According to Pochet & Wolsey
(2006), this method consists of modifying the mixed integer programming (MIP) through relax-
ation of constraints, relaxation of integrality or fixing some variables. By understanding the use
of the MIP, these heuristics are also called MIP-heuristics. Within this category of heuristics, the
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most common for the lotsizing and scheduling problems are the Relax-and-Fix and the Fix-and-
Optimize heuristics. They are explored as solution methods for the present general lotsizing and
scheduling problem with process configuration selection.

4.1.1 Relax-and-Fix

This is a constructive heuristic based on exact mathematical programming methods that was
proposed by Dillenberger et al. (1994). The integer variables are partitioned into P sets, where
Qp is the set of variables of the partition p, and p = 1,2, ...,P. The size of P defines the number
of iterations of the heuristics. In our case, the variables can be split by period, i.e., P = |T |. For
the iteration p = 1, the decision variables of sets Q1 (from the first period) are defined as integer
and the remaining variables are relaxed, creating the MIP1 problem. The integer values found for
Yjs|s ∈ Q1 (all the variables of the sub-periods that compose the first period) of the best feasible
solution in the iteration p = 1 are fixed in the following iterations. The integer values found for
Yjs in previous iterations are defined as Ȳjs. Subsequently, for the remaining sets p, 2≤ p≤ P, the
MIPp contains the variables (Yjs|s ∈ Q1∪Qp−1) fixed at the values of Ȳjs found in the previous
problem (MIPp−1). The variables in the set Qp are defined as integers, as shown in the following
model.

(MIPp) Minimize ∑
i∈N

∑
t∈T

(hiIit +biBit)+ ∑
j,k∈K

∑
s∈S

c jkZ jks (12)

Subject to

(2)− (8) (13)

X js ≥ 0 ∀ j, t,s ∈ St (14)

Iit ,Bit ≥ 0 ∀i, t (15)

Z jks ≥ 0 ∀ j,k, t,s ∈ St (16)

Yjs = Ȳjs ∀ j,s ∈ Q1∪ . . .∪Qp−1 (17)

Yjs ∈ {0,1} ∀ j,s ∈ Qp (18)

Yjs ∈ [0,1] ∀ j,s ∈ Q\(Q1∪ . . .∪Qp) (19)

After solving all the P iterations, if all the p subproblems are feasible, then (X̄ js, Īit , B̄it ,Ȳjs, Z̄ jks) is
the feasible solution of heuristics Relax-and-Fix (Pochet & Wolsey, 2006). Algorithm 1 presents
a general algorithm for the heuristics presented in this paper. Several studies using Relax-and-
Fix to find a good solution in a short computational time or to find an initial solution from other
heuristics to lotsizing and scheduling problems can be found in the literature. The papers by Toso
et al. (2009), Ferreira et al. (2010), Seeanner & Meyr (2013), Baldo et al. (2014) and Furtado
et al. (2019) are examples of lotsizing and scheduling formulations in different industries that use
different heuristic strategies Relax-and-Fix to solve the MIP model. In addition, Absi & van den
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12 MODELING AND MIP-HEURISTICS FOR THE GENERAL LOTSIZING

Heuvel (2019) analyze the complexity of Relax-and-Fix heuristics and point out that their use is
effective for large-scale multi-item/multi-stage lotsizing problems with capacity constraints.

Algorithm 1: Relax-and-Fix
Data: Problem parameters
Result: Solution S

1 S← /0;
2 Create the initial MIP problem with Yjs ∈ [0,1] ∀ j,s;
3 for p = 1, . . . ,P do
4 Define as integer the variables Yjs ∈ {0,1} ∀ j,s ∈ Qp ;
5 Solve the MIPp problem ;
6 if there is feasible solution then
7 Fix the results of the integer variables Yjs ∀ j,s ∈ Qp ;
8 S← submodel solution (X̄ js, Īit , B̄it ,Ȳjs, Z̄ jks);

else
9 Return /0;

end
end

10 Return S;

The partitioning of decision variables could vary, but the most common in the literature for the
lotsizing problem is based on time periods. The lotsizing and scheduling problem with process
configuration selection presented in the previous section has only the setup state variables (Yjs) as
integers. In this case, we consider Qt = {Yjs| j ∈ K,s ∈ St} as the set of variables of the period t.
Besides defining how to partition the variables, the strategy for exploring the partitions can vary:
from the beginning to the end of periods; from the end to the beginning of periods; and having
overlapping periods with integer variables and with variables that should have their values fixed.
Several strategies are explored in this paper:

Relax-and-Fix Forward: Algorithm 1 represents the heuristic. In a period-based variable parti-
tioning, the forward strategy starts fixing the variables from the first period with the (p = 1) par-
tition and ends in the last period with the partition (p= |T |). That is, period-by-period, the values
of the decision variables are fixed from the first period as indicated in line 3 of Algorithm 1.

Relax-and-Fix Backward: In the backward strategy, the fixing of variable values starts from the
partition of the last period p = |T | and ends in period p = 1. In Algorithm 1, line 3 would be
changed to “for p = P, ...,1 , step p = p−1 do”.

Relax-and-Fix Overlapping: In this strategy, the difference is in the number of variables of the
partition that have the values fixed in each iteration. The proposal is to fix values for half of the
variables, for example, in iteration p the second half of the variables of period p− 1 and the
first half of the sub-periods of period p. The second half of the variables of period p remains
integer and free to be optimized again together with the next period. This strategy is similar to
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Relax-and-Fix Forward, however, constraints (17) in model (12)-(19) are changed to fix values
in the appropriate variables.

Relax-and-Fix Minimizes Backlogs: the strategy is similar to Forward. However, at the end of
each iteration, it is checked if there is a backlog in meeting demand. If there is, the iteration
is solved again with the freedom to optimize the variables of the last period previously fixed.
This strategy is done until there are no more backlogs, or the variables of all periods are free
for optimization (dos Santos Diz et al., 2019). In Algorithm 1, after line 5, the following loop is
inserted:

Algorithm 2: Subroutine for checking backlogs

5.1 p′ = p;
5.2 while there is a backlog or p′ == 1 do
5.3 p′ = p′−1;
5.4 Release the integer variables Yjs|s ∈ Q′p previously with fixed values;
5.5 Solve the resulting MIP problem;

end

In this paper, these four strategies of Relax-and-Fix heuristics and other applications in combi-
nation with improvement heuristics are investigated and compared with each other, as described
in Table 3 in the section on computational experiments.

4.1.2 Fix-and-Optimize

Fix-and-Optimize is an improvement heuristic, that is, it performs improvement movements in a
previously given solution. The procedure consists of using the MIP model by fixing the values
of the decision variables and releasing a variable partition to be optimized along with all the
continuous variables. The integer variables of the model are partitioned into P sets, where Qp is
the set of variables of partition p, where p = 1,2, ...,P. In any iteration of the method, the integer
variables are fixed to the best incumbent solution (Ȳjs). Except for iteration p, the variables of
the set Qp are not fixed but are defined as integers and the following model is solved. Algorithm
3 describes the step-by-step of heuristics.

(MIPp) Minimize ∑
i∈N

∑
t∈T

(hiIit +biBit)+ ∑
j,k∈K

∑
s∈S

c jkZ jks
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Subject to

(2)− (8)

X js ≥ 0 ∀ j, t,s ∈ St

Iit ,Bit ≥ 0 ∀i, t
Z jks ≥ 0 ∀ j,k, t,s ∈ St

Yjs = Ȳjs ∀ j,s ∈ Q\Qp

Yjs ∈ {0,1} ∀ j,s ∈ Qp

Algorithm 3: Fix-and-Optimize
Data: Instance, parameters, initial solution (Ȳjs);
Result: Solution S
for p = 1, . . . ,P do

Yjs|s ∈ Qp are released variables;
Yjs = Ȳjs|s ∈ Q\Qp : fix the results of the integer variables;
Solve the submodel MIPp;
if the solution is better than S then

1 S← submodel solution (X̄ js, Īit , B̄it ,Ȳjs, Z̄ jks);
end

end
Return S;

Fix-and-Optimize is well used in lotsizing and scheduling problem, mainly in combination with
other constructive heuristics, such as Relax-and-Fix which provides an initial solution. The pa-
pers by Sahling et al. (2009), Helber & Sahling (2010), Baldo et al. (2014), Toledo et al. (2015),
Tempelmeier & Copil (2016) and Soler et al. (2019) are examples of the combined application
of Relax-and-Fix and Fix-and-Optimize. The partitioning of decision variables can vary, but the
most common in the literature for the lotsizing problem is based on time periods. The lotsizing
and scheduling problem with process configuration selection, presented in the previous section,
has only the setup state variables (Yjs) defined as integers. In this case, the partitioning can be
based on configurations (|K| partitions) or, in a classic way, based on periods (|T | partitions).

In this paper, Fix-and-Optimize is experimented with the two options of variable partitioning, by
configurations and by periods. As an initial solution is required, Fix-and-Optimize is tested and
compared in combination with Relax-and-Fix heuristics in several combinations, as described in
Table 3 in the next section.

5 COMPUTATIONAL EXPERIMENTS

The computational experiments performed with the model and heuristics aim to produce re-
sults to compare the quality of the solutions obtained and the computational time to find them.
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Next, tests for the resolution of the MIP model and various combinations of MIP-heuristics
are reported. The Relax-and-Fix heuristics and their combinations with the Fix-and-Optimize
heuristics with partitions of the configurations and periods are tested. The experiments of five
combinations of Relax-and-Fix and Fix-and-Optimize heuristics are reported. According to pre-
liminary tests, in which 8 combinations were tested, the combinations presented below seemed
more promising and only they were investigated in the study.

The instances used in computational tests represent three types of process industries and are
divided into three groups each. The instances of the molded pulp packaging company were based
on the real data presented in Martı́nez et al. (2019). The G1 and G2 groups are data cutouts, while
in G3 group the data are randomly generated based on practice. The instances of the furniture
company are cutouts of the instances presented in Alem et al. (2010).

The instances of the electro-fused grain company are cutouts of the instances presented in Luche
et al. (2009). The cutout aims to consider a single process with a single machine.

Table 2 shows the number of variables and parameters present in the instances of each group,
where |T | is the number of periods, |S| is the number of sub-periods, “Continuous” is the number
of continuous variables and “Binary” is the number of binary variables.

Table 2 – Parameters of the instances used in the computational tests.

Products Configurations |T | |S| Continuous Binary

Molded Pulp
G1 14 19

4 40
872 15.200

G2 8 70 2.864 198.800
G3 20 40 1.760 65.600

Furniture
G1 6 40

8 32
1.328 52.480

G2 6 60 1.968 117.120
G3 6 80 2.608 207.360

Electrofused
Grains

G1 5 50
19 57

2.945 145.350
G2 10 50 3.040 145.350
G3 5 149 8.588 1.273.950

5.1 Computational results

The computational tests were performed on a machine with an Intel i7 processor containing 16
GB of RAM. The execution time limit of CPLEX v.12.5 for each method and for each of the
instances was 3,600 seconds. For heuristics, the total time was divided equally into the total
number of iterations (partitions) required by the method. Thus, instances that contain more par-
titions provide less time per iteration, since the number of iterations is related to the number of
partitions. With less time available for one iteration, the solver may not find the optimal solution
for that partition. This may imply worse quality solutions at the end of the iterations when com-
pared to other solutions that had longer solution time available. Similarly, when we compare the
use of one method with P partitions with another method that additionally uses P partitions in an
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16 MODELING AND MIP-HEURISTICS FOR THE GENERAL LOTSIZING

improvement procedure, there is no guarantee that the method with the improvement procedure
has better solutions. This is because we cannot guarantee that each iteration finds the optimal
solution.

To better understand the results, the instances were separated by industry and the objective func-
tion values, Gap and execution time are reported in Tables 4, 5 and 6. These indicators are
provided for each of the MIP-heuristics tested and listed in Table 3.

Table 3 – List of the solution methods computationally tested.

Method Subtitles
MIP A
Relax-and-Fix Backward B
Relax-and-Fix Forward C
Relax-and-Fix Overlapping D
Relax-and-Fix Minimizes Backlogs E
Fix-and-Optimize with configuration partitions

F
and Relax-and-Fix Forward
Fix-and-Optimize with configuration partitions

G
and Relax-and-Fix Overlapping
Fix-and-Optimize with configuration partitions

H
and Relax-and-Fix Minimizes Backlogs
Fix-and-Optimize with period partitions

I
and Relax-and-Fix Forward
Fix-and-Optimize with period partitions

J
and Relax-and-Fix Overlapping

Besides the results for each one of the instances, Table 7 presents a general comparison consider-
ing the averages of all the instances for each indicator. In addition, the averages of the instances
by industry are also reported.

Molded pulp packaging industry

In Table 4, for each of the methods, the following is presented: “OF” indicating the value found
for the objective function; “Dsv” indicating the relative difference of the value of the objective
function of the method from the MIP (Dsv = 100 ∗ (OFHeu/OFMIP)− 100, where OFHeu rep-
resents the value of the objective function of the method and OFMIP represents the value of the
objective function of the MIP); and “Tm” which indicates the computational time, in seconds, to
reach the indicated solution using the complete strategy. It is important to note that if Dsv < 0,
the method finds a better quality solution than the MIP. In the MIP results, the “Gap” column
indicates the relative difference between the lower bound (LB) and upper bound (OF) found by
CPLEX. That is, Gap = (OF/LB)−1.

Pesquisa Operacional, Vol. 41 (spe), 2021: e200000
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Table 4 – Computational results for the molded pulp industry instances.
MIP (B) R&F (C) R&F (D) R&F (E) R&F (F) F&O/C + (G) F&O/C + (H) F&O/C + (I) F&O/P + (J) F&O/P +

Backward Forward Overlapping Min Backlog R&F Forward R&F Overlapping R&F Min Backlog R&F Forward R&F Overlapping
Instance OF Gap Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm
G1 Ex1 81457 24.0% 3600 3.2% 86 0.0% 42 0.0% 138 0.0% 82 0.0% 54 0.9% 151 0.0% 85 0.0% 49 0.0% 146
G1 Ex2 41427 0.0% 110 6.0% 14 8.8% 12 0.6% 35 6.1% 12 0.3% 21 0.0% 42 0.3% 14 8.8% 17 0.0% 39
G1 Ex3 38680 0.0% 255 14.7% 40 20.8% 25 1.3% 58 7.4% 59 0.7% 32 0.6% 66 0.7% 61 20.2% 30 0.7% 64
G1 Ex4 50089 0.0% 139 10.9% 23 16.0% 9 0.0% 31 3.0% 24 0.0% 15 0.0% 32 0.0% 28 16.0% 12 0.0% 35
G1 Ex5 41507 0.0% 351 11.6% 37 17.9% 43 0.6% 57 8.4% 62 0.5% 58 0.0% 68 0.5% 69 17.2% 54 0.0% 62
G1 Ex6 120020 8.0% 3600 5.1% 57 6.1% 15 0.4% 58 -2.3% 109 0.7% 27 0.5% 65 0.7% 20 5.1% 21 0.1% 61
G1 Ex7 101273 0.0% 254 8.8% 24 3.9% 7 1.0% 33 0.0% 14 0.9% 34 0.9% 39 0.9% 23 3.9% 32 1.0% 36
G1 Ex8 129908 10.0% 3600 16.0% 74 1.1% 26 0.0% 167 -1.6% 175 0.7% 46 0.0% 276 0.7% 180 1.1% 45 0.0% 176
G1 Ex9 74892 3.0% 3600 48.8% 61 4.7% 30 1.2% 74 4.2% 66 0.9% 50 0.5% 88 0.9% 77 1.1% 48 1.2% 85
G1 Ex10 37060 0.0% 288 5.4% 60 0.5% 50 0.0% 94 0.3% 54 0.3% 96 0.0% 109 0.3% 71 0.5% 91 0.0% 105
G1 Ex11 40206 0.0% 178 4.2% 43 24.6% 29 8.4% 39 20.3% 30 0.0% 37 0.4% 50 0.0% 48 23.9% 34 7.1% 44
G2 Ex1 304224 37.0% 3600 123.4% 162 5.4% 944 5.4% 1051 5.4% 1080 0.8% 2132 0.1% 2532 0.1% 2538 3.5% 2121 3.5% 2521
G2 Ex2 194559 0.0% 164 55.6% 55 25.8% 184 25.8% 189 25.8% 242 0.0% 384 0.0% 291 0.0% 355 0.0% 377 0.0% 276
G2 Ex3 213477 0.0% 2007 86.3% 523 30.9% 265 21.0% 734 25.8% 600 22.4% 351 17.2% 852 14.8% 729 30.9% 345 21.0% 850
G2 Ex4 183707 0.0% 2066 447.7% 143 0.0% 126 0.0% 502 0.0% 572 0.0% 212 0.0% 1259 0.0% 794 0.0% 207 0.0% 1257
G2 Ex5 208644 0.0% 1248 55.8% 1164 46.0% 669 4.5% 823 38.7% 676 5.5% 756 1.7% 888 1.7% 743 46.0% 748 4.5% 885
G2 Ex6 237976 14.0% 3600 29.0% 1961 13.1% 108 5.8% 653 9.1% 827 1.9% 565 0.3% 790 0.3% 1306 10.1% 555 2.4% 789
G2 Ex7 232570 33.0% 3600 64.7% 862 4.9% 212 1.8% 803 -0.9% 828 2.9% 312 0.2% 873 0.2% 913 4.9% 305 1.8% 871
G2 Ex8 196859 0.0% 2268 17.1% 140 24.7% 109 9.8% 318 10.4% 193 8.5% 226 0.0% 2809 0.0% 2105 24.7% 220 0.0% 2801
G2 Ex9 189025 0.0% 3542 61.7% 723 25.0% 998 9.3% 1015 20.5% 1311 13.6% 1424 1.6% 2579 1.6% 2589 17.0% 1421 2.2% 2575
G2 Ex10 179625 0.0% 1998 94.2% 114 12.0% 55 2.6% 67 0.8% 77 2.6% 347 2.4% 134 2.4% 218 2.6% 335 2.6% 127
G3 Ex1 59402 42.0% 3600 45.5% 214 14.0% 294 14.0% 1398 12.3% 614 3.4% 353 2.1% 1430 2.1% 651 10.6% 339 12.6% 1424
G3 Ex2 63663 27.0% 3600 41.2% 357 6.7% 1279 6.7% 1140 2.7% 1478 2.2% 1352 1.6% 1160 2.2% 1534 6.7% 1338 4.3% 1157
G3 Ex3 58104 0.0% 3386 51.9% 179 25.9% 175 1.1% 1186 23.6% 965 12.9% 218 0.5% 1209 0.5% 1000 22.7% 211 1.1% 1200
G3 Ex4 80886 48.0% 3600 53.7% 479 -0.5% 811 -4.0% 1704 -3.6% 1453 -3.1% 849 -4.2% 1743 -3.1% 1495 -0.5% 841 -4.0% 1735
G3 Ex5 66135 36.0% 3600 115.6% 545 2.6% 275 1.4% 1282 -2.1% 943 -0.7% 325 -1.6% 1309 -0.7% 983 2.6% 316 1.4% 1306
G3 Ex6 89378 58.0% 3600 206.5% 1430 8.3% 2992 -1.2% 3522 2.8% 3343 0.2% 3056 -3.9% 3570 0.2% 3396 8.3% 3040 -1.2% 3564
G3 Ex7 87112 55.0% 3600 165.6% 1125 36.1% 1765 -3.4% 2930 18.4% 2755 1.6% 1988 -10.3% 2853 -0.5% 2806 34.5% 1896 -10.4% 2948
G3 Ex8 66775 31.0% 3600 134.2% 341 21.8% 175 7.9% 1184 19.9% 1186 0.4% 210 0.0% 1229 0.4% 1219 20.6% 197 7.9% 1214
G3 Ex9 56762 21.0% 3600 3.4% 56 12.7% 190 -0.9% 496 0.5% 523 9.6% 240 -1.4% 870 -1.4% 828 12.7% 239 -0.9% 858
G3 Ex10 59418 16.0% 3600 158.6% 273 8.6% 143 8.1% 550 5.0% 217 2.2% 202 0.0% 590 0.0% 273 8.0% 199 8.1% 587
G3 Ex11 55275 27.0% 3600 78.9% 340 25.8% 1070 10.9% 1504 13.2% 1461 12.1% 1103 4.8% 1541 2.6% 1500 25.8% 1094 10.9% 1536
G3 Ex12 78080 56.0% 3600 103.8% 1891 17.9% 1438 6.7% 1548 13.6% 1452 10.6% 1471 4.3% 2093 4.3% 1971 17.9% 1465 5.1% 2091
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18 MODELING AND MIP-HEURISTICS FOR THE GENERAL LOTSIZING

Table 4 shows that CPLEX finds the optimal solution of the MIP solely for several instances of
group G1 - with a small number of periods and configurations. On the other hand, the solver
stopped due to the time limit for most of the instances of the G3 group, presented high opti-
mality gaps. Among the MIP-heuristics, the (B) Relax-and-Fix Backward is the method that
presented the worst performance. The Fix-and-Optimize methods with configuration partitions
using Relax-and-Fix Overlapping heuristics (G) or Relax-and-Fix that minimizes backlogs (H)
presented the best performances for the groups of instances of the molded pulp packaging
industry.

Regarding the computational time, the (B) Relax-and-Fix Backward method consumes, in gen-
eral, the shortest time - on average 407 seconds. On the other hand, the (G) Fix-and-Optimize
with configuration partitions combined with Relax-and-Fix Overlapping has the highest average
consumption, with 977 seconds.

Furniture Industry

Similarly to the previous table, the results shown in Table 5 present the same indicators used for
comparing solution methods for the furniture industry.

Table 5 shows that CPLEX stops by time limit for all instances solved by MIP solely. The G1
group solutions have a 8% gap of the optimal solution, the G2 group has more than 13% and the
G3 results have more than 47%. Once more, the (B) Relax-and-Fix Backward is the method that
presented the worst performance. The Fix-and-Optimize methods with configuration partitions
using Relax-and-Fix that minimize backlogs (H) or Relax-and-Fix Overlapping (G) presented
the best performances for the groups of instances of the furniture industry.

Regarding the computational time, the (B) Relax-and-Fix Backward method consumes, on av-
erage, a shorter time - 139 seconds. On the other hand, the (H) Fix-and-Optimize with config-
uration partitions using Relax-and-Fix that minimizes backlogs has the highest average runtime
consumption, with 1793 seconds.

Pesquisa Operacional, Vol. 41 (spe), 2021: e200000
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Table 5 – Computational results for the furniture industry instances.
MIP (B) R&F (C) R&F (D) R&F (E) R&F (F) F&O/C + (G) F&O/C + (H) F&O/C + (I) F&O/P + (J) F&O/P +

Backward Forward Overlapping Min Backlog R&F Forward R&F Overlapping R&F Min Backlog R&F Forward R&F Overlapping
Instância OF Gap Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm
G1 Ex1 510 9.0% 3600 86.0% 106 1.0% 164 1.0% 220 -1.9% 364 1.0% 484 1.0% 459 -3.7% 548 1.1% 478 1.1% 442
G1 Ex2 542 8.0% 3600 53.0% 124 4.0% 146 3.0% 267 3.8% 223 2.9% 307 1.9% 572 1.9% 898 3.1% 298 1.1% 551
G1 Ex3 594 8.0% 3600 111.0% 188 6.0% 96 0.0% 211 0.0% 343 1.7% 240 -0.3% 328 -3.3% 550 4.0% 232 0.0% 324
G1 Ex4 569 8.0% 3600 36.0% 177 5.0% 174 1.0% 278 4.8% 354 3.6% 316 2.6% 601 2.6% 823 4.9% 315 0.9% 595
G1 Ex5 562 11.0% 3600 63.0% 174 6.0% 167 2.0% 337 -1.8% 311 0.9% 531 0.5% 655 -1.8% 942 1.0% 517 1.0% 628
G2 Ex1 442 13.0% 3600 55.0% 153 21.0% 99 5.0% 349 3.8% 749 5.6% 735 3.6% 805 3.6% 1110 7.0% 687 3.8% 772
G2 Ex2 579 16.0% 3600 103.0% 108 1.0% 265 1.0% 867 -5.2% 906 -1.7% 840 -2.0% 1358 -6.2% 1728 1.0% 804 1.1% 1324
G2 Ex3 475 25.0% 3600 62.0% 117 10.0% 185 5.0% 772 -0.4% 603 2.5% 518 -0.1% 1143 -1.3% 1707 3.1% 498 3.9% 1118
G2 Ex4 486 25.0% 3600 49.0% 174 10.0% 153 1.0% 896 1.7% 713 5.8% 743 3.4% 1159 -0.2% 1678 7.0% 690 0.1% 1155
G2 Ex5 495 24.0% 3600 89.0% 148 0.0% 104 0.0% 552 -0.8% 866 -0.1% 381 -1.1% 820 -2.1% 1169 -0.1% 367 -0.2% 809
G3 Ex1 267 50.0% 3600 75.0% 147 -4.0% 641 -4.0% 961 -10.7% 1087 -4.0% 1594 -4.5% 1815 -10.7% 3358 -4.0% 1494 -3.9% 1746
G3 Ex2 235 47.0% 3600 13.0% 97 2.0% 358 2.0% 934 -2.7% 1053 -1.5% 1390 -2.4% 1924 -3.7% 3569 -0.7% 1325 -2.1% 1845
G3 Ex3 207 64.0% 3600 49.0% 109 4.0% 226 2.0% 814 0.7% 1162 3.2% 867 1.2% 2012 -1.6% 2891 3.2% 855 2.2% 1902
G3 Ex4 214 61.0% 3600 93.0% 110 -1.0% 495 -1.0% 949 -3.2% 1451 -3.5% 1179 -5.4% 1564 -5.4% 2535 -0.9% 1109 -0.8% 1554
G3 Ex5 237 63.0% 3600 85.0% 158 -2.0% 126 -2.0% 983 -7.0% 864 -5.3% 1345 -6.3% 2259 -10.4% 3398 -4.1% 1255 -4.0% 2182
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20 MODELING AND MIP-HEURISTICS FOR THE GENERAL LOTSIZING

Electrofused grain industry

Table 6 presents the results for the tests with the instances of the electrofused grain industry. The
same indicators as the previous tables are used for comparison.

Table 6 shows that CPLEX stops by time limit for all instances solved by mathematical modeling
(MIP). The G1 group solutions have a 10% gap of the optimal solution, the G2 group has more
than 20% and the G3 results have more than 60% of the optimality. Once more, (B) Relax-and-
Fix Backward is the method with the worst performance. The Fix-and-Optimize methods with
configuration partitions using Relax-and-Fix, which minimizes backlogs (H) or Relax-and-Fix
Overlapping (G), presented the best performances for the groups of instances of the molded pulp
packaging industry.

Regarding computational time, the (C) Relax-and-Fix Forward and (H) Fix-and-Optimize meth-
ods with configuration partitions combined with Relax-and-Fix that minimize backlogs con-
sume, on average, less time - 549 and 553, seconds respectively. On the other hand, (G) Fix-
and-Optimize with configuration partitions combined with Relax-and-Fix Overlapping has the
highest average computational time consumption, at 1417 seconds.

Overall comparison

By analyzing the results of the previous tables, it can be understood that the mathematical model-
ing resolution (MIP) using CPLEX found optimal solutions only for some small instances (con-
sidering the number of binary variables). For larger instances, the solver stops by the time limit
and presents high optimality gaps. This result justifies the use of heuristic methods of resolution
for this model.

Using Table 7, we can analyze the averages by groups of instances and overall average by method.
To support the solution quality analysis, we use a color scale over the “Dsv” column that must
be observed per group of instances. The greener the cell, the smaller the “Dsv” value. On the
other hand, the redder the cell, the higher the value of “Dsv”. For example, for the G1 group of
instances of the molded pulp packaging industry, the highest result for “Dsv” is (B) Relax-and-
Fix Backward method and the lowest results are methods (F), (G) and (H). Note that the table is
divided into two parts so that the results can be visualized better.

Among the methods that most present “Dsv” values in green, and as we can see through the
“Average” lines of the table, the (H) Fix-and-Optimize method with configuration partitions that
use Relax-and-Fix that minimizes backlogs is what presents the better results. The negative value
indicates that the method found solutions that were, on average, -0.7% better than the solutions
reported when MIP solely was solved with CPLEX. In addition, we can note that CPLEX con-
sumed, on average, 3217 seconds to solve the MIP and Fix-and-Optimize with configuration
partitions that use Relax-and-Fix that minimizes backlogs consumed, on average, 1085 seconds
to present slightly better results.

Pesquisa Operacional, Vol. 41 (spe), 2021: e200000
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Table 6 – Computational results for the instances of the electrofused grain industry.
MIP (B) R&F (C) R&F (D) R&F (E) R&F (F) F&O/C + (G) F&O/C + (H) F&O/C + (I) F&O/P + (J) F&O/P +

Backward Forward Overlapping Min Backlog R&F Forward R&F Overlapping R&F Min Backlog R&F Forward R&F Overlapping
Instance OF Gap Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm
G1 Ex1 448 11.0% 3600 153.0% 143 6.0% 142 2.0% 276 0.8% 375 -0.2% 404 1.3% 511 -0.2% 247 1.2% 397 2.2% 490
G1 Ex2 460 11.0% 3600 147.0% 165 3.0% 188 3.0% 243 -2.1% 340 3.2% 470 0.6% 600 -4.0% 253 3.2% 451 1.0% 578
G1 Ex3 461 13.0% 3600 158.0% 158 4.0% 100 1.0% 236 -1.9% 315 1.8% 474 -0.7% 591 -1.9% 214 3.0% 469 1.0% 555
G1 Ex4 428 11.0% 3600 189.0% 142 1.0% 182 1.0% 251 -4.5% 636 0.0% 371 0.8% 609 -5.3% 352 0.0% 356 0.9% 587
G1 Ex5 487 13.0% 3600 42.0% 177 6.0% 178 2.0% 766 2.1% 327 2.4% 581 -0.1% 1068 -0.1% 396 3.0% 578 0.9% 1061
G2 Ex1 172 29.0% 3600 48.0% 280 6.0% 93 6.0% 225 5.2% 404 3.1% 654 3.5% 511 3.1% 297 4.0% 644 4.0% 480
G2 Ex2 225 27.0% 3600 179.0% 503 25.0% 369 3.0% 825 7.1% 1421 4.5% 866 1.0% 1145 4.5% 282 4.6% 857 2.0% 1133
G2 Ex3 184 21.0% 3600 93.0% 411 8.0% 560 6.0% 858 5.5% 1590 6.7% 973 3.5% 1383 3.5% 555 7.1% 965 3.9% 1365
G2 Ex4 189 26.0% 3600 95.0% 187 27.0% 622 6.0% 872 24.5% 1046 8.9% 1238 1.1% 1471 7.5% 329 9.1% 1187 3.0% 1456
G2 Ex5 192 22.0% 3600 148.0% 573 6.0% 497 6.0% 545 0.5% 847 5.4% 1008 2.9% 895 -2.0% 541 5.8% 1004 2.9% 863
G3 Ex1 128 67.0% 3600 106.0% 1123 11.2% 800 0.0% 990 2.4% 2994 6.4% 2204 -2.5% 2288 -2.5% 836 6.7% 2094 -0.5% 2222
G3 Ex2 113 61.0% 3600 64.0% 1166 3.7% 1846 -2.0% 2542 1.4% 1305 4.3% 2605 -2.8% 3634 1.4% 1035 5.6% 2582 -1.7% 3519
G3 Ex3 100 65.0% 3600 170.0% 1564 12.7% 790 5.0% 1103 1.5% 2628 2.5% 1552 3.1% 2393 -0.8% 499 3.7% 1546 4.6% 2385
G3 Ex4 103 70.0% 3600 12.0% 1386 3.8% 933 1.0% 1421 1.6% 2820 2.8% 2290 0.7% 2330 0.7% 1028 3.0% 2203 1.6% 2255
G3 Ex5 114 67.0% 3600 88.0% 1042 -3.8% 942 -3.8% 1021 -3.9% 1134 -5.2% 1923 -4.1% 1822 -6.5% 1427 -4.0% 1915 -3.7% 1740
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Table 7 – Average results of compilation by method and group of tested instances.

(A) MIP (B) R&F (C) R&F (D) R&F (E) R&F
Backward Forward Overlapping Min Backlog

OF Gap Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm

Molded Pulp

G1 68775 4.1% 1452 12.8% 47 7.1% 26 0.9% 71 2.3% 62
G2 200858 8.0% 2322 97.5% 536 17.8% 336 8.2% 566 12.9% 588
G3 69235 34.1% 3581 107.1% 638 15.0% 937 2.6% 1550 8.4% 1434

Furniture

G1 555 8.8% 3600 70.0% 154 4.5% 149 1.4 263 1.0% 319
G2 496 20.6% 3600 73.2% 140 7.9% 161 2.3% 687 -0.5% 767
G3 232 57.0% 3600 63.2% 124 -0.4% 369 -0.8% 928 -4.9% 1123

Electrofused
Grains

G1 457 11.8% 3600 135.9% 157 4.1% 158 1.8% 355 -1.0% 399
G2 192 25.0% 3600 116.5% 391 14.9% 428 5.3% 665 8.6% 1062
G3 112 66.0% 3600 87.9% 1256 5.5% 1062 -0.1% 1415 0.6% 2176

Average 37879 26.2% 3217 84.9% 383 8.5% 403 2.4% 722 3.0% 881

(F) F&O/C + (G) F&O/C + (H) F&O/C + (I) F&O/P + (J) F&O/P +
R&F Forward R&F Overlapping R&F Min Backlog R&F Forward R&F Overlapping

Dsv Tm Dsv Tm Dsv Tm Dsv Tm Dsv Tm

Molded Pulp

G1 0.6% 43 0.4% 90 0.5% 62 6.4% 39 -5.4% 78
G2 5.5% 614 2.2% 1191 2.0% 1123 13.5% 607 3.8% 1184
G3 3.9% 1001 -1.4% 1651 0.4% 1546 14.5% 985 1.4% 1654

Furniture

G1 2.0% 376 1.1% 523 -0.8% 752 2.9% 368 0.8% 508
G2 2.2% 643 0.6% 1057 -1.5% 1478 3.4% 609 1.7% 1035
G3 -2.4% 1275 -3.6% 1915 -6.6% 3150 -1.5% 1208 -1.9% 1846

Electrofused
Grains

G1 1.5% 460 0.4% 676 -2.2% 293 2.1% 450 1.2% 654
G2 5.7% 948 2.3% 1081 3.4% 401 6.1% 931 3.1% 1059
G3 2.3% 2115 -1.3% 2493 -1.6% 965 3.1% 2068 -0.1% 2424

Average 2.4% 831 0.1% 1186 -0.7% 1085 5.6% 807 0.5% 1160
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If we only compare the Relax-and-Fix methods, the method that minimizes delay (E) and with
Overlapping (D) presents solutions that are, on average, 3% higher than the values found with
the MIP model. If we compare only the Fix-and-Optimize type methods, the best results are
found using configuration partitions, particularly when the Relax-and-Fix methods that minimize
backlogs (H) or the Relax-and-Fix Overlapping methods (G) are combined. It is a fact that by
adding a solution improvement heuristic, such as Fix-and-Optimize, run times increase. However,
runtimes still represent 1/3 of the time consumed to solve the MIP model with CPLEX.

The overlapping strategies have more binary variables to be optimized at once in relation to the
other strategies. Therefore, its processing time is considerably longer. Strategies that minimize
backlogs are similar in principle to overlapping strategies in order to increase the number of
integer variables not fixed to correct decisions fixed in previous iterations. Thus, by correcting
badly fixed variables, both the strategies of overlapping and with minimization of the backlogs
presented more effective results (relationship of computational time and quality of solution).

6 CONCLUSIONS

In this paper, we study the lotsizing and scheduling problem with process configuration selec-
tion. We propose a general mathematical model and solution methods based on mathematical
programming: the MIP-heuristics. The literature presents several applied studies of this problem
considering the various specificities of the real problems. However, general mathematical mod-
eling is still rare and solution methods are specific to the problem or adapted directly from the
problem without configuration selection. The proposed mathematical model for the lotsizing and
sequencing problem comprises the selection of which configurations are used for the item pro-
duction. This problem is common in process industries, for example in furniture manufacturing,
molded pulp packaging and electrofused grain industries, which were used as references in this
study.

Several MIP-heuristic strategies and combinations are proposed and compared using computa-
tional test results. Three sets of instances based on data from the furniture, molded pulp packag-
ing and electro melted grain industries literature were used. The best strategy is to use the combi-
nation of MIP-heuristics Fix-and-Optimize with configuration partitions that use Relax-and-Fix,
which minimizes backlogs. They present better results than the resolution of the mathematical
model using CPLEX and in one third of the execution time. In general, the proposed model,
as it stands or with some adaptations, has the potential to adequately represent the production
planning environment of these and other process industries in practice. The Fix-and-Optimize
heuristics with configuration partitions that use Relax-and-Fix that minimize backlogs is a good
candidate to be used in practice to solve the problem.

An interesting perspective for future research would be to investigate other formulations such as
CLSD (Capacitated Lotsizing Problem with sequence-dependent setups), valid inequalities for
formulations and other more refined methods to solve larger instances of the problem, e.g., hybrid
methods combining exact methods with metaheuristics. An exact method with the potential to
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solve this problem more effectively would be to adapt the algorithm Branch-and-Check using
cuts based on the Benders logic explored in Martı́nez et al. (2019). The model and solution
methods presented presume that all process configurations are known a priori. In cases where this
is not reasonable, another interesting perspective for future research would be to reformulate the
model. The possible configurations of these processes can be implicitly described in the model.
Or, alternatively, developing solution methods with column generation procedures to implicitly
determine the best process configurations in each problem. This generation will depend largely
on the specific characteristics of the process and equipment involved and could be done through
more sophisticated methods based on Dantzig-Wolfe decomposition with column generation and
Branch-and-Price methods.

Other interesting future research would be to extend the model and solution methods to consider
more general problem situations, for example, with multiple production lines in parallel (multi-
machines) and with multiple production stages (multi-level). Moreover, developing approaches
to consider uncertainties in problem parameters, based on stochastic programming methods and
robust optimization, for example. In some cases, companies have difficulties in accurately esti-
mating the economic loss due to lack or backlogs in meeting demand. In these cases, the proposal
of bi-objective approaches, considering the trade-off between the backlogs in meeting demand
and the costs of product inventories and configuration changes, could be useful to support pro-
duction planning. Finally, it would be interesting to better evaluate the impact of the practical
implementation of the proposed solution approaches to the lotsizing and scheduling problem
with process configuration selection in real situations of these and other process industries.
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