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ABSTRACT. This papers presents an overview of gradient based methods for minimization of noisy func-

tions. It is assumed that the objective functions is either given with error terms of stochastic nature or given

as the mathematical expectation. Such problems arise in the context of simulation based optimization. The

focus of this presentation is on the gradient based Stochastic Approximation and Sample Average Approxi-

mation methods. The concept of stochastic gradient approximation of the true gradient can be successfully

extended to deterministic problems. Methods of this kind are presented for the data fitting and machine

learning problems.

Keywords: unconstrained optimization, stochastic gradient, stochastic approximation, sample average

approximation.

1 INTRODUCTION

Stochastic optimization problems appear in all areas or engineering, physical and social sciences.

Typical applications are model fitting, parameter estimation, experimental design, performance
evaluation etc. The models we are considering here can be written in the form

min
x∈�

f (x) (1)

where f : Rn → R is either observed with noise or is defined as the mathematical expectation.

In fact the objective function depends on a vector of random variables ξ from some probability
space that might be know or unknown, depending on application. Thus the exact evaluation of
f (x) is impossible to evaluate and it is necessary to use simulation to estimate the objective
function value.

The feasible set � can be defined by constraints of different types – simple box constraints,
deterministic constraints, chance constraints, constraints in the form of mathematical expectation
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etc. In this paper we consider only the case � = R
n. More precisely, we consider only two types

of stochastic problems. The first type are problems with random objective function,

min
x

F(x, ξ ),

where ξ represents the noise (or randomness) and x is the decision variable. Such models appear
when the decision has to be taken before the full information about the problem parameters is
known. The lack of information in that case is represented by random vector ξ . The second type
of problems are the problems with the mathematical expectation as the objective function

min
x

E(F(x, ξ )). (2)

Although the noise is technically removed in the above problem, it is rather hard to solve it as the

expectation is hard or even impossible to state analytically even if the distribution of ξ is known.

Methods for solving stochastic optimization problems are combination of ideas from numerical
optimization and statistics. Thus the class of popular methods include simulation-based methods,
direct methods for stochastic search, annealing type algorithms, genetic algorithms, methods of

reinforced learning, statistical methods and many others, [34], [7]. Among all of them we restrict
our attention here on two methods typically used in simulation based optimization: Stochastic
Approximation, SA, and Sample Average Approximation, SAA.

Stochastic Approximation methods are introduced in the seminal paper of Robbins and Monro,

[30] and remain a popular choice for solving stochastic optimization problems. They relay mainly
on noisy gradient evaluations and depend heavily on the choice of steplength sequence. The
choice of this sequence is the subject of many research efforts as well as other techniques for

accelerating the convergence of SA methods. Sample average Approximation methods can be
seen as an alternative to SA methods. In this approach a sample from the underlying distribution
is used to construct a deterministic sample average problem which can be solved by optimization

methods. However the sample used for the SAA approximation very often needs to be large and
a naive application of standard nonlinear optimization techniques is not feasible. Therefore there
has been extensive research in variable sample size methods that reduce the cost of SAA.

Both SA and SAA methods are considered here in the framework of gradient-related optimiza-

tion (gradient methods, subgradient methods, second order quasi Newton methods) as well as in
the derivative-free framework. This survey will largely deal with gradient methods for stochastic
optimization and an interested reader can look at Spall [34] for an overview of other methods.

This paper is organized as follows. In Section 2 we discuss the SA method and its modifications.
Section 3 contains results for the SAA methods and unconstrained problems with the mathemat-
ical expectation objective function. Two important deterministic problems that are rather similar
to SAA problem are discussed in Section 4 as well as methods for obtaining their solution that

rely on stochastic gradients. Finally, some conclusion and research perspectives are presented in
Section 5.

Pesquisa Operacional, Vol. 34(3), 2014
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2 STOCHASTIC APPROXIMATION METHODS

There have been countless applications of Stochastic Approximation (SA) method since the work
of Robbins and Monro [30]. In this section we give an overview of its main properties and some

of its generalizations. The problem we consider is

min
x∈Rn

f (x) (3)

assuming that only the noisy measurements f̂ (x) of the function and its gradient ĝ(x) are avail-
able. Let us start by considering the SA algorithm for solving systems of nonlinear equations
as it was defined originally in [30]. The convergence theory presented here relays on imposition

of statistical conditions on the objective function and the noise. Convergence analysis can be
conducted throughout differential equations as well, see [34] and [25] for further references.

Consider the system of nonlinear equations

g(x) = 0, g : Rn → R
n , (4)

with g(x) being the gradient of f (x). Suppose that only the measurements with noise that de-
pends on the iteration as well as on the decision variable x

ĝk(x) = g(x) + ξk(x) (5)

are available. Then the SA is defined by

xk+1 = xk − ak ĝk(xk). (6)

The sequence of step sizes {ak}k∈N is also called the gain sequence and it has dominant influence

on the convergence.

Let {xk} be a sequence generated by an SA method. Denote by Fk the σ -algebra generated by
x0, x1, . . . , xk. If the problem has an unique solution x∗ the set of assumptions that ensures the
convergence of an SA method is the following.

S 1. The gain sequence satisfies:

ak > 0, lim
k→∞ ak = 0,

∞∑
k=0

ak = ∞ and
∞∑

k=0

a2
k < ∞.

S 2. For some symmetric, positive definite matrix B and for every η ∈ (0, 1),

inf
η<‖x−x∗‖< 1

η

(x − x∗)T Bg(x) > 0.

S 3. For all x and k, E[ξk(x)|Fk ] = 0, E[‖ξk(x)‖2] < ∞.

Pesquisa Operacional, Vol. 34(3), 2014
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S 4. There exists a constant c > 0 such that for all x and k,

‖g(x)‖2 + E
[
‖ξk(x)‖2|Fk

]
≤ c(1 + ‖x‖2).

The first assumption which implies that the step sizes converge to zero is standard in stochastic
algorithms, see [34]. The second condition,

∑∞
k=0 ak = ∞ is imposed in order to avoid ineffi-

ciently small step sizes. On the other hand, the summability condition on a2
k ensures stability.

Its role is to decrease the influence of the noise when the iterates come into a region around the
solution. An example of a sequence that satisfies the first assumption is

ak = a

(k + 1)α
(7)

where α ∈ (0.5, 1] and a is some positive constant. The condition of zero mean is also standard

in stochastic optimization. Its implication is that ĝk(x) is an unbiased estimator of g(x). Notice
that under assumption S3, the condition in S4 is equal to

E
[
‖ĝk(x)‖2

]
≤ c(1 + ‖x‖2).

Therefore, the mean of ‖ĝk(x)‖2 can not grow faster than a quadratic function of x . Under

these assumptions, the almost sure convergence of the SA algorithm can be established. The
convergence in mean square i.e. E[|xk − x∗|]2 → 0 as k → ∞ was proved in [30] and the
theorem bellow states a stronger result, the almost sure convergence.

Theorem 2.1. [34] Consider the SA algorithm defined by (6). Suppose that assumptions S1 - S4
hold and that x∗ is a unique solution of the system (4). Then xk converges almost surely to x∗.

Closely related and more general result is proved in Bertsekas, Tsitsiklis [6] where the gradient-
related method of the form

xk+1 = xk + ak(sk + ξk) (8)

is considered. Here ξk is either stochastic or deterministic error, ak is a sequence of diminishing
step sizes that satisfy assumption S1 and sk is a descent direction. In this context, the direction sk

is not necessarily the gradient but it is gradient-related. The convergence is stated in the following

theorem.

Theorem 2.2. [6] Let {xk} be a sequence generated by (8), where sk is a descent direction.
Assume that S1 and S3 - S4 hold and that there exist positive scalars c1 and c2 such that

c1‖∇ f (xk)‖2 ≤ −∇ f (xk )
T sk, ‖sk‖ ≤ c2(1 + ‖∇ f (xk)‖).

Then, either f (xk) → −∞ or else f (xk) converges to a finite value and limk→∞ ∇ f (xk) = 0.

Furthermore, every limit of {xk} is a stationary point of f .

The gain sequence is the key element of the SA method. It has impact on stability as well as on
convergence rate. Under some regularity conditions, Fabian [13], the asymptotic normality of xk

is obtained. More precisely,

k
α
2 (xk − x∗) →d N (0, �), k → ∞

Pesquisa Operacional, Vol. 34(3), 2014
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where →d denotes the convergence in distribution, α refers to (7) and � is the covariance matrix

that depends on the gain sequence and on the Hessian of f . Therefore, the iterate xk approxi-
mately has normal distributionN (x∗, k−α�) for large k. Due to assumption S1, the maximal
convergence rate is obtained for α = 1. However, this reasoning is based on the asymptotic re-

sult. Since the algorithms are finite in practice, it is often desirable to set α < 1 because α = 1
yields smaller steps. Moreover, if we want to minimize ‖�‖, the ideal sequence would be

ak = 1

k + 1
H (x∗)−1

where H (x) denotes the Hessian matrix of f , Benveniste et al. [5]. Even though this result is

purely theoretical, sometimes the Hessian at x∗ can be approximated by H (xk) and that way one
can enhance the rate of convergence.

Two main drawbacks of the SA method are slow convergence and the fact that the convergence
theory applies only if the solution of (4) is unique i.e. only if f has an unique minimizer. Thus

several generalizations are developed to address these two issues. One can easily see from (7)
that the gain coefficients increase with the increase of a. On the other hand a large a might
have negative influence on stability. Therefore several generalizations of the gain coefficients
are considered in the literature. One possibility, Spall [35], is to introduce the so called stability

constant A > 0, and obtain
ak = a

(k + 1 + A)α
.

Now, the values of a and A can be chosen together to ensure effective practical performance of

the algorithm, allowing for larger a and thus producing larger step sizes in latter iterations, when
the effect of A is small, and avoiding instability in early iterations. The empirically recommended
value of A is at most 10% of the iterations allowed or expected during the optimization process,
for more details see [35].

Several generalizations of the SA method are based on adaptive step sizes that try to adjust the
step size at each iteration to the progress achieved in the previous iterations. The first attempt
of this kind has been made in Kesten [20] for one dimensional problems. The main idea is to
monitor the changes in the sign of xk+1−xk . If the sign of the difference between two consecutive

iterations starts to change frequently we are probably in the domain of noise and therefore small
steeps are needed to avoid oscillations. This idea is generalized in Delyon, Juditsky [11] for
multidimensional problems. The gain coefficients are defined as

ak = a

sk + 1
, sk+1 = sk + I (ĝT

k+1 ĝk),

where I is the identification function defined as I (t) = 1 if t < 0 and I (t) = 0 if t ≥ 0. The
method is accelerating the convergence of SA and its almost sure convergence is proved under
the standard assumptions.

The idea of sign changes is further developed in Xu, Dai [38]. It is shown that the sequence

{sk/k} stands for the change frequency of the sign of ĝT
k+1 ĝk in some sense. The assumption in

Pesquisa Operacional, Vol. 34(3), 2014
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[38] is that the noise ξk is state independent. The theoretical analysis shows that in that case sk/k

converges to P(ξ T
1 ξ2 < 0) in the mean square sense. Based on that result, a switching algorithm

that uses the switching parameter tk , defined as

tk =
∣∣∣ sk

k
− P(ξ T

1 ξ2 < 0)

∣∣∣ (9)

is proposed. Then the gain coefficients are defined as

ak =
{

a
(k+1+A)α

, if tk ≥ v
a

(k+1+A)β
, if tk < v

, (10)

where 0.5 ≤ α < β ≤ 1, v is a small positive constant and a, A are the constants from assump-

tion S1. To prove the convergence of the switching algorithm (9)-(10) one additional assumption
is introduced in [38].

S 5. G(x) = g(x) − x is a weighted maximum norm pseudo-contraction operator. That is for all
x ∈ Rn there exists a positive vector w and some x∗ ∈ Rn such that

‖G(x) − x∗‖w ≤ β‖x − x∗‖w,

where β ∈ [0, 1) and ‖ · ‖w is defined as ‖x‖w = max{x(i)w(i)−1 , i = 1, . . . , n} where x(i)

and w(i) are the ith components of x and w respectively.

Theorem 2.3. [38] Suppose that assumptions S1 - S2 and S5 hold. Then for {xk } generated
through (9)-(10) we have xk → x∗ as k → ∞ with probability 1.

If the objective function is given in the form of mathematical expectation the adaptive step length
sequence can be determined as proposed in Yousefian et al. [36]. For the problem

min
x

f (x) := E[F(x, ξ )] (11)

the following assumptions are stated.

S 6. The function F(·, ξ ) is convex on a closed and convex set D ⊂ R
n for every ξ ∈ �, and the

expected value E[F(x, ξ )] is finite for every x ∈ D.

S 7. The errors ξk in the noisy gradient ĝk are such that for some μ > 0,

E[‖ξk‖2|Fk] ≤ μ2 a.s. for all k ≥ 0.

A self-adaptive scheme is based on the error minimization and the convergence result is as fol-
lows.

Theorem 2.4. [36] Let assumptions S6 and S7 hold. Let the function f be differentiable over
the set D with Lipschitz gradient and assume that the optimal set of problem (11) is nonempty.

Assume that the step size sequence {ak} is generated through the following self-adaptive scheme

ak = ak−1(1 − cak−1) for all k ≥ 1,

Pesquisa Operacional, Vol. 34(3), 2014
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where c > 0 is a scalar and the initial step size is such that 0 < a0 < 1/c. Then the sequence

{xk } converges almost surely to a random point that belongs to the optimal set.

An important choice for the gain sequence is a constant sequence. Although such sequences do
not satisfy assumption S1 and almost sure convergence to solution can not be obtained, it can be
shown that a constant step size can conduct the iterations to a region that contains the solution.

This result initiated development of a cascading steplength SA scheme in [36] where a fixed
step size is used until some neighborhood of the solution is reached. After that, in order to come
closer to the solution, the step size is decreased and again the fixed step size is used until the

ring around the solution is sufficiently tighten up. That way, the sequence of iterates is guided
towards the solution.

A hybrid method which combines the SA gain coefficients and the step sizes obtained from the
inexact Armijo line search under the assumptions valid for the SA method is considered in Krejić

et al. [24]. The method takes the advantages of both approaches, safe convergence of SA method
and fast progress obtained by line search if the current iterate if far away from the solution (where
the SA steps would be unnecessarily small). The step size is defined according to the following

rule. For a given C > 0 and a sequence {ak} that satisfies assumption S1 we define

αk =
{

ak if ‖ĝ(xk)‖ ≤ C
βk if ‖ĝ(xk)‖ > C,

(12)

where βk is obtained from the Armijo inequality

f̂ (xk − βk ĝ(xk)) ≤ f̂ (xk) − cβk‖ĝ(xk )‖2.

After that the new iteration is obtained as

xk+1 = xk − βk ĝ(xk). (13)

The existence of C such that the gain coefficient (12) is well defined as well as the convergence
of the sequence generated by (13) is proved in [24] under one additional assumption.

S 8. Observation noise is bounded and there exists a positive constant M such that ‖ξk(x)‖ ≤ M
a.s. for all k and x.

Theorem 2.5. [24] Assume that Assumptions S1-S4 and S8 hold, the gradient g is Lipschitz
continuous with the constant L, and the Hessian matrix H (x∗) exists and is nonsingular. Let

C ≥ max

{
4(1 − c1)

αc1
,

M + 2
√

2M L + 1

1 − c1

}

where

α = (1 − c1)(2
√

2M L + 1)

2L(M + 2
√

2M L + 1)
.

Let {xk} be an infinite sequence generated by (13). Then xk → x∗ a.s.

Pesquisa Operacional, Vol. 34(3), 2014
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Many important issues regarding the convergence of the SA methods are not mentioned so far.

One effective possibility to speed up the convergence is to apply the averaging to the sequence
of gradient estimations ĝ(xk) as suggested in Andradottir [1]. It is shown that the rate of conver-
gence could be significantly better than the rate of SA if two conditionally independent gradient

estimations are generated and the new iteration is obtained using a scaled linear combination of
the two gradients with the gain coefficient. More details on this procedure are available in [1].
Let us also mention a robust SA scheme that determines an optimal constant step length based

on minimization of the theoretical error for a pre-specified number of steps [27].

We have assumed in the above discussion that the noisy gradient values are available. This is
the case for example if the analytical expression of F in (11) is available. In this case, under
certain assumption we can interchange the expectation and derivative and thus a sample average

approximation of the gradient can be calculated. It is important to be able to use a sample gra-
dient estimation with relatively modest sample size as calculation of the sample gradient is in
general expensive for large samples. However it is safe to claim that the analytical expression

for the gradient calculation is not available in many cases and thus the only input data we have
are (possibly noisy) function values. Thus the gradient approximation with finite differences ap-
pears to be a natural choice in many applications. The first method of this kind is due to Keifer,
Wolfowitz, [21]. Many generalizations and extensions are later considered in the literature, see

Fu [15] for example. Among many methods of this kind the Stochastic Perturbation method is
particularly efficient as it uses one two function values to obtain a good gradient approximation,
see [35] for implementation details.

The questions of stopping criteria, global convergence, search directions which are not gradient

related, and other important questions are beyond the scope of this paper. An interested reader
might look at Spall [34], Shapiro et al. [32] for guidance on these issues and relevant literature.

3 SAMPLE AVERAGE APPROXIMATION

Sample Average Approximation (SAA) is a widely used technique for approaching the problems
of the form

min
x

f (x) = E [F(x, ξ )] . (14)

The basic idea is to approximate the objective function f (x) with the sample mean

f̂N (x) = 1

N

N∑
i=1

F(x, ξi ) (15)

where N is the size of a sample represented by i.i.d. random vectors ξ1, . . . , ξN . Under the stan-
dard assumption such as finite variance of F(x, ξ ) the (strong) Law of Large Numbers implies
that f̂N (x) converges to f (x) almost surely. Moreover, if F(x, ξ ) is dominated by an integrable
function, then the uniform almost sure convergence of f̂N (x) on the compact subsets of Rn is

obtained.

Pesquisa Operacional, Vol. 34(3), 2014
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Within the SAA framework the original problem (14) is replaced by the approximate problem

min
x

f̂N (x), (16)

and thus the key question is the relationship between their respective solutions as N tends to

infinity. Denote by X∗ the set of optimal solutions of the problem (14) and let f ∗ be the optimal
value of the objective function. Furthermore, denote by X̂∗

N and f̂ ∗
N the set of optimal solutions

and the corresponding optimal values, respectively, of the problem (16). Then, the following

result holds.

Theorem 3.1. [32] Suppose that there exists a compact set C ⊂ R
n such that X∗ is nonempty

and X∗ ⊂ C. Assume that the function f is finite valued and continuous on C and that f̂N

converges to f almost surely, uniformly on C. Also, suppose that for N large enough the set X̂∗
N

is nonempty and X̂∗
N ⊂ C. Then f̂ ∗

N → f ∗ and the distance between sets X̂∗
N and X∗ tends to

zero almost surely as N → ∞.

Let x̄N be an approximate solution of the problem (14). Clearly f̂N (x̄N ) can be calculated for a

given sample. The Central Limit Theorem can be used to obtain an approximation of the error
bound cN (x̄N ) such that the inequality | f̂N (x̄N )− f (x̄N )| ≤ cN (x̄N ) holds with some high prob-
ability δ ∈ (0, 1). For example, using the sample variance σ̂ 2

N (x̄N ) = 1
N−1

∑N
i=1(F(x̄N , ξi) −

f̂N (x̄N ))2 the following error bound is obtained

εN
δ (x̄N ) = σ̂N (x̄N )√

N
z 1+δ

2
, (17)

with z being the quantile of the standard normal distribution. The error bound is directly propor-
tional to the variance of the estimator V ar( f̂N (x̄N )). Therefore, in order to provide a tight bound
one can consider some techniques for reducing variance such as the quasi-Monte Carlo or Latin

hypercube sampling [32]. However, these techniques tend to deteriorate the i.i.d. assumption.
This issue is addressed further on in this section.

The gap g(x̄N ) = f (x̄N ) − f (x∗) where x∗ is a solution of the original problem can be
estimated as well. Clearly g(x̄N ) ≥ 0. To obtain an upper bound suppose that M indepen-

dent samples of size N are available, i.e. we have i.i.d. sample ξm
1 , . . . , ξm

N , m = 1, . . . , M .
Denote by f̂ m∗

N the relevant (nearly) optimal values and define f̂ ∗
N,M = 1

M

∑M
m=1 f̂ m∗

N and

σ̂ 2
N,M = 1

M

(
1

M−1

∑M
m=1

(
f̂ m∗
N − f̂ ∗

N,M

)2
)

. Then, the upper bound estimator for the gap g(x̄N )

is

f̂N ′ (x̄N ) + zδ
σ̂N ′ (x̄N )√

N ′ − f̂ ∗
N,M + tM−1,δσ̂N,M

where N ′ is some large enough sample size and tM−1,δ is the quantile of Student’s distribution
with M − 1 degrees of freedom. It should be mentioned that the sample size bounds such that

the solutions of an approximate problem are nearly optimal for the true problem with some
high probability are mainly too conservative for practical applications in general. For further
references on this topic, see [32] for instance.

Pesquisa Operacional, Vol. 34(3), 2014
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Recall that almost sure convergence f̂N (x) towards f (x) is achieved if the sample is i.i.d. under

standard assumptions. However, if the sample is not i.i.d. the almost sure convergence of f̂N

is achievable only if the sample size N which defines the SAA problem grows at the certain
rate, Homem-de-Mello [19]. The analysis presented in [19] allows for biased estimators f̂N (x)

if f̂N (x) is at least asymptotically unbiased. Let us first assume that the sample ξ k
1 , . . . , ξ k

Nk

generated at the iteration k is independent of the sample at the previous iteration for every k. The
following assumptions are needed.

R 1. For each x, there exists M(x) > 0 such that supi,k F(x, ξ k
i ) ≤ M(x) with probability 1.

R 2. For each x, we have that limk→∞ E( f̂N (x)) = f (x).

Theorem 3.2. [19] Suppose that assumptions R1-R2 hold and that the sample size sequence

{Nk } satisfies
∑∞

k=1 αNk < ∞ for all α ∈ (0, 1). Then f̂Nk (x) converges to f (x) almost surely.

For example, Nk ≥ √
k satisfies the previously stated summability condition.

The rate of convergence is also addressed in [19], i.e. the error bounds for | f̂Nk (x) − f (x)| are
developed. In the case where Nk ≥ c1kρ for c1 > 0 and ρ > 2 it can be proved, under some
additional assumptions, that for every k sufficiently large the following inequality holds almost

surely

| f̂Nk (x) − f (x)| ≤
√

V ar(F(x, ξ k
1 ))

√
ln Nk

Nk
+ |E( f̂Nk (x)) − f (x)|.

Moreover, if the sample is cumulative, the corresponding error bound is

| f̂Nk (x) − f (x)| ≤ C

√
ln(ln(Nk))

Nk
(18)

where C is some positive constant.

The above analysis provides a justification for the SAA approximation as well as a guidance
for choosing N in (16). Thus from now on we concentrate on gradient methods for solving

(16). Several papers exploit ideas from deterministic optimization. Generally speaking we are
interested in solving the SAA problem for some finite, possibly very large N as well as obtaining
asymptotic results i.e. the results that cover the case N → ∞ even if in practical applications
one deals with a finite value of N . A naive application of an optimization solver to (16) is very

often prohibitively costly if N is large due to the cost of calculating f̂N (x) and its gradient. Thus
there is a vast literature dealing with variable sample scheme for solving (16).

Two main approaches can be distinguished. In the first approach the objective function f̂N is
replaced with f̂Nk (x) at each iteration k and the iterative procedure is essentially a two step

procedure of the following form. Given the current approximation xk and the sample size Nk one
has to find sk such that the value of f̂Nk (xk + sk) is decreased. After that we set xk+1 = xk + sk

and choose a new sample size Nk+1. The key ingredient of this procedure is the choice of Nk+1.
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The schedule of sample sizes {Nk} should be defined in such way that either Nk = N for k large

enough or Nk → ∞ if one is interested in asymptotic properties.

The second approach, often called the diagonalization scheme or the surface response method, is
again a two step procedure. It consists of a sequence of SAA problems with different sample sizes
that are approximately solved. So for the current xk and Nk the problem (16) with N = Nk is

approximately solved (within an inner loop) for x̃Nk starting with xk as the initial approximation.
After that we set xk+1 = x̃Nk and choose the new sample size Nk+1. Two important points in this
procedure are the choice of Nk+1 and the precision in solving each of the optimization problems

min f̂Nk .

Let us now look into algorithms of the first kind. Keeping in mind that min f̂Nk is just an ap-
proximation of the original problem and that the cost of each iteration depends on Nk , it is rather
intuitive to start the optimization procedure with smaller samples and gradually increase the sam-

ple size Nk as the solution is approached. Thus the most common schedule sequence would be an
increasing sequence N0, N1, . . .. The convergence theory for this kind of reasoning is introduced
in Wardi, [40] where an Armijo type line search method is combined with SAA approach. In

order to solve the problem of type (14), the iterative sequence is generated as

xk+1 = xk − αk∇ f̂Nk (xk ) (19)

where Nk is the sample size used at iteration k and αk is the largest number in (0, 1] satisfying
the inequality

f̂Nk (xk − αk∇ f̂Nk (xk)) ≤ f̂Nk (xk ) − ηαk‖∇ f̂Nk (xk )‖2. (20)

The method is convergent with zero upper density [40], assuming that Nk → ∞. More precisely,
the following statement is proved.

Theorem 3.3. [40] Assume that the function f is given by (14) and that F is twice continuously
differentiable on Rn for every ξ . Furthermore assume that for every compact set D ⊂ R

n , there
exists K > 0 such that for every x ∈ D and every ξ

|F(x, ξ )| + ‖∂F

∂x
(x, ξ )‖ + ‖ ∂2 F

(∂x)2
(x, ξ )‖ ≤ K .

If Nk → ∞ then the sequence {xk} given by (19) converges with zero upper density on compact
sets.

An extension of the above work is presented in Yan, Mukai [37] where the adaptive precision
is proposed i.e. the sequence {Nk }k∈N is not determined in advance as in [40] but it is adapted

during the iterative procedure. Nevertheless the sample size has to satisfy Nk → ∞. The conver-
gence result is slightly stronger as the convergence with probability 1 is proved under the set of
appropriate assumptions. The more general result that applies to both gradient and subgradient

methods is obtained in Shapiro, Wardi [33] where the convergence with probability 1 is proved
for sample average gradient and subgradient methods assuming that the sample size tends to
infinity.
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In practical applications, the sample size is finite. So, let us now suppose that Nmax is the sample

size which makes f̂Nmax good approximation of the original objective function. Very often we
assume that the sample is generated at the beginning of the process which justifies considering
the SAA objective function as deterministic. In this case one wishes again to decrease the cost of

the optimization process by decreasing the number of function and gradient evaluations. Let us
now look closer at the possible schedule of Nk . Clearly the sample size should be equal to Nmax

at the final stages of the optimization procedure to ensure that the problem (16) with N = Nmax

is solved. Thus one can consider even some heuristic schedule [14] to generate a non-decreasing
sequence {Nk } which eventually becomes stationary with Nk = Nmax for k large enough. For
example, a simple way to define such sequence could be to increase Nk by a fixed number every

K iterations.

The problem of scheduling can be approached from a different perspective in the following man-
ner. Instead of constantly increasing the sample size one could monitor the progress in decreasing
the (approximate) objective function and choose the next sample size according to that progress.

One algorithm of this kind is presented in Deng, Ferris [12] where the Bayes risk is used to
decide the scheduling sequence within a trust region method. Another class of results in the
framework of trust region methods is presented in Bastin [2] and Bastin et al. [3], [4]. The key
point of the approach considered in [2, 3, 4] is that the sample sizes might oscillate during the

iterative process, i.e. {Nk} is not necessarily non-decreasing at the initial stages of the iterative
process. Eventually Nk = Nmax is reached and (16) is solved, but very often with smaller costs
if compared with an increasing scheduling. The efficiency of this approach comes from the fact

that there is a balance between the precision of the objective function approximation f̂Nk and the
progress towards the solution. The same idea is further developed for the line search methods in
Krejić, Krklec [22] as follows.

Let us assume that the gradient of ∇F is available and that the search direction pk satisfies

pT
k ∇ f̂Nk (xk) < 0. The Armijo rule with η ∈ (0, 1) is applied to find αk such that xk+1 =

xk + αk pk where
f̂Nk (xk + αk pk) ≤ f̂Nk (xk) + ηαk(∇ f̂Nk (xk ))

T pk.

The sample size is updated as follows. First, the candidate sample size N+
k is determined by

comparing the measure of decrease in the objective function dmk = −αk(∇ f̂Nk (xk))
T pk and

the so called lack of precision εN
δ (x) defined by (17). The main idea is to find the sample size

N+
k such that dmk ≈ ε

N+
k

δ (xk ). The reasoning behind this idea is the following. If the decrease

measure dmk is greater than the lack of precision ε
N+

k
δ (xk ), the current approximation is probably

far away from the solution. In that case, there is no need to impose high precision and therefore

the sample size is decreased if possible. The candidate sample size does not exceed Nmax , but
there is also the lower bound, i.e. Nmin

k ≤ N+
k ≤ Nmax. This lower bound is increased only if

Nk+1 > Nk and there is not enough progress concerning the function f̂Nk+1 . After finding the

candidate sample size, a safeguard check is performed in order to prohibit the decrease of the
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sample size which might be unproductive. More precisely, if N+
k < Nk the following parameter

is calculated

ρk =
f̂N+

k
(xk) − f̂N+

k
(xk+1)

f̂Nk (xk) − f̂Nk (x
k+1)

.

If ρk is relatively small, then it is presumed that these two model functions are too different and

thus there is no gain in decreasing the sample size. So, Nk+1 = Nk . In all the other cases,
the decrease is accepted and Nk+1 = N+

k . The convergence analysis relays on the following
important result which states that after some finite number of iterations, the objective function

becomes f̂Nmax and (16) is eventually solved.

Theorem 3.4. [22] Suppose that F(·, ξ ) is continuously differentiable and bounded from below

for every ξ . Furthermore, suppose that there exist a positive constant κ and number n1 ∈ N such
that ε

Nk
δ (xk) ≥ κ for every k ≥ n1. Then there exists q ∈ N such that Nk = Nmax for every

k ≥ q.

Let us now present some results for the second type of methods, the so called diagonalization

methods described above. One possibility to determine the sample sizes in the sequence of opti-
mization problems to be solved is presented in Royset [31] where an optimality function is used
to determine when to switch on to a larger sample size. The optimality function is defined by

mapping θ : Rn → (−∞, 0] which, under standard conditions, satisfies θ(x) = 0 if and only if
x is a solution in some sense. For unconstrained problem θ(x) = −1

2 ‖∇ f (x)‖2 and its SAA ap-
proximation is given by θN (x) = −1

2 ‖∇ f̂ N (x)‖2. Under the set of standard assumptions, almost

sure convergence of θN (x) towards θ(x) is stated together with asymptotic normality.

Denote by x̃Nk the iterate obtained after a finite number of iterations of an algorithm applied
on the SAA problem with sample size Nk where x̃Nk−1 is the initial point. The point x̃Nk is an
approximate solution of (16) with N = Nk and it is assumed that the optimization algorithm

used to determine that point is successful in the following sense.

R 3. For any Nk every accumulation point x̃Nk of the sequence generated by the optimization
method for solving

min f̂Nk (x)

satisfies θNk (x̃Nk ) = 0 almost surely.

The algorithm proposed in [31] increases the sample size when

θNk (xk) ≥ −δ1�(Nk ),

where δ1 is some positive constant and � is a function that maps N into (0, ∞) and satisfies
limN→∞ �(N) = 0. The sample size is assumed to be strictly increasing and unbounded, but

the exact dynamics of increasing is not specified. The convergence of the algorithm is proved
under one additional assumption.

R 4. On any given set S ⊂ R
n, the function F(·, ξ ) is continuously differentiable and F(·, ξ )

and ‖∇x F(·, ξ )‖ are dominated by an integrable function.
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Theorem 3.5. [31] Suppose that the assumptions R3-R4 are satisfied and that the sequence of

iterates generated by the algorithm proposed in [31] is bounded. Then, every accumulation point
x̂ of that sequence satisfies θ(x̂) = 0 almost surely.

The relation between the sample size and the error tolerance for each of the optimization prob-
lems solved within the diagonalization methods is considered in Pasupathy [28]. The error toler-

ance here is a small number εk which almost surely satisfies ‖x̃Nk − x∗
Nk

‖ ≤ εk where x̃Nk and
x∗

Nk
represent the approximate and the true (unique) solution of the corresponding SAA problem,

respectively. A measure of effectiveness is defined as qk = ‖x̃Nk − x∗
Nk

‖2Wk where Wk repre-

sents the number of simulation calls needed to obtain the approximate solution x̃Nk . Since the
almost sure convergence is analyzed, it is assumed that Nk → ∞ and εk → 0. It is proved that
the measure of effectiveness is bounded in a stochastic sense if the following three conditions

hold.

R 5. If the numerical procedure used to solve SAA problems exhibits linear convergence, we as-
sume that lim infk→∞ εk

√
Nk−1 > 0. If the numerical procedure used to solve SAA problems ex-

hibits polynomial convergence of order p > 1, we assume lim infk→∞(ln(1/
√

Nk−1)/ ln(εk )) >

0.

R 6. lim supk→∞(
∑k

j=1 N j )ε
2
k < ∞.

R 7. lim supk→∞(
∑k

j=1 N j )N−1
k < ∞.

If any of the above conditions is violated, then qk tends to infinity in probability. The key point
of analysis in [28] is that the error tolerance should not be decreased faster than the sample size

is increased. The dynamics of change depends on the convergence rate of numerical procedures
used to solve the SAA problems. Moreover, the mean squared error analysis implies the choice
of εk and Nk such that

0 < lim sup
k→∞

εk

√
Nk < ∞. (21)

In order to further specify the choice of the optimal sequence of sample sizes, the following
theorem is stated.

Theorem 3.6. [28] Suppose that (21) holds together with the assumptions R5-R7. If the numeri-
cal procedure used to solve SAA problems exhibits linear convergence, then

lim sup
k→∞

Nk/Nk−1 < ∞.

If the numerical procedure used to solve SAA problems exhibits polynomial convergence of order
p > 1, then lim supk→∞ Nk/N p

k−1 < ∞.

More specific recommendations are given for linear, sublinear and polynomial rates in [28]. For

example, if the applied algorithm is linearly convergent, then the linear growth of a sample size
is recommended, i.e. it can be set Nk+1 = �1.1Nk� for example. Also, in that case, exponential
or polynomial growth of order p > 1 are not recommended. However, if the polynomial rate of
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convergence of order p > 1 is achieved, then we can set Nk+1 = �N1.1
k � or Nk+1 = �eN1.1

k �
for instance. Furthermore, it is implied that the error tolerance sequence should be of the form
K/

√
Nk where K is some positive constant.

The diagonalization methods are defined for a finite N as well. One possibility is presented in

Polak, Royset [29] where the focus is on finite sample size N although the almost sure con-
vergence is addressed. The idea is to approximately solve the sequence of SAA problems with
N = Nk , k = 1, . . . , s applying nk iterations at every stage k. The sample size is nondecreasing

and the sample is assumed to be cumulative. The method consists of three phases. The first phase
provides the estimates of relevant parameters such as the sample variance. In the second phase,
the scheduling sequence is obtained. Finally, the sequence of the SAA problems is solved in the

last phase.

An additional optimization problem is formulated and solved in the second phase in order to find
the number s of the SAA problem to be solved, the sample sizes Nk, k = 1, . . . , s and the number
of iterations nk that are applied to solve the corresponding SAA problem. The objective function

of this additional problem is the overall cost
∑s

k=1 nkw(Nk ), where w(N) is the estimated cost
of one iteration of the algorithm applied on the function f̂N . For example w(N) = N . The
constraint for this problem is motivated by the stopping criterion f (x) − f ∗ ≤ ε( f (x0) − f ∗)
where f ∗ is the optimal value of the objective function. More precisely, the cost-to-go is defined
as ek = f (xk

nk
) − f ∗ where xk

nk
is the last iteration at the stage k. Furthermore, the upper bound

estimate for es is determined as follows. Let �(N) be the function defined as in Royset [31].

R 8. There exists strictly decreasing function �(N) : N → (0, ∞) such that limN→∞ �(N) = 0
and | f̂Nk (x) − f (x)| ≤ �(Nk ) holds almost surely.

One may use a bound like (18), but it is usually too conservative for practical implementations.
Therefore, �(N) is estimated with the confidence interval bound of the form (17) where the

variance is estimated in the first stage. The following bound is derived

es ≤ e0θ
l0 (s) + 4

s∑
k=1

θ lk (s)�(Nk ),

where lk (s) represents the remaining number of iterations after the stage k and θ defines the
rate of convergence of the deterministic method applied on SAA. The initial cost-to-go from
e0 = f (x1

0) − f ∗ is also estimated in the first phase. Finally, the efficient strategy is obtained as

the solution of the following problem

min
s∈N

min
nk ,Nk

s∑
k=1

nkw(Nk) s.t. e0θ
l0 (s) + 4

s∑
k=1

θ lk (s)�(Nk ) ≤ εe0, Nk ≥ Nk−1.

In order to prove the asymptotic result, the following assumption regarding the optimization
method used at each stage is imposed.

R 9. The numerical procedure used to solve SAA problems almost surely exhibits linear rate of
convergence with parameter θ ∈ (0, 1).

Pesquisa Operacional, Vol. 34(3), 2014



�

�

“main” — 2014/10/23 — 12:14 — page 388 — #16
�

�

�

�

�

�

388 STOCHASTIC GRADIENT METHODS FOR UNCONSTRAINED OPTIMIZATION

Theorem 3.7. [29] Suppose that the assumptions R8-R9 hold and that the sample size sequence

tends to infinity. Then lims→∞ es = 0 almost surely.

4 APPLICATIONS TO DETERMINISTIC PROBLEMS

A number of important deterministic problems can be written in the form of

min
x

f̂N (x) = 1

N

N∑
i=1

fi (x) (22)

where fi (x) are given functions and N is a large integer. For example, least squares and max-
imum likelihood problems are of this form. The objective function in (22) and its gradient are

generally expensive to compute if N is large. On the other hand for a given sample realization
ξ1, ..., ξN and fi (x) = F(x, ξi ) the SAA problems discussed in Section 3 are the same as (22).
Therefore the SAA methods that deal with finite N can be used for solving the deterministic

problems specified in (22). The main idea of this approach is to use the same reasoning as in the
variable sample schemes to decrease the cost of calculating the objective function and its gradi-
ent i.e. to approximate the function and the gradient with f̂Nk and ∇ f̂Nk . One application of a

variable sample method to the data fitting problem is presented in Krejić, Krklec Jerinkić, [23].
In this section we consider two important problems, data fitting and machine learning, and meth-
ods for their solutions that use stochastic gradient approximation in the sense of approximate
gradient as explained above.

The data fitting problem of the form (22) is considered in Friedlander, Schmidt [14]. The problem
is solved a by quasi Newton method but the gradient approximation of the SAA type is used. Let
the gradient estimation at the current iteration k be given as gk = ∇ f (xk) + εk where ε is the

error term. The following assumptions are stated.

P 1. The functions f1, . . . , fN are continuously differentiable and the function f is strongly
convex with parameter μ. Also, the gradient ∇ f is Lipschitz continuous with parameter L.

P 2. There are constants β1 ≥ 0 and β2 ≥ 1 such that ‖∇ fi(x)‖2 ≤ β1 + β2‖∇ f (x)‖2 for all x
and i = 1, . . . , N.

The algorithm can be considered as an increasing sample size method where the sample size is

bounded with N . The main issue in [14] is the rate of convergence and the convergence analysis
is done with the assumption of a constant step size. More precisely

xk+1 = xk − 1

L
gk.

Two approaches are considered: deterministic and stochastic sampling. The deterministic sam-

pling assumes that if the sample size is Nk then the gradients to be evaluated ∇ fi (xk ), i =
1, . . . , Nk, are determined in advance. For example, the first Nk functions are used to obtain
the gradient approximation gk = 1

Nk

∑Nk
i=1 ∇ fi (xk ). On the other hand, stochastic sampling

Pesquisa Operacional, Vol. 34(3), 2014



�

�

“main” — 2014/10/23 — 12:14 — page 389 — #17
�

�

�

�

�

�
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assumes that the gradients ∇ fi (x), i = 1, . . . , Nk , to be evaluated are chosen randomly. We

state the relevant results considering R-linear rate of convergence. In the case of deterministic
gradient, q-linear convergence is also attained but under stronger conditions on the increase of
the sample size.

Theorem 4.1. [14] Suppose that the assumptions P1-P2 hold and that (N − Nk)/N = O(γ k/2)

for some γ ∈ (0, 1). Then for any ε > 0, σ = max{γ, 1−μ/L}+ε and every k, in deterministic

case we obtain

f (xk) − f (x∗) = ( f (x0) − f (x∗))O((1 − μ/L + ε)k ) +O(σ k).

Moreover, if (N − Nk)/(Nk N) = O(γ k), in stochastic case we obtain

E
[

f (xk ) − f (x∗)
] = ( f (x0) − f (x∗))O((1 − μ/L + ε)k ) + O(σ k).

Machine learning applications which usually assume large number of training points can also be
viewed as problems of the form (22). Methods for solving such problems are the subject of Byrd
et al. [8] and Byrd et al. [9]. The main idea in [8] is to create methods which use the second

order derivative information but with cost comparable to the steepest descent method. The focus
is on using a cheep Hessian approximations ∇2 f̂Sk (xk) where Sk is a number of training points,
i.e. the Hessian-related sample size at iteration k. More precisely, matrix-free conjugate gradient
method is applied in order to obtain the search direction pk as an approximate solution of the

system
∇2 f̂Sk (xk)p = −∇ f̂Nk (xk).

Here, Nk is a sample size related to the gradient and the function approximation. This can be
considered as an inexact Newton method. In the relevant examples, pk is guaranteed to be a

descent search direction and therefore the Armijo line search is applied. The proposed method
(named S-Newton) does not specify the dynamic of changing the sample sizes. It only requires
that the variable sample strategy is used and Sk < Nk . The analysis is conducted for the full

gradient case.

Theorem 4.2. [8] Suppose that the function f̂N is twice continuously differentiable and uni-
formly convex and that there exists a constant γ > 0 such that xT ∇2 f̂Sk (xk)x ≥ γ ‖x‖ for
every k and x. Then the sequence generated by the S-Newton method with Nk = N satisfies

limk→∞ ‖∇ f̂ N (xk)‖ = 0.

The same result can be obtained for the so called SLM method which uses matrix-free limited
memory BFGS method. In that case, the conjugate gradient method is used to obtain the search
direction where the sub-sampled Hessian approximation ∇2 f̂Sk (xk) is used for the initial matrix-

vector product at every iteration. The line search uses Wolfe conditions for choosing the suitable
step size.

The dynamic of increasing the sample size in the machine learning problem is addressed in [9].
The main idea is to estimate the sample size which makes the search direction pk descent for the
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objective function f̂N without evaluating the true gradient ∇ fN (x). The approximation of the

negative gradient pk = −∇ f̂Nk (xk) is a descend direction if for some θ ∈ [0, 1], the following
inequality holds

‖∇ f̂N (xk) − ∇ f̂Nk (xk)‖ ≤ θ‖∇ f̂Nk (xk)‖. (23)

Since E[‖∇ f̂N (xk) − ∇ f̂Nk (xk)‖2] = ‖V ar(∇ f̂Nk (xk))‖1 and N is large, inequality (23) is
approximated by

‖σ̂ 2
Nk

(∇ fi (xk))‖1

Nk
≤ θ2‖∇ f̂ Nk (xk)‖2 (24)

where σ̂ 2
Nk

is a sample variance related to the chosen sample of the size Nk . The algorithm for
the sample size schedule proposed in [9] can be described as follows. After finding the step size

αk such that f̂Nk (xk + αk pk) < f̂Nk (xk) and setting xk+1 = xk + αk pk , a new sample of the
same size Nk is chosen. If inequality (24) holds for the new sample, the sample size remains
unchanged, i.e. Nk+1 = Nk . Otherwise, the sample is augmented and the new sample size is
determined by

Nk+1 =
⌈ ‖σ̂ 2

Nk
(xk)‖1

θ2‖∇ f̂ Nk (xk)‖2

⌉
.

In order to conduct the complexity analysis, the constant step size is considered and the q-linear
convergence rate is analyzed.

Theorem 4.3. [9] Suppose that the function f̂N is twice continuously differentiable and x∗ is
a solution of the problem (22) with f̂N (x∗) = 0. Furthermore, assume that there are constants
0 < λ < L such that λ‖h‖2 ≤ hT ∇2 f̂N (x)h ≤ L‖h‖2 for all x and h. Let the sequence of

iterates be generated by xk+1 = xk − α∇ f̂Nk (xk) where α = (1 − θ)/L and θ ∈ (0, 1). If the
condition (23) is satisfied at iteration k, then

f̂N (xk+1) ≤
(

1 − βλ

L

)
f̂N (xk)

where β = (1−θ)2

2(1+θ)2 . Moreover, if (23) holds for every k, then

lim
k→∞ xk = x∗.

The schedule {Nk} for the gradient estimations is extended to the second order approximations
to define a Newton-type method, the S-Newton method defined in [8]. This method uses the

updating of Nk described above while the Hessian-related sample size Sk follows the dynamic
of Nk . More precisely, Sk = RNk where R is some positive number substantially smaller than
1. Also, the sample used for the Hessian approximation is assumed to be a subset of the sample

used for the gradient and the function approximations. The stopping criterion for the conjugate
gradient method used for obtaining the search direction is more complex than in [8] since it is
related to the sample size. Wolfe conditions are imposed to obtain a suitable step size.
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5 CONCLUSIONS

In this survey we considered unconstrained problems with the stochastic or expectation objective
function. We focused our attention on two specific classes of gradient-related methods: Stohastic

Approximation and Sample Average Approximation and many other important approaches are
left out for the sake of brevity. An interested reader should consults [32, 34] for the initial guid-
ance into stochastic optimization problems. Several natural extensions are easily incorporated

in the framework considered in this paper, for example search directions with second order in-
formation which usually yield faster convergence, but also require additional cost, [8, 9, 10]. In
order to decrease the linear algebra costs, one can consider preconditioners as their construction

might be a nontrivial issue due to the presence of random variable. On the other hand, given
that there are a lot of problems yielding only input-output information, an interesting approach
within SA and SAA frameworks is based on zero order information, [17]. Constrained problems

are always of great interest and some recent research of penalty methods within SA methodology
is presented in [39]. Projection and filter methods with variable sample size might be a valuable
topic of future research. Among the others, chance constrained problems are especially chal-
lenging. In all the considered methods, deriving some complexity bounds can be of great interest

from practical point of view.
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