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ABSTRACT. One of the most important activities in the oil and gas industry is the intervention in wells

for maintenance services, which is necessary to ensure the constant production of oil. These interventions

are carried out by workover rigs. Thus, the Workover Rig Scheduling Problem (WRSP) consists of finding

the best schedule to service the wells while considering the limited number of rigs with the objective of

minimizing the total production loss. In this study, a 0-1 integer linear programming model capable of effi-

ciently solving the WRSP with a homogeneous fleet of rigs is proposed. Computational experiments were

carried out using instances based on real cases in Brazil to compare the results obtained by the proposed

model with the results reported by other methods. The proposed model was capable of solving all instances

considered in a reduced computational time, including the large instances for which only approximate

solutions were presently known.

Keywords: oil production, workover rigs, 0-1 Integer Linear Programming.

1 INTRODUCTION

Usually for oil wells to operate at onshore fields, it is necessary to pump fluids so that the oil

reaches the surface. Fluid lift can be carried out by various artificial techniques, such as me-
chanical pumping, progressive cavity pumping, gas lift and others. As a result, it is necessary
to install equipment that works next to the well pumping the fluids. Over time, wells and pieces
of equipment require maintenance services (called workover), such as cleaning, reinstatement,

stimulation and others, all of which aim to maintain the production or to improve the productivity
of the well. The interventions in the wells are performed by workover rigs.

The rigs are limited and scarce resources with high operational costs, and there are a large number

of wells that demand maintenance services. Therefore, a service schedule should be defined for
the wells. The construction of the schedule should be based on factors such as the oil production
of the well, the type of service that needs to be performed and the available time window to carry
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out the service. Waiting for service can cause the wells to become inactive, which causes major

production losses (Aloise et al., 2006).

The problem of intervention in wells for maintenance services is one of the most important
activities in the oil and gas industry. Thus, providing optimal solutions is an issue that can lead
to thousands of dollars in savings due to the reduction of the oil production loss as it can be
confirmed in the works of Costa (2005) and Aloise et al. (2006).

Thus, the Workover Rig Scheduling Problem (WRSP) consists of establishing the schedule of
the well service while considering the limited number of available rigs and minimizing the total
production loss due to waiting for maintenance services in a planning horizon. The WRSP can
be classified as a particular case of the scheduling problem, where the maintenance services
represent a set of tasks and the rigs represent a set of parallel machines and that aim to minimize
the total weighted tardiness (Colin & Shimizu, 2000; Valente & Alves, 2003). This problem is
of a combinatorial nature and belongs to the NP-hard class (Du & Leung, 1990). For scheduling
problems can be found a vast amount of literature addressing its classic form and extensions.

The present paper proposes a 0-1 integer linear programming model to efficiently solve the
WRSP. This mathematical model extends the mathematical model proposed by Costa & Fer-
reira Filho (2004). A reformulation and decomposition procedure are developed to formulate
the WRSP using a smaller number of decision variables and constraints, allowing to solve large
instances.

The proposed model was tested in instances generated by Costa (2005) from real cases of an oil
production field in Brazil. In the literature, 25 instances are available; optimum values are known
for 10 of them, as reported by Pacheco, Dias Filho & Ribeiro (2009) by using the CPLEX 12.1
solver. These authors were not able to solve the remaining instances due to their great com-
plexity, and only approximate solutions reported by some heuristics and metaheuristics for those
instances are known.

Thus, there are two main contributions in this paper. First, this paper describes the development
of a new formulation for the problem in question, which proved to be more efficient than the
methods available in the literature. The second contribution is the generation of optimum solu-
tions for the instances of Costa (2005), which were not known in the literature until now.

This study is structured as follows: A review of the literature is presented in Section 2. The
WRSP is formulated and the proposed model is developed in Section 3. The computational re-
sults are analyzed in Section 4, and the proposed model is compared with the methods available

in the literature. Finally, conclusions and proposals for future work are presented in Section 5.

2 LITERATURE REVIEW

The problem of intervention in wells for maintenance services can be seen as both a scheduling

problem in the environment of parallel machines and as a problem of routing and scheduling
with multiple vehicles. In the scheduling approach, the rig travel time between wells is disre-
garded for practical reasons. However, in the approach of routing and scheduling, this element
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is considered significant. According to Gouvêa, Goldbarg & Costa (2002), using the scheduling

approach is appropriate when the times required to move the rigs between the wells are on the
order of minutes or hours and the rig intervention time is on the order of days or weeks.

Among the applications that addressed the approach of routing and scheduling, the following
applications stand out: Paiva (1997); Paiva, Schiozer & Bordalo (2000); Aloise et al. (2006);

Ribeiro, Laporte & Mauri (2012); Ribeiro, Desaulniers & Desrosiers (2012); Duhamel, Santos
& Guedes (2012); Bassi, Ferreira Filho & Bahiense (2012); Ribeiro et al. (2014); Monemi et
al. (2015).

Paiva (1997) and Paiva, Schiozer & Bordalo (2000) presented a study employing a reservoir

simulator to analyze the monetary influence due to well shutdown when a failure is detected
on the present value of the production curve. Aloise et al. (2006) proposed a Variable Neigh-
borhood Search (VNS) heuristic. The latter used a constructive heuristic to generate initial so-

lutions, defining nine different neighborhoods to search for better solutions. Ribeiro, Laporte
& Mauri (2012) applied the Clustering Search (CS) and Adaptive Large Neighborhood Search
(ALNS) heuristics, comparing the results with the Iterated Local Search (ILS) proposed by

Neves (2007). Among the 3 heuristics, the ALNS showed the best results. Ribeiro, Desaulniers
& Desrosiers (2012) presented a mathematical model for this problem and a Branch Price and
Cut (BPC) algorithm. The BPC algorithm consists of obtaining a strong relaxation of the mathe-

matical model by incorporating column generation in the Branch & Cut method. The generation
of columns adds cuts to determine the lower bounds of the search tree. To test the algorithm, ran-
dom instances were generated from the instances proposed by Neves (2007). Duhamel, Santos
& Guedes (2012) proposed 3 mixed integer linear programming models. The first is an improve-

ment of the model proposed by Aloise et al. (2006), the second is based on the open vehicle
routing model and the third is based on the set covering model incorporating the column genera-
tion strategy to find the optimal linear relaxation solution. The best results were obtained by the

third mathematical model, achieving optimal values for medium-sized instances. Bassi, Ferreira
Filho & Bahiense (2012) presented the first study dealing with uncertain data for this approach.
A simulation-optimization method was developed to generate expected solutions. The simulation

stage consists of performing a random sampling of uncertain data to be solved in the optimization
stage. In the optimization stage, a greedy algorithm and a Greedy Randomized Adaptive Search
Procedure (GRASP) metaheuristic were used. Ribeiro et al. (2014) presented a BPC heuristic

and a Hybrid Genetic Algorithm (HGA). Monemi et al. (2015) proposed a mixed integer linear
programming model. The solution method begins with a hyper-heuristic and this result is used to
generate columns for BPC algorithm. The numerical experiments were performed in disturbed

data from an onshore field in Brazil. The method is able to solve small instances.

Applications addressing the scheduling approach has been studied by several authors: Smith
(1956); Brennan, Barnes & Knapp (1977); Costa & Ferreira Filho (2004); Costa (2005); Costa
& Ferreira Filho (2005); Alves & Ferreira Filho (2006); Oliveira et al. (2007); Pacheco, Dias

Filho & Ribeiro (2009); Douro & Lorenzoni (2009); Pacheco, Ribeiro & Mauri (2010); Pacheco
(2011); Ribeiro, Mauri & Lorena (2011).

Pesquisa Operacional, Vol. 36(2), 2016
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Smith (1956) showed that for the case of one rig, the optimal schedule is obtained when the

wells are ordered in decreasing values of Pi/di , called Natural Order, where Pi is the production
loss in well i per day and di is the duration of the intervention in well i. Brennan, Barnes &
Knapp (1977) showed a lower bound for WRSP with N rigs and J wells based on the papers

published by Smith (1956) and Eastman, Even & Isaacs (1964). Costa & Ferreira Filho (2004)
proposed a mathematical model and a heuristic based on the Natural Order. Costa (2005) im-
plemented a GRASP metaheuristic, and they constructed instances based on real cases from an

onshore field in Brazil. Costa & Ferreira Filho (2005) proposed a Dynamic Assembly Heuris-
tic (DAH) that allocates the services sequentially according to the criterion described in Costa
& Ferreira Filho (2004), testing all of the possibilities for adding a new service before and after

those already programmed and dynamically allocating the services to the rigs with the purpose
of improving the solution. Alves & Ferreira Filho (2006) proposed a Genetic Algorithm (GA)
in which the solutions (chromosomes) represent a vector of wells that will be distributed to
the rigs. The crossover operator that was used was the uniform order crossover, and the mutation

operator was the random swap of two positions in the well vector. Oliveira et al. (2007) presented
an evolutionary algorithm based on the Scatter Search (SS) metaheuristic that operates over a
population of solutions and employs procedures to combine those solutions with the goal of gen-

erating better solutions. Instead of randomly exploring solutions like the GA, the SS extensively
explores predetermined regions in each new iteration. Pacheco, Dias Filho & Ribeiro (2009) pro-
posed a Bubble Swap (BS) heuristic. This heuristic is constructed in two stages. In the first stage,

a feasible solution is generated through the heuristic proposed by Costa & Ferreira Filho (2004),
and the second stage consists of performing a swap of wells in the same rig and between dif-
ferent rigs. Douro & Lorenzoni (2009) presented a GA with a 2-opt local search technique. The

solutions (chromosomes) are represented by a well vector that is distributed to the rigs. The sin-
gle point was used as the crossover operator, and the simple inversion mutation operator was
used as the mutation operator. Pacheco, Ribeiro & Mauri (2010) presented a GRASP with Path-

Relinking (PR) as an intensification strategy, exploring the paths that connect the elite solutions
to search for better solutions. Pacheco (2011) presented a Memetic Algorithm (MA) metaheuris-
tic where a strategy based on the Natural Order is applied on the chromosomes. Ribeiro, Mauri
& Lorena (2011) applied a Simulated Annealing (SA) with three different moves to compose the

neighborhood structure.

The instances generated by Costa (2005) for this problem are widely used in the literature (Costa
& Ferreira Filho, 2005; Alves & Ferreira Filho, 2006; Oliveira et al., 2007; Pacheco, Dias Filho
& Ribeiro, 2009; Douro & Lorenzoni, 2009; Pacheco, Ribeiro & Mauri, 2010; Pacheco, 2011;

Ribeiro, Mauri & Lorena, 2011). Thus, this paper proposes an efficient mathematical model to
determine the optimal solutions of the instances of Costa (2005). Until now, just approximate
solutions for large instances are known, we will propose a formulation to solve this gap in the

literature.

Pesquisa Operacional, Vol. 36(2), 2016



�

�

“main” — 2016/8/9 — 13:51 — page 245 — #5
�

�

�

�

�

�
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3 PROBLEM FORMULATION

The WRSP is formulated as follows: a set of available rigs m = 1, 2, . . . , N and a set of wells
i = 1, 2, . . . , J that require maintenance services, in which each well i is associated with an

intervention time di ; a time window in the range [ei , li ] in which it can be serviced; and a value
of production loss Pi , which indicates how much that well will not produce (in units of volume
per unit of time). The execution of each intervention in a well requires that a rig is selected.

Thus, the WRSP consists of determining the service schedule for the wells by the rigs with
the objective of minimizing the total production loss due to the time that the wells waited for
maintenance service in a planning horizon.

The assumptions are as follows:

• The fleet of rigs is considered homogenous.

• The travel times between each pair of wells are not considered because they are not signif-

icant compared to the intervention times.

• The assembly and disassembly times are included in the intervention times.

• Each rig operates without idle time until all wells allocated to the rig have been serviced.

• Once the intervention is started, it cannot be interrupted.

The following notation is used to formulate the WRSP:
J number of wells, i, j = {1, 2, . . . , J }
N number of rigs, m = {1, 2, . . . , N}
T planning horizon, t, h = {1, 2, . . . , T }
di duration of the intervention in well i

Pi production loss in well i per unit time
[ei , li ] time window, where ei is the earliest start time for the intervention in

well i and li is the latest finish time for the intervention in well i

The decision variables are defined as follows:
Simt binary variable that takes on the value of 1 if rig m starts the service in

well i at time t ; otherwise, it takes on the value 0
Cimt binary variable that takes on the value of 1 if rig m finishes the service

in well i at time t ; otherwise, it takes on the value 0
Ximt binary variable that takes on the value of 1 if rig m is performing the

service in well i at time t ; otherwise, it takes on the value 0

Figure 1 illustrates the representation of the decision variables. Suppose that a certain interven-
tion i starts at t = 3(Sim3 = 1), if the duration of the intervention is 4 time units (di = 4), then
the finish of the intervention will be at t = 6(Cim6 = 1), such that the total time that requires a

rig in a well is exactly di = 4. That is, the intervention occurs in the range 3 ≤ t ≤ 6(Xim3 =
Xim4 = Xim5 = Xim6 = 1,

∑N
m=1

∑T
t=1 Ximt = di = 4). Therefore, it can be inferred that

Cimt = Sim,t−di+1 ∀i, m, t .

Pesquisa Operacional, Vol. 36(2), 2016
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Figure 1 – An example of a representation of decision variables.

3.1 Original Mathematical Model

Costa & Ferreira Filho (2004) proposed a 0-1 integer linear programming model, here called
the Original Mathematical Model (OMM) for the WRSP, which is formulated with the variable
Simt and represented as:

(OMM) Minimize
J∑

i=1

N∑
m=1

T∑
t=1

(t + di − ei )Pi Simt (1)

Subject to:

N∑
m=1

T∑
t=1

Simt = 1 ∀i (2)

J∑
i=1

Simt ≤ 1 ∀m, t (3)

Simt + S jmh ≤ 1 ∀i, j, m, t, h|i �= j and t ≤ h ≤ t + di − 1 (4)

Simt ∈ {0, 1} ∀i, m, t |ei ≤ t ≤ li − di + 1 (5)

In this mathematical model, the objective function (1) represents minimizing the total production
loss. Constraint (2) ensures that the start of the intervention in each well occurs only once by a

rig at a specific time. Constraint (3) ensures that a rig starts at most one intervention at a specific
time. Constraint (4) ensures that there is no interference between the services in the wells that
use the same rig; that is, no well j can be serviced in the range [t, t + di − 1] by rig m if well i is

being serviced in that range by the same rig m. Constraint (5) defines the domain of the decision
variables and ensures that the start of the interventions in the wells is within the time window.

3.2 Reformulated Mathematical Model

In this paper, a Reformulated Mathematical Model (RMM) based on the OMM is presented.
The RMM will be derived from a mathematical model that is initially larger and formulated with

Pesquisa Operacional, Vol. 36(2), 2016
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the variables Simt , Cimt and Ximt . With the inclusion of these variables, the WRSP is formulated

as follows:

Minimize
J∑

i=1

N∑
m=1

T∑
t=1

(t + di − ei )Pi Simt (6)

Subject to:

N∑
m=1

T∑
t=1

Simt = 1 ∀i (7)

J∑
i=1

Simt ≤ 1 ∀m, t (8)

Simt = 0 ∀i, m, t |t < ei or t > li − di + 1 (9)

N∑
m=1

T∑
t=1

Cimt = 1 ∀i (10)

J∑
i=1

Cimt ≤ 1 ∀m, t (11)

Cimt = 0 ∀i, m, t |t < ei + di − 1 or t > li (12)

Cimt = Sim,t−di+1 ∀i, m, t |t ≥ di (13)

Ximt =
t∑

h=1

Simh −
t−1∑
h=1

Cimh ∀i, m, t (14)

J∑
i=1

Ximt ≤ 1 ∀m, t (15)

Simt , Cimt , Ximt ∈ {0, 1} ∀i, m, t (16)

In this mathematical model, the objective function (6) represents minimizing the total production
loss. Constraint (7) ensures that the start of the intervention in each well occurs only once by a
rig at a specific time. Constraint (8) ensures that a rig starts at most one intervention at a specific

time. Constraint (9) ensures that the start of the interventions in the wells is within the time
window. Constraint (10) ensures that the finish of the intervention in each well occurs only once
by a rig at a specific time. Constraint (11) ensures that a rig finishes at most one intervention at

a specific time. Constraint (12) ensures that the finish of the intervention in the wells is within
the time window. Constraint (13) ensures that the period between the beginning and the end of
the intervention in each well is exactly the duration of the intervention. Constraint (14) ensures

that each well is serviced without interruption within the start and finish times established for the
intervention. Constraint (15) ensures that a rig performs at most one intervention at a specific
time. Constraint (16) defines the domain of the decision variables.

Pesquisa Operacional, Vol. 36(2), 2016
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In this formulation, the variable Cimt depends of Simt and the variable Ximt depends on the choice

of Simt and Cimt to be determined. Thus, constraint (13) can be replaced in constraint (14):

Ximt =
t∑

h=1

Simh −
t−1∑
h=1

Sim,h−di+1 ∀i, m, t

This constraint can be further simplified as follows:

Ximt =
t∑

h=t−di+1

Simh ∀i, m, t (17)

Equation (17) is equivalent to equation (14).

Equation (14), together with equation (15), ensures that there is no interference between the

serviced wells that are allocated to a rig. Substituting equation (17) in equation (15) gives:

J∑
i=1

t∑
h=t−di+1

Simh ≤ 1 ∀m, t

Finally, the previous mathematical model is formulated by substituting the variables Cimt and
Ximt as a function of the variable Simt , so that the Constraints (10), (11) and (12) become unnec-

essary. The RMM is shown below:

(RMM) Minimize
J∑

i=1

N∑
m=1

T∑
t=1

(t + di − ei )Pi Simt (18)

Subject to:

N∑
m=1

T∑
t=1

Simt = 1 ∀i (19)

J∑
i=1

t∑
h=t−di+1

Simh ≤ 1 ∀m, t (20)

Simt ∈ {0, 1} ∀i, m, t |ei ≤ t ≤ li − di + 1 (21)

In this mathematical model, the objective function (18) represents minimizing the total produc-
tion loss. Constraint (19) ensures that the start of the intervention in each well occurs only once
by a rig at a specific time. Constraint (20) fulfills the function of constraints (3) and (4) of the

OMM; that is, ensures that a rig starts at most one intervention at a specific time and ensures that
there is no interference between the services in the wells that use the same rig. Constraint (21)
defines the domain of the decision variables and ensures that the start of the interventions in the

wells is within the time window.

Pesquisa Operacional, Vol. 36(2), 2016
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3.3 Decomposed Mathematical Model

In this paper, the proposed mathematical model is presented as a Decomposed Mathematical
Model (DMM), which is formulated from the RMM with a new decision variable:

S′
it =

N∑
m=1

Simt ∀i, t

where:
S′

it binary variable that takes on the value of 1 if the service in well i starts at time t ;
otherwise, it takes on the value 0

The variable S′
it could be used to replace the variable Simt directly in the RMM except for con-

straint (20). Thus, applying the sum for all m in constraint (20) and assuming that the rigs are
homogenous, the following applies:

N∑
m=1

J∑
i=1

t∑
h=t−di+1

Simh ≤
N∑

m=1

1 ∀t

J∑
i=1

t∑
h=t−di+1

S′
ih ≤ N ∀t

Given that a maximum of N rigs perform the maintenance services in the wells at the same time,
this constraint ensures that a maximum of N interventions are performed at a specific time and
that there is no interference between the wells.

Thus, substituting the variable Simt as a function of the variable S′
it in the RMM, a DMM is

obtained, which determines the optimum start of the interventions in the wells as shown below:

(DMM) Minimize
J∑

i=1

T∑
t=1

(t + di − ei )Pi S′
it (22)

Subject to:

T∑
t=1

S′
it = 1 ∀i (23)

J∑
i=1

t∑
h=t−di+1

S′
ih ≤ N ∀t (24)

S′
it ∈ {0, 1} ∀i, t |ei ≤ t ≤ li − di + 1 (25)

In this mathematical model, the objective function (22) represents minimizing the total produc-
tion loss. Constraint (23) ensures that the start of the intervention in each well occurs only once
by a rig at a specific time. Constraint (24) ensures that a maximum of N interventions are per-
formed at a specific time and that there is no interference between the allocations of the wells to
rigs. Constraint (25) defines the domain of the decision variables and ensures that the start of the
interventions in the wells is within the time window.

Pesquisa Operacional, Vol. 36(2), 2016
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From the DMM, the optimum solutions S′
it

∗ are obtained. These solutions will be used to de-

termine the allocation of the wells to the rigs throughout the planning horizon. This allocation
can be achieved by constructing a simple algorithm that allocates the wells to the rigs consecu-
tively following the service order in time. Another way to determine this allocation is to solve

the RMM, redefining the domain of the variable Simt depending on the optimal solutions S′
it

∗.
The suitability of the RMM for this purpose is shown next.

(RMM’) Minimize
J∑

i=1

N∑
m=1

T∑
t=1

(t + di − ei )Pi Simt (26)

Subject to:

N∑
m=1

T∑
t=1

Simt = 1 ∀i (27)

J∑
i=1

t∑
h=t−di+1

Simh ≤ 1 ∀m, t (28)

Simt ∈ {0, 1} ∀i, m, t |S′
it

∗ = 1 (29)

In this mathematical model, constraints (27) and (28) and the objective function (26) have a
similar interpretation to constraints (19) and (20) and the objective function (18) of the RMM,

respectively. Constraint (29) defines the constrained domain of the decision variable Simt and
ensures that the start of interventions in the wells are exactly the values found S′

it
∗, that is, only

in the cases where S′
it

∗ = 1, the variable Simt will be defined to determine the allocation of the

wells to the rigs.

3.4 Comparison between the OMM, the RMM and the DMM

Table 1 shows the total number of constraints and variables used in the OMM, RMM and DMM.

Table 1 – Comparison of the total number of constraints and variables in the OMM, RMM and DMM.

OMM RMM DMM

Eq. No. of constraints Eq. No. of constraints Eq. No. of constraints

(2) J (19) J (23) J

(3) N × T (20) N × T (24) T

(4) (J − 1) × N ×
(

J∑
i=1

li −di+1∑
t=ei

t+di−1∑
h=t

1

)

Eq. No. of variables Eq. No. of variables Eq. No. of variables

(5) N ×
(

J∑
i=1

li −di+1∑
t=ei

1

)
(21) N ×

(
J∑

i=1

li −di+1∑
t=ei

1

)
(25)

J∑
i=1

li −di+1∑
t=ei

1

Pesquisa Operacional, Vol. 36(2), 2016
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The RMM and the DMM are formulated with fewer constraints compared to that of the OMM,

and constraint (4) of the latter generates the most constraints. While the OMM uses the variables
Simt and S jmh in constraints (3) and (4), the RMM and the DMM do not use the index j of the
formulation and use the variable Simh in constraint (20) and the variable S′

ih in constraint (24),

that is, they use fewer constraints. The same number of variables is used in the OMM and the
RMM, and fewer are used in the DMM compared to them because it is a mathematical model
that does not consider the problem of allocating wells to rigs.

4 COMPUTATIONAL RESULTS

To evaluate the performance of the DMM, this model were compared to the OMM. The instances
of Costa (2005) were used. These samples consist of 25 instances that have 25, 50, 75, 100 and
125 wells with 2, 4, 6, 8 and 10 rigs, generated from real cases in Brazil, where the values of

production loss (Pi ) are in units of (m3/day)/10, and the values of the intervention time (di ) are
in units of half of a day (12 hrs).

The mathematical models were implemented in the AIMMS 3.14 software using the CPLEX 12.4
solver and run on a computer equipped with an Intel Core i7-3960X processor with 3.3 GHz and

64 GB of RAM.

Next, a preliminary analysis was performed, and Table 2 shows the planning horizon (T ) for each
processed instance, the number of variables, the number of constraints and the optimal values of
the objective function obtained via linear relaxation for the OMM and DMM.

Table 2 shows the significant differences between the number of constraints of the OMM com-

pared to of the DMM, similar to Table 1. Furthermore, according to the values of the linear
relaxation, the DMM obtained the best lower bounds for the different instances, with a mean
difference of 40% relative to the OMM. This result supports the statement that such formulation

is stronger concerning the use of methods based on linear relaxation (such as methods based on
branch-and-bound strategies), which in turn implies that they obtain optimum solutions in a more
efficient manner.

Table 3 presents the results of the objective function obtained for the WRSP by the OMM and

DMM exact methods and then compares the results with other methods available in the literature.
In this table, those methods that obtained the best results are shown: GA (Douro & Lorenzoni,
2009), MA (Pacheco, 2011) and SA (Ribeiro, Mauri & Lorena, 2011). As the solver stopping

criteria, a GAP of 0% and a run time limit of 300 s were established to solve the OMM and
DMM.

In Table 3, the values in bold indicate the optimum solutions found by the exact methods and
by the metaheuristics. The OMM was only capable of solving the first 15 of the 25 instances,

while in the instances with 100 and 125 wells, optimum solutions were not obtained within the
established time limit. This result is in contrast with of the DMM, which was able to find optimum
solutions for all 25 instances. The optimum solutions of the last 15 instances, i.e., those with 75,

100 and 125 wells (considered the large instances), were previously unknown in the literature.
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Table 2 – Results of the linear relaxation applied to the OMM and DMM.

Inst. T
No. of variables No. of constraints Linear relaxation
OMM DMM OMM DMM OMM DMM

25-2 60 2832 1416 293905 85 10608.0 16329.0

25-4 30 2664 666 273745 55 8232.0 10312.0

25-6 20 2496 416 253585 45 7571.0 8497.0

25-8 20 3328 416 338105 45 7217.0 7733.0

25-10 20 4160 416 422625 45 7054.0 7322.0

50-2 120 11832 5916 2521890 170 29130.0 66904.0

50-4 80 15324 3831 3273058 130 21608.0 37891.0

50-6 40 10986 1831 2333882 90 19196.0 28346.0

50-8 30 10648 1331 2253266 80 17996.0 23788.0

50-10 30 13310 1331 2816570 80 17342.0 21348.0

75-2 180 26484 13242 8678779 255 75123.0 187236.0

75-4 90 25968 6492 8486003 165 53279.0 103199.0

75-6 60 25452 4242 8293227 135 46069.0 75498.0

75-8 50 27936 3492 9086171 125 42576.0 61881.0

75-10 40 27420 2742 8893395 115 40475.0 53876.0

100-2 240 47286 23643 21350492 340 96416.0 299040.0

100-4 120 46572 11643 20983764 220 65433.0 159939.0

100-6 90 51858 8643 23331676 190 55115.0 114264.0

100-8 70 53144 6643 23869828 170 50142.0 91746.0

100-10 60 56430 5643 25312860 160 47189.0 78364.0

125-2 280 69158 34579 37385581 405 122173.0 380505.5

125-4 150 73316 18329 39564437 275 77919.0 200291.0

125-6 100 72474 12079 39035093 225 63182.0 140493.0

125-8 80 76632 9579 41213949 205 55915.0 110774.3

125-10 60 70790 7079 37976405 185 51561.0 93040.0

As a more modern computer was used here than in Pacheco, Dias Filho & Ribeiro (2009), it was
possible to find solutions using the OMM for the instances with 75 wells.

A comparison between the results of the linear relaxation in Table 2 and the results of the exact
methods in Table 3 shows that the DMM obtained lower bounds that are very close to the opti-

mum value of the objective function, where the linear relaxation did not reach the optimum value
of the problem in only two instances.

Regarding the metaheuristics, in general, the best results were obtained by the SA, but it was
able to solve only two of the large instances optimally.

Table 4 presents the computational times of the OMM and DMM (including the solution time
of the RMM′) exact methods and the computational times reported by the GA, MA and SA
metaheuristics.
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Table 3 – Numerical results of the different methods that were employed.

Inst.
Exact methods Metaheuristics

OMM DMM GA MA SA

25-2 16329 16329 16329 16329 16329

25-4 10312 10312 10312 10312 10312

25-6 8497 8497 8499 8497 8497

25-8 7733 7733 7736 7733 7733

25-10 7322 7322 7325 7322 7322

50-2 66904 66904 66907 66904 66904

50-4 37891 37891 37896 37891 37891

50-6 28346 28346 28353 28346 28346

50-8 23788 23788 23788 23788 23788

50-10 21348 21348 21351 21348 21348

75-2 187236 187236 187240 187236 187236

75-4 103199 103199 103218 103204 103202

75-6 75498 75498 75524 75499 75499

75-8 61881 61881 61916 61884 61882

75-10 53876 53876 53889 53881 53876

100-2 – 299040 299051 299041 299041

100-4 – 159939 159983 159945 159948

100-6 – 114264 114275 114273 114274

100-8 – 91746 91769 91765 91758

100-10 – 78364 78402 78391 78376

125-2 – 380506 380523 380511 380511

125-4 – 200291 200368 200297 200302

125-6 – 140493 140550 140513 140503

125-8 – 110775 110844 110782 110787

125-10 – 93040 93078 93049 93045

Table 4 shows that the DMM can solve the WRSP more efficiently than the OMM. For example,

in the instances with 75 wells, the OMM needed 109.9 s on average (considering the 5 instances
of 75 wells), while the DMM needed 0.4 s on average; that is, a remarkable reduction of the
consumed time. In the instances with 25 and 50 wells, the DMM also notably reduced the time

consumed compared to that of the OMM. In the large instances with 100 and 125 wells, the
DMM needed 1.3 s and 2.3 s on average, respectively. The DMM required a computational time
of less than 7 s to solve each instance, requiring 0.8 s on average. The proposed model has a

lower mean time than that of the OMM and is the most efficient to solve the WRSP according to
the computational results.

Regarding the computational times reported by the metaheuristics, these cannot be compared
directly with of the DMM because they were run in computers with different characteristics.

However, from the point of view of the computational time, taking the 15.7 s consumed by the
SA in the largest instance (125-10) as a reference, the DMM can be considered effective, with
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Table 4 – Computational times (s).

Inst.
Exact methods Metaheuristics
OMM DMM GAa MAb SAc

25-2 3.3 0.0 4.0 2.4 4.2

25-4 3.0 0.0 5.0 3.5 4.6

25-6 3.1 0.0 2.0 3.9 5.7

25-8 4.3 0.0 1.0 5.1 7.0

25-10 5.4 0.0 1.0 6.9 8.3

50-2 30.2 0.3 14.0 4.1 6.7

50-4 36.1 0.2 15.0 6.8 6.7

50-6 26.0 0.0 5.0 7.9 7.7

50-8 25.9 0.0 16.0 10.9 8.5

50-10 32.6 0.0 10.0 14.0 10.4

75-2 122.7 1.4 36.0 5.9 9.2

75-4 105.1 0.4 27.0 7.5 8.4

75-6 98.2 0.2 25.0 12.6 9.6

75-8 111.2 0.1 18.0 16.8 10.6

75-10 112.5 0.1 29.0 22.6 11.9

100-2 – 3.8 61.0 17.6 11.9

100-4 – 1.5 48.0 10.4 10.3

100-6 – 0.5 136.0 15.1 11.1

100-8 – 0.5 141.0 20.7 12.9

100-10 – 0.3 58.0 28.2 13.8

125-2 – 6.2 146.0 10.5 14.6

125-4 – 3.3 60.0 12.2 12.1

125-6 – 0.9 84.0 19.4 12.7

125-8 – 0.8 66.0 26.0 14.2

125-10 – 0.5 164.0 34.5 15.7

Average 49.5 0.8 46.9 13.0 10.0

aComputer used Pentium IV 2.0 GHz processor with 480 MB of RAM.
bComputer used Pentium Core i3 2.13 GHz processor with 4 GB of RAM.

cComputer used AMD Athlon 64 3500 2.2 GHz processor with 1 GB of RAM.

the justification that, in general, the metaheuristics should perform several replications to ensure
the robustness of the obtained solution, in addition to the time spent with previous experiments

required to adjust the execution parameters.

5 CONCLUSIONS AND FUTURE WORKS

In this study, the Workover Rig Scheduling Problem (WRSP) is addressed with the objective of
minimizing the oil production loss. The WRSP is one of the most challenging problems in the

oil and gas industry due to the high costs of using rigs and the high production losses caused
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by inactive wells waiting for maintenance services. Because it is an NP-hard problem, the diffi-

culty in solving the WRSP has resulted in various heuristics and metaheuristics in the literature.
Although the heuristics and metaheuristics can obtain approximate solutions, they are not ca-
pable of obtaining optimal solutions for large instances (e.g., large numbers of wells or rigs).

Thus, to efficiently solve the WRSP, a 0-1 integer linear programming model was proposed.
This mathematical model (DMM) extends the mathematical model proposed by Costa & Fer-
reira Filho (2004) and proved to be more efficient in the computational experiments that were

carried out.

The DMM was tested in instances based on real cases in Brazil and compared to various methods
in the literature. The computational results showed that the DMM was able to solve all of the
instances considered, including the large instances, and this model obtained optimum solutions,

which were not known until now. Regarding the computational time, the DMM solved all of the
instances in short times. Thus, the proposed model showed efficient performance in comparison
to the other methods proposed to solve the WRSP.

The computational results corroborate the usefulness of the DMM as computational tool to solve

real problems, with various numbers of wells and different rig fleet sizes for an established
planning horizon. Consequently, DMM can be used by companies dedicated to planning in-
terventions in wells or other analogous services, carrying out the planning quickly and reliably,

reducing errors in the service schedule and improving the decision making capacity.

In future works, it is desirable to extend the proposed formulation to address the Workover Rig
Routing Problem and the Rig Fleet Sizing Problem. Furthermore, due to the variations in the
intervention times of the rigs and other uncertainties in the operations, it is desirable to apply

techniques that are able to address the uncertain characteristics of the problem of intervention in
wells.

Another important point is the generation of instances, given that there is only one group of
instances available in the literature that were randomly built from an oil production field. There-

fore, it is necessary to generate a new group of instances to address the problem of intervention
in wells.

Finally, it would be important to test the formulations in offshore fields, which are generally
more complex than onshore fields.
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