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Received June 10, 2015 / Accepted October 25, 2016

ABSTRACT. This work addresses a vehicle routing problem that aims at representing delivery operations

of large volumes of products in dense urban areas. Inspired by a case study in a drinks producer and dis-

tributor, we propose a mathematical programming model and solution approaches that take into account

costs with own and chartered vehicles, multiple deliverymen, time windows in customers, compatibility of

vehicles and customers, time limitations for the circulation of large vehicles in city centers and multiple

daily trips. Results with instances based on real data provided by the company highlight the potential of

applicability of some of the proposed methods.

Keywords: city logistics, vehicle routing problem, time windows, multiple deliverymen, multiple trips.

1 INTRODUCTION

Vehicle routing problems arise in many practical situations, including the delivery of goods to

customers, the pick-up and the transportation of urban waste to regulated landfills, the elabora-
tion of itineraries for electrical vehicles with stops in recharging stations, the transportation of
people with reduced mobility, and equipment repair in different houses. The literature presents

several surveys on problem variants, solution methods and real applications, such as Bodin et
al. (1983), Assad (1988), Ronen (1988), Osman (1993), Desroisiers et al. (1995), Cunha (2000),
Breedam (2001), Bräysy & Gendreau (2005a, 2005b), Parragh et al. (2008), Laporte (2009), Bal-
dacci et al. (2010), Belfiore & Yoshizaki (2013) and Schneider et al. (2014). The large number of

contributions shows that a great deal of effort has been made for over 50 years by the scientific
community when tackling these problems. This is due not only to their practical relevance but
also to the difficulties faced when solving them. Nevertheless, as each studied case can present

distinct features from what has already been discussed in the literature, new variations of the
general problem continue to appear and require differentiated treatments.
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In this paper, we consider a variant that represents the situation of many companies that deliver

large quantities of goods in highly dense urban areas in a daily basis. Given the difficulties in
driving and parking, customers close to each other are clustered, and for each cluster, a single
parking slot is used by the vehicle assigned to serve those customers. The deliveries are then

performed on foot by the vehicles’ crew from the parking slot. The relatively long service times
in each cluster when compared to the vehicles traveling times justify the use of multiple deliv-
erymen as it allows the reduction of the time required by a single deliveryman to serve a cluster

and consequently increases the number of customers visited during working hours. Avoiding the
violation of working hours is a primary objective of such companies given its direct impact on
overtime costs.

Situations such as the one described are common in Brazilian drinks and tobacco companies, for

which a large number of customers consists of small and medium sized retailers located in urban
areas. In addition to the traditional routing and scheduling decisions, the route plan must elect
the crew size in each vehicle as service times depend on the number of deliverymen employed.

Time windows for the deliveries are often present since they avoid conflicts in critical hours
(for example, lunch time in restaurants) or with the deliveries from other suppliers. In addition,
due to large demands or constraints that impede some customers from being visited by large
vehicles, it is often necessary that one or more vehicles make a second tour (trip) from the depot

(warehouse) to serve additional customers. The problem can therefore be referred as a Multi-trip
Vehicle Routing Problem with Time Windows and Multiple Deliverymen (MTVRPTWMD).

The concept of routes with multiple trips for each vehicle was first addressed for the VRP in
the working paper by Fleischmann (1990). The author propose an extension of the Clark &

Wright (1964) savings heuristic to generate trips and use a heuristic for the bin packing problem
to assign the trips to a homogeneous fleet. As pointed out in Petch & Salhi (2004), enabling multi-
ple trips can be essential for tactical and strategic planning, allowing savings in all transportation

costs. Since the introduction of the concept, several papers explore heuristic solution approaches
such as tabu search (Taillard et al., 1996; Brandão & Mercer, 1997; Olivera & Viera, 2007;
Alonso et al., 2008; Seixas & Mendes, 2013), genetic algorithms (Salhi & Petch, 2007), and

exact algorithms (Azi et al., 2010).

Routing with multiple deliverymen, in turn, was introduced in Ferreira & Pureza (2012) with
the variant Vehicle Routing Problem with Multiple Deliverymen (VRPMD) and in Pureza et
al. (2012) with the Vehicle Routing Problem with Time Windows and Multiple Deliverymen

(VRPTWMD). Ferreira & Pureza present a mathematical model for the case of a limited fleet
of identical vehicles, which is then solved by an extension of the Clark and Wright’s savings
heuristic and a tabu search algorithm. Pureza et al. formulate the problem with an unlimited

fleet of vehicles and propose an ant colony optimization algorithm and a tabu search algorithm
for solving the model. In both papers, and also in Grancy & Reimann (2014), Alvarez Diaz &
Munari (2016) and Munari & Morabito (2016), the mathematical models and solution approaches

were motivated by the practical relevance of the issue; however, no real-life cases are discussed
or solved.

Pesquisa Operacional, Vol. 36(3), 2016
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Our research, on the other hand, is inspired by the urban delivery operations of a drinks manu-

facturer and distributor located in the state of São Paulo, Brazil. The delivery is carried out by
multiple deliverymen in each vehicle (truck) and the logistic operation considers different char-
acteristics and additional constraints from the models of the previous works, such as a limited

heterogeneous fleet, the use of chartered trucks, multiple trips for the same truck, varying number
of deliverymen in each trip, the existence of dangerous routes, limitations on circulation times of
truck types in city centers and incompatibility of truck types and customers.

Delivery operations in urban areas are often difficult to implement due to several real-life con-

straints. The consideration of multiple deliverymen and multiple trips adds more complexity to
the problem, therefore, well-structured procedures capable to provide efficient solutions is of
great interest to distributors. As far as we know, the decision on the number of deliverymen

has not been explored in current computational systems designed to support vehicle routing and
scheduling decisions. Nevertheless, its practical and theoretical relevance is highlighted in the
taxonomy of routing problems, recently proposed in Braekers et al. (2015).

In addition to this motivation, in the case of the company studied, the number of deliverymen in

each truck is fixed. Therefore, it is interesting to verify whether setting the number of deliverymen
based on the specificities of each trip can bring benefits, such as cost reduction, satisfaction of
constraints formerly violated, and the increase of the number of demand clusters visited within

the deliverymen working hours. The last advantage is particularly relevant and directly related to
the first; in our study case, we observe that even with multiple deliverymen and multiple trips,
meeting the daily demand usually require the use of overtime. As the company is typical of the
drinks sector, the model and solution approaches proposed can be useful for other suppliers,

as well as for companies from other sectors with similar distribution operations. Besides the
practical motivation, vehicle routing problems with multiple deliverymen remain little explored,
which means that its continuing study can represent contributions to the body of knowledge in

combinatorial optimization and distribution logistics.

The remainder of this paper is organized as follows. Section 2 presents a brief description of the
company and the relevant aspects of its distribution operations. The mathematical model is pre-
sented in Section 3, while Section 4 describes a GRASP approach for solving instances based on

real data provided by the company. Section 5 presents the results and analysis of computational
experiments with the model, the heuristic and a hybrid approach, followed by conclusions and
perspectives of future research in Section 6.

2 THE COMPANY’S DISTRIBUTION LOGISTICS

The drinks company addressed in this research produces and delivers a large variety of bottled
products such as different types of water, juices, beer, tea, soft, energy and sports drinks to

approximately 25,000 customers per week. The customers are distributed in 131 cities of the
states of São Paulo and Minas Gerais and consist of retailers of different market segments and
demand volumes, ranging from snack bars to hypermarkets.

Pesquisa Operacional, Vol. 36(3), 2016
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In 2014, the company’s fleet accounted a total of 222 trucks for product delivery. The fleet

encompasses six types of trucks, characterized by different numbers of doors, weight and space
capacities and functionalities. In particular, some truck types have mobile platforms that allow
lifting the cargo to a higher ground. In addition to the own fleet, the company hires trucks for

periods of the year during which the requirements of the demand exceeds the transportation
capacity (e.g., school vacations and national holidays).

Nevertheless, even with the use of additional trucks, a second trip from the warehouse may
be necessary for each available truck, not only to meet high demands but also as the result of

regulations that restrain the use of certain types of trucks. One example is a municipal law,
valid in most large Brazilian cities, that allows the circulation of large trucks in city centers
only in early working hours (usually up to 9:00 or 10:00 a.m.). The company also prohibits the

use of some of its largest trucks in city centers due to their riding difficulties when the traffic is
intense. Other constraints include the compatibility between the truck type and the customer. For
instance, most supermarkets and hypermarkets require trucks equipped with mobile platforms

while retailers whose location can only be accessed through narrow streets must be served by
smaller trucks. However, in order to perform a second trip, the truck capacity utilization must be
equal or greater than a minimum percentage (usually 83%).

In addition to the driver, the standard crew in each truck comprises a second man and they both

deliver the goods to the customers. However, if the cargo is addressed to areas controlled by drug
gangs (called “dangerous routes” by the company), a security guard is added to the standard crew.
It should be noted that the guard does not act as a deliveryman; his/her role is solely to ensure
the security of the crew, the cargo and the truck. For the two-man crew, service times in each

customer are estimated by the company as 5 minutes plus 20 seconds per product pack (in case
of hypermarkets or supermarkets) or 30 seconds per product pack (other market segments).

The trucks routes are elaborated by the logistic operators with the aid of a commercial software.

The routes follow a geographical sectorization of the customers, which simplifies the planning
process. Nevertheless, the crews often review the prescribed itineraries for several reasons. First,
they have more updated information on the traffic and street conditions. Second, it is sometimes
more efficient to serve a customer from a given sector in a route of an adjacent sector if the cus-

tomer is located close to the border between these sectors. Third, given the difficulty in parking
the trucks due to scarcity of parking slots in city centers, the truck does not necessarily travel
from one customer to the next; instead, if there are customers sufficiently close to each other,

these customers are seen as a demand cluster, and a single parking slot within a maximum dis-
tance from each customer (approximately 150 meters) is elected for the truck serving the cluster.
The goods are then delivered at each customer by the two-man crew, who visits the customers on

foot (Fig. 1). This means that in practice, the distribution can be seen as a two-echelon routing
problem: in the first level, the trucks travel from the warehouse to the parking slot elected to the
cluster, and in the second level the truck’s crew delivers the goods to the customers’ locations on

foot. The crews also change the routes sequencing by taking into account the customers’ pref-
erences of delivery time and location, which are not included in the data base available to the

Pesquisa Operacional, Vol. 36(3), 2016
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routing software. In fact, the only recorded scheduling constraints on customers are time win-

dows in restaurants. For this market segment, deliveries must occur at least two hours prior the
opening hours (mostly 9:00 a.m.) in order to cool the products.

Figure 1 – A two-trip two-echelon distribution route.

At the time of the study case, the major challenge faced by the company regarding their delivery
operations was cost reduction. Since the Brazilian drinks market is highly competitive, the com-

pany’s policy is to meet all daily requests on the same day, which often exceeds the deliverymen
working hours. In these cases, instead of overtime payment, the company offers compensatory
time off. However, if the banked time is not taken by the end of the current fiscal year, the em-

ployees must be paid for the overtime hours in the beginning of the following year. In order to
avoid these costs, the company wants to eliminate overtime while maintaining the service level
provided to the customers.

3 PROBLEM DESCRIPTION AND MODELING

Formally, the problem tackled in this paper consists of planning daily routes for a fleet of het-
erogeneous vehicles in order to deliver goods to customers in urban areas. The fleet departs (and
returns) to the company’s warehouse and encompasses own and chartered vehicles. For each of

these categories, distinct costs are applied; fuel and maintenance (variable) costs incur in own ve-
hicles while the affreightment contract between the company and the autonomous truck owners
prescribe only hiring (fixed) costs to the chartered vehicles.

A route here denotes the itinerary followed by a vehicle between its departure from the warehouse

at the beginning of the day and its return to the warehouse when all of its assigned deliveries are
completed. A route can comprise two tours (trips) at most, as long as the total route time does
not violate the working hours decremented by the time spent on administrative tasks and the

Pesquisa Operacional, Vol. 36(3), 2016
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deliverymen lunch time (i.e., no overtime is allowed). If a second trip is performed, the vehicle

is reloaded at the warehouse.

Each node in a given route represents the warehouse or a demand node. A demand node is a
single customer or a cluster of customers, and it is represented by the associated parking site.
We assume that clusters were previously defined (either manually or by a clustering algorithm)

in order to ensure a maximum radial distance between each costumer and the parking site, and
that parking sites are in the exact location of the single customer or one of the customers in case
of clusters.

In each trip, the total cargo must not exceed the vehicle capacity, and the crew size is limited to

3, the capacity of the vehicle’s cabin. The number of deliverymen in a vehicle can vary from
the first to the second trip, since changes in the workload may require a different number of
deliverymen. In case of dangerous routes, the maximum number of deliverymen reduces to 2 in

order to accommodate the security guard. Customers served in a given route must be compatible
to the type of vehicle. In addition, large vehicles are limited to ride in city centers in determined
periods of day.

Given the aforementioned constraints, the route plan should otimize three objectives according to

the following order of priority: (1) maximize the number of demand nodes served; (2) minimize
the cost with own and chartered vehicles; and (3) minimize the number of deliverymen employed.

The problem combines characteristics of the VRPTWMD addressed in Pureza et al. (2012) and
the MTVRPTW presented in Seixas & Mendes (2013), with several additional constraints. The

flow network (Fig. 2) is represented by a graph G(n + 2, A) with three types of nodes: n − 1
demand nodes (represented by the associated parking sites) and three origins and/or destinations
of the trips. Note that the warehouse is both origin and destination of trips, therefore, it is

represented by the following three copies: nodes O1 (origin of the first trip), O2 (destination of
the first trip and origin of the second trip) and O3 (destination of the second trip).

Figure 2 – Flow network.

Pesquisa Operacional, Vol. 36(3), 2016
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Note that for modeling purposes, a route consists of exact two trips, which can represent three

possible situations: (i) the vehicle idleness if the itinerary of the first and the second trip are
O1 → O2 and O2 → O3, respectively; (ii) a delivery trip followed by the vehicle idleness if
the itinerary of the first trip is different from O1 → O2 and the itinerary of the second trip is

O2 → O3; and (iii) two delivery trips if the itinerary of both the first and the second trip are
different from O1 → O2 and O2 → O3, respectively. Figure 2 depicts situation (ii).

Consider the following notation:

• Indexes
i, j, h, m Demand nodes (represented by associated parking sites) and the ware-

house copies. If i is a demand node, i = C1, C2, . . . , Cn . If i is a
warehouse copy then i = O1, O2, O3;

k, o Fleet (k, o = 1, . . . , K );

l, g Crew size assigned to a vehicle (l, g = 1, . . . , L). If the crew size is l,

we say that the vehicle travels in mode l;

r Trips (r = 1, 2).

• Sets
C Demand nodes;

D Warehouse copies;

OW N Own fleet;

C H ART E R Chartered fleet;

B Demand nodes located in the city center;

A Demand nodes located in drug gangs areas;

E Vehicles with time circulation limitation in the city center;

Ui Vehicles compatible with demand node i;

• Parameters
Co Unitary traveling cost of the own fleet (R$/km);

Cs Unitary hiring cost of the chartered fleet (R$/vehicle);

Pi Prize for serving node i (R$);

G Unitary personnel cost (R$/deliveryman);

Di j Distance between nodes i and j (km);

DCi j Distance between node i ∈ B and the border of the city center, given
that the vehicle goes from i to j /∈ B (km);

Vk Average speed of vehicle k (km/h);

Qk Capacity of vehicle k (cubes);

qi Demand of node i (cubes). The demand of i ∈ D is equal to 0;

Pesquisa Operacional, Vol. 36(3), 2016
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ai , bi Earliest and latest time to start service in node i;

T Sil Service time in node i in mode l (min);

T C Loading time preceding a second trip (min);

F Maximum circulation time of a vehicle k ∈ E in the city center (min);

W Working hours length (min);

Pmin Minimum capacity utilization of a vehicle in the second trip (%);

• Variables

xi jklr

{
1 if arc (i, j ) is traversed by vehicle k in mode l in trip r

0, otherwise

(i, j ∈ C ∪ D; i �= j ; k = 1, . . . , K ; l = 1, . . . , L; r = 1, 2);

yiklr Load onboard vehicle k after serving node i in mode l in trip r

(i, j ∈ C ∪ D; k = 1, . . . , K ; l = 1, . . . , L; r = 1, 2);

tiklr Service starting time in node i by vehicle k in mode l in trip r

(i, j ∈ C ∪ D; k = 1, . . . , K ; l = 1, . . . , L; r = 1, 2).

For i ∈ D, it is also the arrival time in i.

The problem is formulated as a linear mixed integer program, as follows. We also consider that
some variables are previously fixed. For example, xi jklr = 0 if i = j or ai + T Sil + Dij

Vk
≥ b j or

qi + q j > Qk or k /∈ {Ui ∩ U j } or i (or j ) ∈ A and l = L , among other conditions.

Min f = Co
2∑

r=1

∑
i∈C∪{Or }

∑
j∈C∪{Or+1 }

∑
k∈OW N

L∑
l=1

Di j xi jklr

+ Cs
∑

j∈C∪{O2}

∑
k∈CH ART E R

L∑
l=1

xO1 jkl1 + G
2∑

r=1

∑
j∈C

K∑
k=1

L∑
l=1

lx Or jklr (1)

−
2∑

r=1

∑
i∈C∪{Or }

∑
j∈C

K∑
k=1

L∑
l=1

Pj x i jklr

2∑
r=1

∑
i∈C∪{Or }

L∑
l=1

K∑
k=1

xi jlkr ≤ 1, j ∈ C (2)

2∑
r=1

∑
j∈C∪{Or+1 }

L∑
l=1

K∑
k=1

xi jlkr ≤ 1, i ∈ C (3)

∑
i∈C∪{Or }

xihklr =
∑

j∈C∪{Or+1 }
xh jklr ,

Pesquisa Operacional, Vol. 36(3), 2016
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r = 1, 2; h ∈ C; k = 1, . . . , K ; l = 1, . . . , L (4)

∑
i∈C∪{Or }

L∑
l=1

xi Or+1 klr = 1, r = 1, 2; k = 1, . . . , K (5)

∑
j∈C∪{Or+1 }

L∑
l=1

xOr jklr = 1, r = 1, 2; k = 1, . . . , K (6)

∑
i∈C∪{O1 }

L∑
g=1

xi O2kg1 =
∑

j∈C∪{O3}

L∑
l=1

xO2 jkl2 , k = 1, . . . , K (7)

yOr klr =
∑

i∈C∪{Or }

∑
j∈C

L∑
l=1

q j xi jklr , r = 1, 2; k = 1, . . . , K (8)

y jklr ≤ yiklr − q j xi jklr + Qk(1 − xi jklr ),

r = 1, 2; i ∈ C ∪ {Or }; j ∈ C ∪ {Or+1};
k = 1, . . . , K ; l = 1, . . . , L (9)

t jklr ≥ tiklr + T Sil + Di j

Vk
− W (1 − xi jklr ),

r = 1, 2; i ∈ C ∪ {Or }; j ∈ C ∪ {Or+1};
k = 1, . . . , K ; l = 1, . . . , L (10)

tO3kl2 ≤ W, k = 1, . . . , K ; l = 1, . . . , L (11)

tiklr + T Sil + DCi j

Vk
− W (1 − xi jklr ) ≤ F,

r = 1, 2; i ∈ B; j /∈ B; k ∈ E; l = 1, . . . , L (12)

tO2kg2 ≥ tO2kl1 + T C − W (2 −
∑
j∈C

xO1 jkl1 −
∑
j∈C

xO2 jkg2),

k = 1, . . . , K ; l, g = 1, . . . , L (13)

L∑
l=1

xO1 O2kl1 ≤
L∑

g=1

xO2 O3kg2 (14)

∑
i∈C∪{O2 }

∑
j∈C

q j xi jkl2 ≥ Pmin Qk − Qk

∑
j∈C

(1 − x O2 jkl2),

k = 1, . . . , K ; l = 1, . . . , L (15)

xi jklr = {0, 1}, r = 1, 2; i, j ∈ C ∪ D; k = 1, . . . , K ; l = 1, . . . , L (16)

0 ≤ yi jklr ≤ Qk , r = 1, 2; i, j ∈ C ∪ D; k = 1, . . . , K ; l = 1, . . . , L (17)

Pesquisa Operacional, Vol. 36(3), 2016
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ai ≤ t iklr ≤ bi , r = 1, 2; i, j ∈ C ∪ D; k = 1, . . . , K ; l = 1, . . . , L (18)

The model’s objective (1) is to minimize costs with own and chartered vehicles as well as the
number of deliverymen decremented by the aggregate “priority” of the costumers associated to

each visited parking site. The values of parameters Pj , Co, Cs and G are set to guarantee the
lexicographic order <number of served clusters, own and chartered vehicles cost, number of
deliverymen>. In our experiments, all costumers have the same priority, therefore Pj is replaced

by P.

Constraints (2) impose that at most one vehicle k in mode l in a trip r arrives at a demand node
j from other demand node i or from the origin node of r, while constraints (3) force that at most
one vehicle k in mode l in a trip r departs from a demand node i to another demand node j or

to the destination node of the trip. Constraints (4) guarantee that the same vehicle k that enters a
demand node h in mode l leaves h to another demand node or the node destination of the trip in
the same mode l.

Constraints (5) guarantee that each vehicle k in trip r arrives at the destination node of r in mode

l from a single node i (demand type or origin node of trip r). Constraints (6) ensure that each
vehicle k in trip r leaves the origin node of r in mode l to a single node j (demand type or
the destination node of r). Constraints (7) ensure that each vehicle k in the first trip arrives at

its destination node in a mode g and departs in the second trip to a node j (demand type or
destination node of the second trip) in a mode l.

Constraints (8) impose that the load onboard each vehicle k in the origin node of each trip r as
the total demand of the nodes served by k in r. Constraints (9) compute the load onboard vehicle

k in a mode l in trip r when it arrives at node j after visiting node i. Constraints (10) define the
starting time of service in each node j visited after node i in route r with vehicle k in mode l.

Constraints (11) prescribe that the total route time must not exceed the maximum time that guar-
antees the return to the warehouse within the deliverymen working hours. Constraints (12) en-

sure that vehicles with circulation limitations do not ride in the city center after the maximum
circulation time F . This is done by imposing that if the vehicle departs from a node i located in
the city center to visit a node j outside that area (among which, the warehouse) then the vehicle

must cross the border of the city center at time F at most. Therefore, for each pair of nodes (i, j )
(i ∈ B; j /∈ B) the most probable border crossing is identified in a pre-processing phase by, for
example, computing the shortest path between i and j . As the distance between i and the border
is a function of the destination j , it can be refereed as DCi j , i.e., in terms of i and j .

Constraints (13) express the relationship between the arrival time of vehicle k in mode l at the
destination node of the first trip and the departure time of k in mode g from the origin node of
the second trip. As the origin node of the second trip is equal to the destination node of the first
trip, the constraints link these time instants considering that a change of mode can occur. The

departure time of k from the origin node of the second trip (in case it occurs) is equal to the
arrival time of k at the destination node of the first trip added by the vehicle reloading time.

Pesquisa Operacional, Vol. 36(3), 2016
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JOSÉ FERREIRA DE SOUZA NETO and VITÓRIA PUREZA 431

Constraints (14) guarantee the precedence between the first and second trips, eliminating sym-

metric solutions. Constraints (15) ensure the minimum capacity utilization of the vehicles in the
second trip. Finally, constraints (16) to (18) impose the decision variables domain. It should be
noted that the model can be easily extended to cope with situations with more than two trips.

4 A HEURISTIC APPROACH

This section describes a GRASP algorithm (Feo & Resende, 1995) for solving model (1)-(18),
presented in the previous section. GRASP is an iterative procedure for which each iteration con-
sists of the construction of an initial solution followed by an improvement stage. The initial

solution is constructed by randomly selecting solution components from a restricted list of candi-
dates, which seeks to ensure a good quality selection. The best generated (and improved) solution
obtained along the iterations is, therefore, the solution returned by the method.

The general steps of our algorithm are presented in Figure 3, and a detailed description of each

step is shown in the following sections. Note that the construction stage (step 2.1) is applied with
set FD, corresponding to the original fleet (own and chartered vehicles) duplicated. The fleet
duplication allows us to easily address the first and the second trip of a given vehicle. Specifically,

each vehicle k has an exact copy k′ , so that in case k is used in the solution and a second trip
is required, the first trip is performed by k while k′ serves the customers of the second trip. The
coupling of the two trips is ensured by imposing that the departure time of k′ from the warehouse

is equal to the arrival of k to the warehouse plus the vehicle loading time.

1. Let τmax be maximum computational time. Make t (elapsed computational

time) = 0, S (current solution) = S∗ (incumbent solution) = ∅, and the value
of the incumbent solution f (S∗) = ∞.

2. While t ≤ τmax do

2.1. Construction stage: For the set of demand nodes C and the set of dupli-
cated vehicles FD, obtain a starting solution with the insertion heuristic

described in Section 4.1. If the solution comprises one or more second
trips with violated minimum load constraints, apply the feasibility proce-
dure described in Section 4.2.

2.2. Improvement stage: Apply the trip reduction procedure to the starting
solution, followed by the travelled distance reduction procedure, followed

by the deliverymen reduction procedure (Section 4.3). Let S be the result-
ing solution. If f (S) ≤ f (S∗), make S∗ = S.

3. Return S∗.

Figure 3 – Steps of the GRASP algorithm.
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The construction stage comprises the insertion heuristic described in Section 4.1, which guaran-
tees feasible solutions except for the minimum load constraints for the second trip. In case these
constraints are violated, the heuristic uses a feasibility procedure (described in Section 4.2) to
transfer demand nodes from feasible trips to infeasible second trips. If there are still infeasible
second trips, these are deconstructed and the demand nodes are reconsidered for insertion.

The algorithm improvement stage (step 2.2), in turn, consists of the three-phase local search
described in Section 4.3. The first phase aims at reducing the number of trips, followed by the
reduction of the travelled distance and finally, by the decrease of the number of deliverymen.
Note that the order of the phases reflects the order of importance of the model’s objectives: by
reducing the number of trips, the number of routes may also decrease, making the resulting
idle vehicles available for serving yet unrouted customers and perhaps eliminating the need for
chartered vehicles; by reducing the travelled distance, the cost with own vehicles lessens, while
reducing the number of deliverymen completes the effort to make the solution more efficient.

4.1 The insertion heuristic

Starting solutions are generated as described in Figure 4. Due to the problem highly constrained
nature, the limited resources (vehicles) must be well allocated, therefore, in step 2 the set of
the duplicated vehicles FD is partitioned into subsets (i) own vehicles, (ii) own vehicles copies,
(iii) chartered vehicles, and (iv) chartered vehicles copies. In each of these subsets, vehicles are
sorted according to the following criteria: (1) smaller number of compatible customers, (2) sub-
jected to circulation limitations, and (3) smaller capacity, so that criterion i decides the sorting
if criterion i − 1 declares the vehicles tied. A list LV is then constructed by sorting the subsets
from (i) to (iv), which reflects the vehicles priority for selection when a new trip is initialized in
step 3.2.1. Note that this ranking favors the selection of lower cost, more constrained vehicles,
and complies with the trips sequencing as well.

Also due to the constrained nature of the problem, the restricted list of candidates LRC prioritizes
demand nodes with smaller chances of insertion. First, the list exclusively comprises all nodes
with time windows (step 3.1), which are randomly selected, one by one, and inserted in the least
costly feasible position among all current trips (step 3.2.1). In case there is no feasible insertion,
the selected demand node p starts a new trip with the first compatible vehicle k from the sorted
list LV. The largest possible crew is assigned to the trip, i.e., two deliverymen if p is located in a
drug gang area or three deliverymen, otherwise. The departure of k from the warehouse occurs
at time 0 if k is a first trip vehicle; otherwise, its departure is equal to the return time to the
warehouse of the associated first trip vehicle added by the reloading time.

Nodes that cannot be inserted in any partial route or start a new trip are removed from LRC
and stored in set NCI (step 3.2.1). After concluding the insertion and scheduling of nodes with
time windows, the solution construction resumes with LRC redefined with α% of the best eval-
uated nodes (without time windows) according to the following criteria: (4) smaller number of
compatible vehicles, and (5) larger demand. As before, criterion i decides the sorting if criterion
i − 1 declares the nodes tied.
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1. Let NCR = set of unserved demand nodes = C, FA = set of idle vehicles = FD,
and S = ∅.

2. Let NCI = set of unserved demand nodes whose insertion failed = ∅, CT =
set of unserved demand nodes with time windows, and new = false. Build the
sorted list LV of available vehicles.

3. For j = 1 to 2:

3.1. If j = 1, build LRC with demand nodes ∈ (NCR ∩ CT) − NCI (i.e.,
unserved nodes with time windows). Otherwise ( j = 2), build LRC with

α% of the best evaluated nodes with no time windows from set NCR −
CT − NCI.

3.2. While LRC �= ∅:

3.2.1 If FA = FD or new = true, start a new trip. Randomly select a node
p from list LRC and the first vehicle k from list LV that can serve p

without violating any of the problem constraints, disregarded the min-
imum load in the second trip. If there is no such ( p, k), make NCI =
NCI + {p} and go to step 3.1. Otherwise, start the trip associated to
vehicle k with node p and the maximum possible crew. Make LV =
LV − {k}, update the capacity of vehicle k and schedule the trip.
Otherwise, if FA �= FD and new = false, insert nodes in the current
solution. Select the first node p from list LRC that can be served

in one of the existent trips, and its feasible insertion position (disre-
garded the minimum load constraints) that result in the smallest cost
increase. If there is no such p, make new = true and go to step 3.2;

otherwise, insert p, update the vehicle capacity and reschedule the
trip.

3.2.2 Let S the current partial solution. Make NCR = NCR − {p} and
return to step 3.1.

4. Return S.

Figure 4 – Steps of the insertion heuristic.

4.2 The feasibility procedure

In case the solution produced by the insertion heuristic (Fig. 4) violates the minimum load con-

straints in one or more second trips, a feasibility procedure is called to relocate demand nodes
from feasible second trips, served by other vehicles, to the infeasible second trips and, in case
the latter do not become feasible, to relocate demand nodes from first trips. Figure 5 presents

the procedure steps. Note that node relocations are allowed as long as they do not violate the
feasibility of the trip of origin and do not produce further infeasibilities in the trip of destination.
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1. Let LI be a list of second trip vehicles with violated minimum load constraints
and LF a list of feasible second trip vehicles, both sorted in non-increasing order
of capacity utilization.

2. Following the lists, for each pair of vehicles k and k′ (k in LI and k′ in LF):

2.1. Identify the demand nodes served by k′ that can relocated to k, maintaining
the trip of k′ feasible and not producing additional infeasibilities in the trip
of k. Create a list LP comprising the node with the smallest demand that
makes the trip of k feasible, or in case no such a node exists, of the nodes
sorted in non-increasing order of demand.

2.2. While LP �= ∅ and the trip of k is infeasible, insert the first node (p)
listed in LP in the insertion least costly position identified in step 2.1 and
make LP = LP − {p}. After each node relocation, update LP by removing
demand nodes that can no longer be relocated to the trip of k and the
capacity utilization of vehicles k and k′ .

3. Update LI by removing vehicles whose trips are no longer infeasible. If LI �=∅,
redefine list LF with first trip vehicles sorted in non-increasing order of capacity
utilization and redo steps 2 and 3.

4. If there are still infeasible second trips, deconstruct these trips by returning their
demand nodes to set NCR and their vehicles to set FA, and apply the insertion
heuristic (described in Fig. 4) from step 2.

5. Return the resulting solution S.

Figure 5 – Steps of the feasibility procedure.

In step 1, unfeasible second trip vehicles regarding minimum load constraints are sorted in list
LI in non-increasing order of capacity utilization, and feasible second trip vehicles are sorted in
list LF, also in non-increasing order of capacity utilization. The vehicles sorting in both lists is
justified by the fact that unfeasible trips carried out by vehicles with larger capacity utilization
require less additional load to become feasible, while feasible trips have a larger number of
demand nodes that can be relocated to other trips without the former become infeasible.

A list LP is then built with nodes that can be relocated from a given vehicle k′ in LF to a vehicle
k in LI. LP either comprises the node with the smallest demand that makes the trip of k feasible
(unitary list), or in case no such a node exists, it includes all nodes sorted in non-increasing order
of demand (step 2.1). The first node in LP is then inserted in the least costly position of vehicle
k’s trip. This procedure is repeated until LP = ∅ or all trips in LI become feasible (step 2.2).
If there are still infeasible second trips (step 3), list LF is redefined with first trip vehicles. The
prioritization of feasible second trips over feasible first trips for node relocation is due to the fact
that second trips mostly comprise less constrained demand nodes, which facilitates their insertion
in other trips.
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Remaining infeasible trips are deconstructed in step 4, with their demand nodes returned to the

set of unserved nodes NCR and their vehicles returned to set FA. The procedure then takes
advantage of possible route slack resulting from the node relocations in step 2.2 and idle vehicles
to include unserved nodes in the solution.

4.3 The local search procedure

The local search procedure (LS) proposed in this work is inspired by the tabu search algorithm by
Pureza et al. (2012) and aims at improving the construction heuristic solution by applying three
phases in sequence. Firstly, it seeks to reduce the number of vehicles/routes (with the possibility

of creating new routes for serving unrouted nodes), followed by the minimization of the total
distance travelled by own vehicles, and finally, it attempts to decrement the crew size in each
trip. Figure 6 illustrates the steps of the procedure. Note that the phases sequencing follows the

hierarchy of the problem’s objectives.

1. From solution S obtained by the construction stage described in Figure 3:

1.1. Apply the route reduction phase by relocating nodes, one by one, from the
trip r with the least number of nodes to other routes. The nodes are in-
serted in the least costly feasible position. Let S′ be the resulting solution.

If r is completely emptied, make S = S′.

1.2. Apply the distance reduction phase to S by performing an intra-route 2-
opt, an inter-route two-node exchange, and an inter-route one-node inser-
tion. Each neighborhood is searched until a neighbor solution with shorter

own vehicle travelled distance is found or all moves are investigated. Re-
peat the step until no improved solution is found for all three neighbor-
hoods. Let S be the resulting solution.

1.3. Apply the crew size reduction phase to S by decrementing the number of
deliverymen in each trip, one by one, until any additional decrement makes

the trip infeasible or the crew size is equal to 1. Let S be the resulting
solution.

2. Return solution S.

Figure 6 – Steps of the local search heuristic.

While improvements are obtained in the first and third phases (steps 1.1 and 1.3, respectively) by
using a single type of move each, the second phase (step 1.2) consists of a sequence of three move

types: 2-opt (intra-route), exchange of two nodes in different trips (inter-route), and insertion of a
node from trip i to a distinct trip j (inter-route). According to the results of extensive preliminary
experiments, this sequence of moves shows the best trade-off between time and solution qual-

ity. Only improving moves are accepted, and the selection of the neighbor solution follows the
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first-improve policy, i.e., each neighborhood is searched until a solution with shorter own vehicle

travelled distance is found or all neighbors are investigated. The types of moves are applied on a
cyclical basis until no improved solution is found for all three neighborhoods.

5 COMPUTATIONAL EXPERIMENTS

The purpose of the experiments discussed in this section is to verify the applicability of model
(1)-(18) and our solution approach and to compare the results obtained with the company’s es-
timated solutions. For this, we collected data on some daily deliveries in a major city served by
the company, and present the solutions of 14 instances. As depicted in Table 1, the instances
range from 9 to 209 customers and are divided in 5 sets according to the city area type (Central,
Peripheral and Dangerous) or market segment (Supermarkets and All segments).

Table 1 – Sets of instances.

Set
Number of Fleet
customers size

C

58 3

42 3
75 3

P

55 2

78 3
87 3

D
37 2
34 2

47 2

S
9 7
17 10

A
134 7
170 8

209 8

The real data provided by company consists of the customers’ location and demand, the available
fleet, as well as the routes sequencing in the company’s solutions. On the other hand, the travelled
distance and scheduling of the company’s routes had to be estimated (thus, also the routes costs)
because no information regarding customer clusters was available. As discussed in Section 2,
the routes planned by the logistic operators assume that the trucks travel from one customer to
another, even though in practice, clusters take shape when customers close to the truck parking
site are served on foot by the crew. For this reason, the travelled distance, route times and costs
of the company’s solutions were computed considering the most probable clusters, defined a
posteriori by examining the actual route sequencing, truck capacity and the maximum radial
distance between a customer and the truck parking site adopted by the deliverymen (150 meters).
Distances between any two nodes were computed considering the city real network. Once the
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clusters were defined, route times were calculated based on the demand of each cluster, average
traveling speed, reloading time for a second trip (60 minutes) and service carried out by the
standard crew (two deliverymen). As discussed in Section 2, the company provided us estimated
service times for a two-man crew, hence we set the service time in a given cluster as the sum of
the estimated service time of the customers in the cluster.

Instances with distances and times computed according to previous paragraph are denoted by
RC01, RC02 and RC03 (set C); RP01, RP02 and RP03 (set P); RS01 and RS02 (set S); RD01,
RD02 and RD03 (set D); and RA01, RA02 and RA03 (set A). Instance RA01 comprises the
data of RC02, RP01 and RD01; instance RA02 comprises the data of RC01, RP02 and RD02
and instance RA03 comprises the data of RC03, RP03 and RD03. Their solutions correspond
therefore to what we call the company’s estimated solutions.

The corresponding instances used to solve model (1)-(18) are, in turn, denoted by MC01, MC02
and MC03 (set C); MP01, MP02 and MP03 (set P), MS01 and MS02 (set S); MD01, MD02
and MD03 (set D); and MA01, MA02 and MA03 (set A). Note that the only difference between
RC01..RA03 and the corresponding MC01..MA03 is the clusters formation, which in the latter
case was done a priori, according to the following requirements: (i) clusters are formed exclu-
sively by either customers with time window or customers without time windows; (ii) the radial
distance between each customer in a cluster and the truck parking site cannot exceed 150 meters;
(iii) the total demand in a given cluster must be less than or equal to the capacity of the smallest
truck that can serve the corresponding region (central, peripheral, dangerous). Single customer
clusters are formed if the customer’s demand is greater than the capacity of the smallest truck.

The modeling language GAMS with solver CPLEX 12.5.0.1 was used to implement and solve
model (1)-(18). Based on real data, we set model parametersPi , Co, Cs and G to 900, 1.1, 500
and 1, respectively. CPLEX’s branch-and-cut ran with standard parameters, except for options
fpheur = 1, heurfreq = 100, lbheur = 1, threads = 4, and maximum processing time (τmax) equal
to 18000 seconds (5 hours). GRASP was implemented in Oracle 11g with the programming
language PL/SQL and run with parameter α = 30%. According to the company, each route
is planned in 3 minutes, so as an attempt to reproduce the conditions under which the route
planning is carried out, the maximum processing time employed in GRASP was set to the size
of the available fleet multiplied by 180 seconds. For the sake of simplicity, for the cases with
one and three deliverymen (modes 1 and 3), we simply divided the estimated service times for
a two-man crew (provided by the company) by 1/2 and 3/2, respectively. From the perspective
of the company’s deliverymen, these estimates are close enough to their expectations of service
time.

All experiments were conducted in a Dell computer, model Optiplex 9010 with processor
Intel i7 with 3.4 GHz, 16 GB RAM and operational system Windows 7 Professional with 64 bits.

5.1 Results

We first compare the solutions obtained with CPLEX with the corresponding company’s esti-
mated solutions. Regarding the latter, Table 2 presents for each instance of the sets, the solution
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cost, the fleet size employed, the distance travelled by the vehicles, the total crew size (excluding
the security guard, and equal to 2 per vehicle), and if the solution is feasible according to the
model constraints. For the CPLEX’s solutions, Table 2 presents the number of clusters defined
according to the requirements discussed in the beginning of Section 5, the solution cost, the fleet
size employed, the distance travelled by the vehicles, the total crew size (variable and equal to
the sum of the largest delivery crews in the two possible trips of each vehicle), the number of
unserved clusters, and the solutions gap between the best feasible MIP solution found and the
LP relaxation. Table 3 summarizes the comparisons by depicting the average percent difference
between GAMS/CPLEX’s solutions and the company’s estimated solutions.

As shown in the sixth column of Table 2, the company’s solutions are infeasible for all instances
but one, either for violating route time, time windows, truck capacity or minimum load in the
second trip. Even though route scheduling had to be estimated, the company’s logistics operators
confirm that such violations are, in fact, very common. As an example, the company’s estimated
solution for instance RC02 exhibits violation of the time window upper limit of 3 clusters of
restaurants, ranging from 47 to 110 minutes beyond the maximum limit of 120. We note that if we
increase the time window upper limit of the only unserved cluster in the corresponding instance
MC02 from 120 to 180 minutes (i.e., a 60 minute violation), CPLEX succesfully incorporates
the cluster in a route, resulting in a less infeasible option than the company’s solution in less than
100 seconds of computing time.

Table 3 shows that CPLEX produced average reductions in cost, number of vehicles, route time,
and travelled distance of 41%, 2%, 30%, 31%, respectively. The improvements were achieved
at the expense of only 6% average increase in the number of deliverymen. We note that the large
crew size increments in sets C and P compensate the overtime hours present in the company’s
solutions (set P) or the clusters’ time windows violation (set C). In fact, overtime accounts for
an average of 2:45 h per vehicle in set P and time windows violations accounts for an average
of 18 min per cluster with time window in set C. Similarly, the large decrement in set S crew
size indicates that some of the vehicles in the company’s solutions are overmanned. This can
be clearly observed in the results of instances RS01 (the only case with a feasible company’s
estimated route plan) and MS01. Both solutions have equal or very similar costs, number of ve-
hicles and total distance, whereas the number of deliverymen is four men larger in the company’s
solution. That is, setting the crew size based on the specificities of each trip can indeed bring
benefits, either by impeding overtime/time windows violations or overmanning.

It should be noted though that the cost reductions obtained in instance set A are the result of
unserved clusters, some of which could certainly be served, since the smaller instances that
make them up have feasible solutions. For example, instance MA01 comprises the data of in-
stances MC01, MP01 and MD01; when these are solved individually, all clusters are served
while MA01 has 3 unserved clusters. This observation indicates that the computational time
provided to GAMS/CPLEX (18000 seconds) is insufficient for tackling the largest instances.
Moreover, despite the general good results, the incumbents of 10 of the 14 instances were found
very close to the maximum computational time. Given the practical motivation for this research,
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Table 3 – Average percentage difference between GAMS/
CPLEX’s solutions and the company’s estimated solutions.

Set Cost Vehicles Route time Distance Crew

C –19% 0% –25% –19% +28%

P –45% 0% –37% –45% +25%

D –58% 0% –29% –58% 0%

S –66% –12% –29% –18% –24%

A –27% 0% –30% –27% +2%

we felt necessary to verify the quality of the solutions obtained within the route planning time
used in practice (3 minutes per vehicle). Table 4 presents the results.

We note in Table 4 that limiting the computation time to the company route planning time results
in solutions substantianly inferior, with increases of the travelled distance cost of 58%, 11%
and 6% in instances MP01, MD02 and MS02, respectively. For instances MC01, MC02, MP03,
MD01, MD03 and MA01, the gaps are substantially higher since the average served clusters goes
down to 32%. In other four instances (MC03, MP02, MA02 and MA03) the computational time
is not even sufficient to obtain a feasible solution.

Table 4 – GAMS/CPLEX performance with two computational times.

Instance

GAMS/CPLEX
τmax = 18000 s τmax = Fleet size ×180 s

Gap Unserved clusters Gap Unserved clusters
(%) (%) (%) (%)

MC01 0.21 0.0 106.7 51.5

MC02 5.71 3.6 11.8 7.1

MC03 6.57 6.0 NA NA

MP01 0.07 0.0 0.16 0

MP02 0.16 0.0 NA NA

MP03 3.26 1.5 501.5 83.3

MD01 0.18 0.0 4.14 3.7

MD02 0.07 0.0 0.24 0

MD03 0.14 0.0 17.5 14.6

MS01 0.0 0.0 0.0 0

MS02 0.44 0.0 0.54 0

MA01 3.54 3.3 41.96 30.0

MA02 6.28 5.7 NA NA

MA03 12.44 10.8 NA NA

NA: No feasible solution found within τmax seconds.
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We therefore conclude that the time required by CPLEX’s branch-and-cut (and possibly, other
exact methods) to generate good quality solutions, makes its use unviable in practical contexts, as
one might expect, and points to the investigation of heuristic or hybrid methods. Table 5 presents
the results from the application of our GRASP implementation, limited to the route planning
time practiced by the company. We also include the number of unserved clusters and the gaps
of the solutions found with GAMS/CPLEX for a quick comparison and Table 6 summarizes the
differences.

Table 5 shows that GRASP produced solutions with smaller gaps than GAMS/CPLEX in 43%
of the instances as the result of a larger number of served clusters. For example, among the
372 clusters of set A, GRASP fails to serve 2 clusters while GAMS/CPLEX’s solutions exhibit
27 unserved clusters. Average gaps with GAMS/CPLEX and GRASP are equal to 2.79% and
1.17%, respectively, indicating that the heuristic approach is capable of generating better quality
solutions in much shorter computational times. However, regarding instances MD02 and MD03
(dangerous areas), GRASP’s solutions present an average of 4.3% of unserved clusters. CPLEX’s
routes, on the other hand, incorporated all clusters in these two instances.

Table 5 – Solutions of model (1)-(18) solved with GRASP.

Instance

GAMS/CPLEX� GRASP�

Gap Unserved clusters
Vehicles

Distance
Crew size�

Gap Unserved clusters

(%) (%) (km) (%) (%)

MC01 0.21 0.0 3 76.9 5 0.23 0.0

MC02 5.71 3.6 3 63.3 6 0.33 0.0

MC03 6.57 6.0 3 81.6 6 0.17 0.0

MP01 0.07 0.0 2 43.9 4 0.1 0.0

MP02 0.16 0.0 3 92.1 8 0.17 0.0

MP03 3.26 1.5 3 86.4 9 0.12 0.0

MD01 0.18 0.0 2 68.7 4 0.23 0.0

MD02 0.07 0.0 2 74.2 4 4.08 3.7

MD03 0.14 0.0 2 85.9 4 5.34 4.9

MS01 0.0 0.0 8 126.2 17 0.2 0.0

MS02 0.44 0.0 10 176.3 27 0.67 0.0

MA01 3.54 3.3 7 193.1 14 1.3 1.08

MA02 6.28 5.7 8 304.7 17 1.91 0.0

MA03 12.44 10.8 8 315.1 18 1.49 0.06

�τmax = 18000 seconds.
�τmax = Fleet size ×180 seconds.
�Largest crew in the two possible trips of each vehicle.
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Table 6 – Average percentage difference between GRASP’s
solutions and GAMS/CPLEX’s solutions.

Set Cost Vehicles Route time Distance Crew

C +1% 0% +52% +1% –26%

P –3% 0% +5% –3% +5%

D +26% 0% +0.6% +26% 0%

S +15% +20% +27% +15% +69%

A –1% 0% +13% –1% +4%

5.2 A simple hybrid approach

As means to investigate the performance of a hybrid method, we solve the 14 instances with
GAMS/CPLEX from the best solution produced by GRASP. Since these best solutions are usu-
ally obtained within 40% of the computational time, we set the time for the application of the
metaheuristic and GAMS/CPLEX as 0.4 (Fleet size ×180) seconds and 0.6 (Fleet size ×180),
respectively. That is, the time provided to the hybrid method is equal to the route planning time
practiced by the company. Table 7 shows the results, along with the number of unserved clus-
ters and the gaps of the solutions found by GAMS/CPLEX without the starting solution and
τmax = 18000 seconds. Table 8 summarizes the comparisons.

The application of the hybrid method (within the company route planning time) improved 6 of
the 14 solutions of GAMS/CPLEX (obtained within 18000 seconds of processing time) regard-
ing the number of served clusters. In particular, Table 7 shows that service is provided to all
clusters of instances MC02, MC03, MP03 and MA02, despite the fact that the travelled distance
is 6.5% shorter. When compared to the solutions provided by GRASP, the average percentage of
unserved clusters in instances MD02, MD03, MA01 and MA03 decreases from 2.4% to 0.9%,
while solutions for set D exhibit an increased number of served clusters in 2 instances and reduc-
tions of 16.5% on the travelled distance. For set S, the improvements are even larger, disclosing
an average of 22.2% decrease on the number of vehicles employed. In addition, reductions of
1, 7 and 12 deliverymen are observed in the solutions of instances MP02, MS01 and MS02,
respectively, representing a 38.4% savings on the crew size prescribed by GRASP.

We conclude that the performance of the hybrid method is superior to the other proposed meth-
ods, as it combines mostly high quality solutions to low computational time. The method can be
considered satisfactory for all instances but MD03, MA01 and MA03; in these cases, an average
of 1.2% of the clusters remained unserved (note in Table 2 that all clusters in instance MD03 can
actually be served). Table 9 summarizes the comparisons between the hybrid method solutions
and the company’s solution.

6 CONCLUSIONS AND PERSPECTIVES OF FUTURE RESEARCH

This paper addressed the distribution operation of large volumes of products in dense urban areas.
We proposed an optimization model that incorporates most of the relevant conditions imposed to
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Table 7 – Solutions of model (1)-(18) solved with the hybrid method.

Instance
GAMS/CPLEX� Hybrid�

Gap Unserved clusters
Vehicles

Distance
Crew size�

Gap Unserved clusters

(%) (%) (km) (%) (%)

MC01 0.21 0.0 3 76.7 5 0.22 0.0

MC02 5.71 3.6 3 63.3 6 0.33 0.0

MC03 6.57 6.0 3 80.2 6 0.16 0.0

MP01 0.07 0.0 2 43.9 4 0.1 0.0

MP02 0.16 0.0 3 85.1 7 0.15 0.0

MP03 3.26 1.5 3 85.9 9 0.11 0.0

MD01 0.18 0.0 2 68.7 4 0.23 0.0

MD02 0.07 0.0 2 44.5 4 0.12 0.0

MD03 0.14 0.0 2 77.8 4 2.65 2.4

MS01 0,00 0.0 7 123.4 10 0 0.0

MS02 0.44 0.0 7 136.2 15 0.43 0.0

MA01 3.54 3.3 7 178.1 14 1.28 1.08

MA02 6.28 5.7 8 285.4 17 1.89 0.0

MA03 12.44 10.8 8 303.7 18 1.48 0.06

�τmax = 18000 seconds.
�τmax = 0.4× Fleet size × 180 (starting solution produced by GRASP) + 0.6 × Fleet

size × 180 (improvement produced by GAMS/CPLEX) seconds.
�Largest crew in the two possible trips of each vehicle.

Table 8 – Average percentage difference between the hybrid

method’s solutions and GAMS/CPLEX’s solutions.

Set Cost Vehicles Route time Distance Crew size

C +1% 0% +35% +1% –26%

P –7% 0% –5% –7% 0%

D +5% 0% –8% +5% 0%

S –1% –7% +15% –1% –4%

A –7% 0% +2% –7% +4%

the fleet that carry out the distribution in a large Brazilian drinks producer and distributor, dis-
closing the complexity and some of the difficulties pertinent to this important logistic activity. In
addition to merging three variants of the Vehicle Routing Problem (multi-trip, multi-deliverymen
and with time windows), inherent to the studied application, a highlight of the proposed model is
the diversity of constraints, characterizing the delivery operation as a rich vehicle routing prob-
lem. As the company is typical in the drinks sector, this study may be helpful to others with
similar delivery or pickup operations.
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Table 9 – Average percentage difference between the hybrid
method’s solutions and the company’s estimated solutions.

Set Cost Vehicles Route time Distance Crew size

C –18% 0% +2% –18% –6%

P –49% 0% –40% –49% +25%

D –55% 0% –35% –55% 0%

S –66% –18% –28% –18% –26%

A –31% 0% –29% –31% +7%

Sets of instances based on real data provided by the company and comprising 1 to 3 market areas
were solved with the branch-and-cut algorithm of the software GAMS/CPLEX, a GRASP meta-
heuristic and a simple hybrid method that applies GAMS/CPLEX from the incumbent solution
provided by the metaheuristic. In particular, the hybrid method was capable to generate high
quality solutions for most of the instances within the route planning time required by the com-
pany, in these cases presenting an impressive average cost reduction of 37% relative to the com-
pany’s estimated solutions. It should be emphasized that the resulting solutions were analyzed
and validated by the company’s logistic operators, indicating the potential of the application of
operations research techniques in real environments. The cases for which the methods failed
to route all demand clusters motivate the development of more sophisticated metaheuristics or
hybrid methods.

Since limited experiments during this research revealed a close relation between cluster forma-
tion and the routing quality, another interesting avenue of research is to study the problem that
combines clustering to the routing/scheduling/crew size decisions. Finally, considering uncer-
tainties in travel times and/or demand with the application of robust optimization techniques also
follows as a suggestion of future research. For instance, it is clear that urban centers are partic-
ularly susceptible to traffic jams, which may not justify the trucks travelling times based on an
average speed adopted in the present study.

ACKNOWLEDGMENTS

The authors thank the two anonymous reviewers for their useful comments and suggestions,
the Brazilian drinks company for its extensive collaboration with this study, and CNPq (grant
304803/2013-8) and FAPESP for their financial support.

REFERENCES

[1] ALONSO F, ALVAREZ MJ & BEASLEY JE. 2007. A tabu search algorithm for the periodic vehicle

routing problem with multiple vehicle trips and accessibility restrictions. Journal of the Operational

Research Society, 59: 963–976.

[2] ALVAREZ DIAZ AA & MUNARI P. 2016. Abordagens metaheurı́sticas para o problema de rotea-
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