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Abstract

Industrial production requires multivariate control charts to enable monitoring of several components. Recently there 
has been an increased interest also in other areas such as detection of bioterrorism, spatial surveillance and transaction 
strategies in finance. In the literature, several types of multivariate counterparts to the univariate Shewhart, EWMA 
and CUSUM methods have been proposed. We review general approaches to multivariate control chart. Suggestions 
are made on the special challenges of evaluating multivariate surveillance methods. 
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1. Introduction

Multivariate surveillance is of interest in 
industrial production, for example in order to 
monitor several sources of variation in assembled 
products. Wärmefjord (2004) described the 
multivariate problem for the assembly process of the 
Saab automobile. Sahni, Aastveit and Naes (2005) 
suggest that the raw material and different process 
variables in food industry should be analysed in 
order to assure the quality of the final product. 
Tsung, Li and Jin (2008) described the need for 
multivariate control charts at manufacturing and 
service processes. The first versions of modern 
control charts (SHEWHART, 1931) were made for 
industrial use. Surveillance of several parameters 
(such as the mean and the variance) of a distribution 
is multivariate surveillance (see for example Knoth 
and Schmid (2002)). Capability index is dealing with 
both the mean and the variance.

In recent years, there has been an increased 
interest in statistical surveillance also in other 
areas than industrial production. The need is great 
for continuous observation of time series with 
the aim of detecting an important change in the 
underlying process as soon as possible after the 
change has occurred. There is an increased interest 
in surveillance methodology in the US following the 
9/11 terrorist attack. Since the collected data involve 
several related variables, this calls for multivariate 

surveillance techniques. Spatial surveillance is 
multivariate since several locations are involved. 
There have also been efforts to use multivariate 
surveillance for financial decision strategies by for 
example Okhrin and Schmid (2007) and Golosnoy, 
Schmid e Okhrin (2007).

The construction of surveillance methods 
involves statistical theory, practical issues as to 
the collection of new types of data, and also 
computational ones such as the implementation 
of automated methods in large scale surveillance 
data bases. The data is sometimes highly 
dimensional and collected into huge databases. 
Here the focus will be on the statistical inference 
aspects of the multivariate surveillance problem. 
We will focus on some general approaches for 
the construction of multivariate control chart 
methods. These general approaches do not depend 
on the distributional properties of the process in 
focus, even though the implementation does. 
Reviews on multivariate surveillance methods can 
be found for example in Basseville and Nikiforov 
(1993), Lowry and Montgomery (1995), Ryan 
(2000), Woodall and Amiriparian (2002), Frisén 
(2003) and Sonesson and Frisén (2005). Woodall 
(2007) concentrates on profile monitoring where 
the relation between the variables is described as 
a profile.
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In Section 2 the notations and specifications will 
be given. In Section 3, different approaches to the 
construction of multivariate surveillance methods 
are described and exemplified. In Section  4, we 
discuss evaluation of multivariate surveillance 
methods. In Section 5, we demonstrate how the 
relation between the change points influences the 
choice of optimal method. Concluding remarks are 
made in Section 6.

2. Specifications

We denote the multivariate process under 
surveillance by Y = {Y(t), t = 1, 2, ...}. At 
each time point, t, a p-variate vector Y(t ) = 
(Y1(t ) Y2(t )  ...  Yp(t))T of variables is observed. The 
components of the vector may be, for example, 
a measure of each of p different components of 
a produced item. When the process is in control 
and no change has occurred, Y(t ) has a certain 
distribution (for example with a certain mean 
vector m0 and a certain covariance matrix SY). The 
purpose of the surveillance method is to detect a 
deviation to a changed state as soon as possible 
in order to warn and to take corrective actions. 
We denote the current time point by S. We want 
to determine whether a change in the distribution 
of Y has occurred up to now. Thus we want to 
discriminate between the events {τ ≤ S} and 
{τ  >  S}, where τ denotes the time point of the 
change. In a multivariate setting, each component 
can change at different times τ1, ... τp. A natural aim 
in many situations is to detect the first time that 
the joint process is no longer in control since that 
motivates an action. Then, it is natural to consider 
tmin = min{t1,... tp}. In order to detect the change, 
we can use all available observations of the process  
YS = {Y(t ), t ≤ S} to form an alarm statistic denoted 
by p(YS). The surveillance method makes an alarm, 
at the first time point when p(YS) exceeds an alarm 
limit G(S ).

3. Constructions of multivariate  
control charts

3.1. Reduction of dimension

A start should be to add any relevant structure 
to the problem in order to focus. One way to 
reduce dimensionality is to consider the principal 
components instead of the original variables 
as proposed for example by Jackson (1985), 
Mastrangelo, Runger and Montgomery (1996) and 
Kourti and MacGregor (1996). In Runger (1996) 

an alternative transformation, using so-called U2 
statistics, was introduced to allow the practitioner 
to choose the subspace of interest, and this is used 
for fault patterns in Runger et al. (2007). Projection 
pursuit was used by Ngai and Zhang (2001) and 
Chan and Zhang (2001). Rosolowski and Schmid 
(2003) use the Mahalanobis distance to reduce 
the dimensionality of the statistic. After reducing 
the dimensionality, any of the approaches for 
multivariate surveillance described below can be 
used. 

3.2. Scalar statistics 

The most far going reduction of the dimension 
is to summarise the components for each time 
point into one statistic. This is a common way 
to handle multivariate surveillance problems. 
Sullivan and Jones (2002) referred to this as “scalar 
accumulation”. In spatial surveillance it is common 
to start by a purely spatial analysis for each time 
point as in Rogerson (1997). A natural reduction 
is to use the Hotelling T2 statistic (HOTELLING, 
1947). This statistic is T2(t )  = (Y(t ) – m0(t ))

T S –1
Y(t )

(Y(t ) – m0(t )), where the sample covariance matrix 
S Y(t) is used to estimate SY. When SY is regarded 
as known and the statistic has a χ2 distribution, it 
is referred to as the χ2 statistic. Scalars based on 
regression and other linear weighting are suggested 
for example by Healy (1987), Kourti and MacGregor 
(1996) and Lu et al. (1998). Originally, the Hotelling 
T2 statistic was used in a Shewhart method, and 
this is often referred to as the Hotelling T2 control 
chart. An alarm is triggered as soon as the statistic 
T2(t ) is large enough. The reduction to a univariate 
variable can be followed by univariate monitoring 
of any kind. Note that, there is no accumulation 
of information over time of the observation 
vectors if the Shewhart method is used. In order 
to achieve a more efficient method, all previous 
observations should be used in the alarm statistic. 
There are several suggestions of combinations 
where reduction to a scalar statistic is combined 
with different monitoring methods. Crosier (1988) 
suggested to first calculate the Hotelling T variable 
(the square root of T2(t )) and then use this as the 
variable in a univariate CUSUM method, making 
it a scalar accumulation method. Liu (1995) used 
a non-parametric scalar accumulation approach, 
where the observation vector for a specific time 
point was reduced to a rank in order to remove 
the dependency on the distributional properties 
of the observation vector. Several methods were 
discussed for the surveillance step, including the 
CUSUM method. Yeh  et  al. (2003) suggested a 
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transformation of multivariate data at each time 
to a distribution percentile, and the EWMA method 
was suggested for the detection of changes in the 
mean as well as in the covariance. 

3.3. Parallel surveillance

In this commonly used approach, a univariate 
surveillance method is used for each of the 
individual components in parallel. This approach 
can be referred to as combined univariate methods 
or parallel methods. One can combine the univariate 
methods into a single surveillance procedure in 
several ways. The most common is to signal an alarm 
if any of the univariate methods signals. This is a 
use of the union-intersection principle for multiple 
inference problems. Sometimes the Bonferroni 
method is used to control a false alarm error, see Alt 
(1985). General references about parallel methods 
include Woodall and Ncube (1985), Hawkins (1991), 
Pignatiello and Runger (1990), Yashchin (1994) and 
Timm (1996). 

Parallel methods suitable for different kinds of 
data have been suggested. Skinner, Montgomery 
and Runger (2003) used a generalised linear model 
to model independent multivariate Poisson counts. 
Deviations from the model were monitored with 
parallel Shewhart methods. In Steiner, Cook and 
Farewell (1999) binary results were monitored 
using a parallel method of two individual CUSUM 
methods. However, to be able to detect also small 
simultaneous changes in both outcome variables, 
the method was complemented with a third 
alternative, which signals an alarm if both individual 
CUSUM statistics are above a lower alarm limit at 
the same time. The addition of the combined rule 
is in the same spirit as the vector accumulation 
methods presented below. Parallel CUSUM methods 
were used also by Marshall et al. (2004). 

3.4. Vector accumulation 

By this approach, the accumulated information 
on each component is utilised by a transformation 
of the vector of component-wise alarm statistics 
into a scalar alarm statistic. An alarm is triggered 
if this statistic exceeds a limit. This is referred to as 
“vector accumulation”. 

Lowry  et  al. (1992) proposed a multivariate 
extension of the univariate EWMA method, which 
is referred to as MEWMA. This method uses a vector 
of univariate EWMA statistics Z(t ) = ΛY(t ) + (I – Λ)
Z(t – 1) where Z(0) = 0 and Λ = diag(l1, l2, ..., lp). An 
alarm is triggered at tA = min{t; Z(t)TS–1

Z(t)Z(t ) > L} 
for the alarm limit, L. The MEWMA method can be 

seen as the Hotelling T2 control chart applied to 
EWMA statistics instead of the original data and is 
thus a vector accumulation method. 

One natural way to construct a multivariate 
version of the CUSUM method would be to proceed 
as for EWMA and construct the Hotelling T2 control 
chart applied to univariate CUSUM statistics for 
the individual variables. One important feature 
of such a method is the lower barrier (assuming 
we are interested in a positive change) of each 
of the univariate CUSUM statistics. This kind of 
multivariate CUSUM was suggested by Bodnar and 
Schmid (2004) and Sonesson and Frisén (2005). 
Other approaches to construct a multivariate CUSUM 
have also been suggested. Crosier (1988) suggested 
the MCUSUM method, and Pignatiello and Runger 
(1990) had another suggestion. Both these methods 
use a statistic consisting of univariate CUSUMs for 
each component and are thus vector accumulation 
methods. However, the components are used in 
a different way as compared with the MEWMA 
construction. One important feature of these two 
methods is that the characteristic zero-return of the 
CUSUM technique is constructed in a way suitable 
when all the components change at the same time 
point. However, if all components change at the 
same time, a univariate reduction is optimal.

3.5. Joint solution

The above approaches all involved stepwise 
constructions of methods. For complicated 
problems this is often useful. However, we might 
also aim at jointly optimal methods. Such optimality 
is not guaranteed by the approaches described in 
the sections above, which start with a reduction in 
either time or space (or other multivariate setting). 
Sometimes a sufficient reduction will result in 
a separation of the spatial and the temporal 
components. The use of the sufficient statistic 
implies that no information is lost. An example of 
this is the result by Wessman (1998) that when all 
the variables change at the same time, a sufficient 
reduction to univariate surveillance exists.

Healy (1987) derived the CUSUM method for the 
case of simultaneous change in a specified way for 
all the variables. The results are univariate CUSUMs 
for a function of the variables. Since the CUSUM 
method is minimax optimal, the multivariate 
methods by Healy (1987) are simultaneously 
minimax optimal for the specified direction when 
all variables change at the same time. 

A way of achieving a simultaneously optimal 
solution is by applying the full likelihood ratio 
method as in Shiryaev (1963), and Frisén and de 
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Maré (1991) and derive the sufficient reduction as 
in Frisén, Andersson and Schiöler (2010b). 

4. Evaluations of multivariate  
control charts

The timeliness in detection is of importance 
in surveillance, and other measures than the 
ones traditionally used in hypothesis testing are 
important. To evaluate the timeliness, different 
measures such as the average run length, the 
conditional expected delay and the probability 
of successful detection Frisén (1992) can be used 
with or without modification also in a multivariate 
setting. The special problem of evaluation of 
multivariate surveillance is the topic of the paper by 
Frisén, Andersson and Schiöler (2010a).

Optimality is hard to achieve and even hard to 
define for all multivariate problems. This is so also 
in the surveillance case (FRISÉN, 2003). We have a 
spectrum of problems where one extreme is that 
there are hardly any relations between the multiple 
surveillance components. The other extreme is that 
we can reduce the problem to a univariate one by 
considering the relation between the components. 
Consider, for example, the case when we measure 
several components of an assembled item. If we 
restrict our attention to a general change in the 
factory, changes will be expected to occur for all 
variables at the same time. Then, the multivariate 
situation is easily reduced to a univariate one 
Wessman (1998) and we can easily derive optimal 
methods. For many applications, however, the 
specification of one general change is too restrictive. 
It is important to determine which type of change 
to focus on. The method derived according to 
the specification of a general change will not be 
capable of detecting a change in only one of many 
components. On the other hand, if we focus on 
detecting all kinds of changes, the detection ability 
of the surveillance method for each specific type of 
change will be small. 

In hypothesis testing, the false rejection is 
considered most important. It is important to control 
the error in multiple testing since the rejection of a 
null hypothesis is considered as a proof that the null 
hypothesis is false. Hochberg and Tamhane (1987) 
described important methods for controlling the risk 
of an erroneous rejection in multiple comparison 
procedures. The False Discover Rate, FDR, suggested 
by Benjamini and Hochberg (1995) is relevant in 
situations more like a screening than as hypothesis 
testing. In surveillance this is further stressed as all 
methods with a fair power to detect a change have 
a false alarm rate that tends to one Bock (2008). 

The problem with adopting FDR is that it uses a 
probability that is not constant in surveillance. 
Marshall et al. (2004) solve this problem as the 
monitoring is carried out over a short period of time 
and they use only the properties of the early part 
of the run length distribution. FDR in surveillance 
has been advocated for example by Rolka et al. 
(2007). However, the question is whether control 
of FDR is necessary when surveillance is used as a 
screening instrument, which indicates that further 
examination should be made. Often, the ARL0 of the 
combined procedure may be informative enough 
since it gives information about the expected time 
until (an unnecessary) screening. It will sometimes 
be easier to judge the practical burden with a too 
low alarm limit by the ARL0 than by the FDR for 
that situation.

The detection ability depends on when the 
change occurs is needed. The conditional expected 
delay CED(t) = E[tA – t|tA ≥ t = t ] is a component 
in many measures, which avoids the dependency 
on τ either by concentrating on just one value of τ 
(e.g. one, infinity or the worst value). Frisén (2003) 
advocated that the whole function of τ should 
be studied. This measure can be generalized by 
considering the delay from the first change

1min pmin{ ,... }τ = τ τ

1 p A min A minCED( ,... ) E(t – | t )τ τ = τ ≥ τ

The Probability of Successful Detection 
suggested by Frisén (1992) measures the probability 
of detection with a delay time shorter than d. In the 
multivariate case it can be defined as

1 p A min A minPSD(d, ,... ) P(t – d | t )τ τ = τ ≤ ≥ τ

This measure depends on both the times of the 
changes and the length of the interval in which the 
detection is defined as successful. Also, when there 
is no absolute limit to the detection time it is often 
useful to describe the ability to detect the change 
within a certain time. In such cases, it may be useful 
to calculate the PSD for different time limits d. This 
has been done for example by Marshall et al. (2004) 
in connection with use of the FDR. The ability to 
make a very quick detection (small d) is important 
in surveillance of sudden major changes, while 
the long-term detection ability (large d) is more 
important in ongoing surveillance where smaller 
changes are expected.

Since the above measures of delay are complex, 
it is tempting to use the simple ARL measure. 
The ARL1 is the most commonly used measure of 
the detection ability also in the multivariate case. 
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It is usually assumed that all variables change 
immediately. However, the results by Wessman 
(1998) are that univariate surveillance is always the 
best method in this setting. Thus, for genuinely 
multivariate situations with different change points, 
ARL1 is not recommended other as a rough indicator.

5. The effect of the relation between  
the change points

In order to illustrate principles and measures we 
will compare one method using reduction to one 
scalar for each time (Method M1) with one using 
parallel control charts (Method M2). Method M1 
gives an alarm if the the sum of the variables exceeds 
a limit. That is tA  =  min{t;  X(t )  +  Y(t)  >  GM1}. 
Method M2 gives an alarm if the method 
gives an alarm for any of the variables. ‘That is 
tA = min{t;  X(t) > GM2 ∪  Y(t ) > GM2}. The limits 
were determined for the Shewhart method to 
GM1 = 3,29 and GM2 = 2,57 so that ARL0 = 100 for 
both M1 and M2.

In the first situation, both variables shift at the 
same time. That is τX = τY. The method M1 has the 
conditional expected delay CED = 1,39 while M2 has 
CED = 2,09. The probability to detect the out-of-
control state immediately PSD(0,t) is for the M1 
method PSD = 0,42 and for M2 we have PSD = 0,32. 
Thus, we see that if both methods shift at the same 
time it is best to use the univariate sum as alarm 
statistic. This is also in accordance with theory.

In the second situation one variable does not 
shift, while the other one does. However, we do not 
know beforehand which one it might be. For the 
case when X in fact did not change (τX = ∞) but 
Y did we have tmin = tY. The method M1 has the 
conditional expected delay CED = 4,53 and M2 has 
CED = 2,49. For the M1 method PSD = 0,18 and for 
M2 PSD = 0,29. Thus, we see that if only one out 
of several processes changes the properties of M2 
are much better. 

In the third situation we know that only the 
distribution of Y can change. We can thus focus 
on Y only. If this had been the case the univariate 
Shewhart method would have had CED = 1,69. 
The probability to detect the out-of-control state 
immediately would have been PSD(0,t) = 0,37. Thus, 
the knowledge would have improved the detection 
ability (for the same ARL0) considerably.

6. Conclusions

Methods can be characterised as scalar 
accumulating, parallel, vector accumulating or 
simultaneous. However, there is no sharp limit 

between some of these categories. Many methods 
first reduce the dimension for example by principal 
components, and then one of the approaches 
for multivariate surveillance is used. Fuchs and 
Benjamini (1994) suggest Multivariate Profile Charts 
that demonstrate both the overall multivariate 
surveillance and individual surveillance in the same 
chart and thus combine two of the approaches.

The more clearly the aim is stated, the better 
the possibilities of the surveillance to meet this aim. 
Hauck, Runger and Montgomery (1999) describe how 
a change may influence variables and the relation 
between them. One way to focus the detection 
ability is by specifying a loss function with respect 
to the relative importance of changes in different 
directions. Mohebbi and Havre (1989) use weights 
from a linear loss function instead of the covariance 
for the reduction to a univariate statistic. Tsui and 
Woodall (1993) use a non-linear loss function and a 
vector accumulation method named MLEWMA. For 
some methods, the detection ability depends only 
on one non-centrality parameter which measures 
the magnitude of the multi-dimensional change. 
Such methods are known as “directionally invariant”. 
However, this is not necessarily a good property in 
all situations, since there often is an interest in 
detecting a certain type of change. Fricker (2007) 
stresses the importance of directionally sensitive 
methods for syndromic surveillance. Preferably, the 
specification should be governed by the application. 

The question of which multivariate surveillance 
method is the best has no simple answer. Different 
methods are suitable for different problems as 
was demonstrated by the examples in Section 5. 
Some causes may lead to a simultaneous increase 
in several variables, and then one should use a 
reduction to a univariate surveillance method, as 
shown by Wessman (1998) and demonstrated here 
by the examples. If the changes occur independently, 
one does not expect simultaneous changes and 
may instead prefer to use parallel methods. All 
knowledge on which component to concentrate on 
is useful.

One advantage with parallel methods is 
that the interpretation of alarms will be clear. 
The identification of why an alarm was raised is 
important. The Hotelling T2 control chart is not 
able to distinguish between a change in the mean 
vector and a change in the covariance structure. 
Mason, Tracy and Young (1995) provided a general 
approach by a decomposition of the T2 statistic 
into independent components. Other suggestions 
include for example principal component analysis, 
see Pignatiello and Runger (1990), Kourti and 
MacGregor (1996) and Maravelakis et al. (2002). 
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The importance of knowledge about where to 
concentrate the effort after an alarm indicating a 
bioterrorist attack is discussed by Mostashari and 
Hartman (2003).

The evaluations of multivariate control charts 
are considerately more complex than for univariate 
ones. However, the effort to specify the problem is 
rewarding. Simple measures might be misleading.
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Sobre gráficos de controle multivariados
Resumo

A produção industrial requer o uso de gráficos de controle para permitir o monitoramento de vários componentes. 
Recentemente tem havido um aumento de interesse também em outras áreas como a detecção do bioterrorismo, 
vigilância espacial e estratégias de operação na área financeira. Na literatura, vários tipos de gráficos multivariados 
têm sido propostos contrapondo-se aos gráficos univariados de Shewhart, EWMA e CUSUM.  Uma revisão geral sobre 
os gráficos de controle multivariados é apresentada. Sugestões são dadas em especial aos desafios em avaliar métodos 
multivariados em vigilância.
Palavras-chave
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