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1. Introduction

In the midst of a highly informational scenario, interoperability is an element to be explored by organizations. 
Such term represents the capacity of a system to communicate between two or more others, in order to use 
the shared data and access external functionalities (Chen & Daclin, 2006). Among the technologies that exert 
interoperability in manufacturing, the Internet of Things (IoT), Big Data, Artificial Intelligence (AI), Augmented 
Reality, Machine to Machine (M2M), Analytics, and Cloud Computing stand out (Alcácer & Cruz-Machado, 2019; 
Oztemel & Gursev, 2020). Classified as information and communication technologies (ICTs), they are the basis 
for Industry 4.0 (I4.0), enabling the emergence of cyber-physical systems. According to (Erasmus et al., 2020; 
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Sotnyk et al., 2020; Rüßmann et al., 2015) some of the benefits that such systems’ networks have provided to 
organizations are increased productivity, alteration of the workforce profile, and increased competitive potential.

However, for an assertive implementation of those technologies, it is necessary that conceptual, technological, 
and organizational requirements are satisfied (Lamine et al., 2017). As the world experience a transition to the 
I4.0, recurrently many adaptations involve legacy systems. Papers such as (Batlajery et al., 2014) characterize 
these systems as those with high usage times, vital to the organization’s business, however, do not fit into future 
IT strategies. Taking that into account (Borangiu et al., 2020; Sotnyk et al., 2020) shows that implementing a 
system with the maturity level necessary to operate in the Industry 4.0 scenario will require a digital transformation 
project.

Parallel, there is a problem with modernization not being prioritized by organizations, also similar for the 
maintenance sector, seen more as an inevitable necessity than as a goal to pursue (Pintelon & Parodi-herz, 
2008). Equivalent to modernization, the role of industrial maintenance has become a strategic element to achieve 
business objectives (Cupek et al., 2019; Patalas-Maliszewska & Skrzeszewska, 2018). According to the literature, 
the maintenance goals involve safety, expressed through a higher reliability coefficient of equipment prone to 
critical failures; availability, when considering the time when the equipment is producing at full capacity; and 
budget, involving the reduction of maintenance costs (Deac et al., 2010). Those goals are related to the benefits 
provided by the I4.0 technologies (Cañas et al., 2021; Kozma et al., 2021).

Along these lines, the present work addresses the difficulty evidenced by digital transformation initiatives, 
underlined in legacy systems, and the proximity of modernization and maintenance to achieve business objectives. 
Notwithstanding, despite empirical evidence for the implementation and effects of I4.0 technologies is available 
in the literature (Wiech et al., 2022), digitalization related decisions are costly and require solid concepts for 
firms to initiate digital transformation (Chen, 2017). Further, it is understandable that every project must operate 
within a budget and time limit, therefore not all the functions of an I4.0 level system can be implemented rapidly 
and cost-effectively at once (Darko et al., 2020; Woodhead et al., 2018; Yu et al., 2021).

In the whole, focusing on the industrial maintenance area and based on an assessment of qualifying attributes 
of a given organization, the research developed here give guidelines to answer the following research question: 
“How to define a technology prioritization plan in order to adapt legacy systems for Industry 4.0 requirements?”. 
This is done by stablishing a digital transformation framework with a set of models based on Multicriteria 
Decision-Making (MCDM) Methods. Therefore, they are used to integrate different domains (Interoperability, 
Maintenance, Legacy Systems adequacy, maintenance technologies in the industry 4.0 context) in a none isolated 
manner to define a non-trivial digital transformation strategy.

Next, section 2 will explain the scientific scenario and the theorical dimensions which are foundations to the 
proposed solution. Furthermore, section 3 explains the framework and section 4 discuss results of the framework 
application in a real case study. Finely, section 5 concludes and suggests improvements.

2. Scientific scenario and theoretical dimensions

Disruptive ICT’s promote escalating industrial productivity, putting current economic models in check, fostering the 
growth of industrial organizations, change the profile of the workforce, and ultimately increase the competitiveness 
of companies (Rüßmann et al., 2015). Thus, the proximity with the term interoperability is evident because of the 
prominence of such technologies, which will increase the collaboration between systems, machines, and people; 
that way, enabling greater speed, flexibility, and efficiency in production processes, resulting in higher quality at 
reduced costs (Carvalho et al., 2018; Gallegos-Baeza et al., 2021; Kozma et al., 2021; Tao & Qi, 2019). Aiming 
this scenario, the research presented here proposes a series of MCDM methods, encapsulated as a framework, to 
support strategic decisions to adequate legacy systems to Industry 4.0. This is done focusing on interoperability. 
As result, technologies will be suggested for implementation, regarding the analyzed system’s specificities and 
background in which it performs. Narrowing the range of technologies to be proposed, consequently being more 
assertive, this work highlights systems in the context of industrial maintenance. Figure 1 describes the connection 
between the research dimensions in this scientific scenario and the research’s methodological sequence.

To fully understand how the framework works, its theoretical dimensions need to be addressed in the 
scenario of digital transformation. Following the research strategy, firstly, legacy systems are addressed. Then, 
RAMI4.0 architecture (Plattform Industrie 4.0, 2015) and Framework for Enterprise Interoperability (FEI) 
(Chen et al., 2007) are theories explored in the industry 4.0 and interoperability dimensions each. Finely, the 
maintenance dimension is specified and recent technologies applied into its modernization are addressed along 
with a referential model.
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2.1. Legacy systems dimension

Even after three decades of research in modernizing legacy systems, it is notable that many remain in 
operation. This is due to the fact that these systems are generally very comprehensive (Brooke & Ramage, 2001; 
Ramage, 2000). They interoperate with other processes or subsystems, only remain in operation due to their 
technical complexity of replacement and/or adaptation and criticality in the organization’s operations, in such 
a way that remains in constant activity. Every system is likely to become a legacy at some point and its data 
is characterized as valuable since its history can be used to understand its behavior in search of optimization 
(Batlajery et al., 2014). However, to remain competitive, companies must continually change their processes, 
sometimes radically, and legacy systems can delay modernization processes and directly influence the company’s 
business strategy (Liu et al., 1998; Matsumoto et al., 2020; Moeuf et al., 2018; Morariu et al., 2016).

2.2. Interoperability and Industry 4.0 dimensions

Two architectures were bases to allocate legacy systems into the conformities of I4.0 in a coordinated way. 
They adopt structures that organize evaluative attributes in perspectives that portray the adequacy of maintenance 
systems, considering their interoperability barriers.

The first, Framework for Enterprise Interoperability (FEI) (Chen et al., 2007), was considered by the premise 
that interoperability might be a relevant metrics to understand what can or cannot be implemented to a system. 
This possibility is feasible because FEI relates conceptual, technological, and organizational barriers linked 
between the enterprise layers, that could be generated by systems trying to communicate. Coupled with that, the 
prerogative that interoperability barriers could difficult the insertion of technology seems feasible once legacy 
systems and other adjacent systems/processes may share communication dependence.

The second is the Reference Architecture Model for Industry 4.0 (RAMI4.0) (Plattform Industrie 4.0, 2015), 
converging multi-stakeholder views on how I4.0 can be accomplished based on existing communication standards 
and functional descriptions (Pedone & Mezgár, 2018). Analogously to the FEI, the RAMI4.0 presents a similar 
enterprise’s layers perspective. Considering that this research investigates interoperability barriers that might 
appear by implement I4.0 technologies in legacy systems, those frameworks were compared (see Figure 2).

This composition considers interoperability barriers into an I4.0 referential architecture. The following 
subsections explain, firstly, how this relation generated a maturity As-is view of a legacy maintenance system, 
and after, how Industry 4.0 technologies could enhance that system, expressed in a To-be view.

2.2.1. System maturity for Industry 4.0

The authors propose a maturity view through the lens of RAMI4.0/FEI architecture in early studies. It aims to 
understand maintenance systems’ maturity by the relations between its attributes and functional requirements 
(Cleland-Huang, 2007). The present work defines Attribute as something that qualifies a concept, in this case, 
maintenance. The definition adopted for Functional Requirement is something that supports the Attribute to 
which it is related. Figure 3 illustrates how these elements are related to each other.

Figure 1. Research strategy.
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The purpose of the attributes is to qualify maintenance within the RAMI4.0 layers. Using the Assets layer as an 
example, the attributes raised have a bias to guarantee the functionality of the acquisition system and to ensure the 
quality and the way that the sensing in the equipment is carried out. In the case of functional requirements, they must 
support the attributes, so that they are met. Again, using the Asset layer as an example, the functional requirements 
are related to the needs of a good sensing system, what should be sensed and what these sensors should monitor. 
Table 1 presents all 25 attributes raised in the literature and their descriptions, follow by the 62 functional requirements 
derived from the attributes, therefore using the same literary base indicated by the ID column.

2.3. Maintenance and modernization dimensions

The legacy systems addressed in this work were constrained to industrial maintenance. Maintenance is currently 
seen as a complex management process that combines several organizational processes, such as production, 
quality, environment, risk analysis, and safety. Bearing in mind that nowadays maintenance management is 
a key part of the organizational composition, it is important to keep its processes in line with the company’s 
strategy. An appropriate maintenance strategy not only reduces the likelihood of equipment failure but also 
improves the working condition of the assets, resulting in lower maintenance costs and/or higher product quality 
(Sipsas et al., 2016; Vaisnys et al., 2006). In an exploratory character, a partial review of the literature with three 
research rounds was carried out, focusing on recent technologies for the maintenance sector.

Figure 2. FEI barriers x RAMI4.0 layers compared frameworks.

Figure 3. Relation between attributes and functional requirements.
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Table 1. Attributes and Functional Requirements description and its references.
Layer ID. Attribute Description Functional Requirements Reference

Asset A1. Identify 
Functional Failures

When identifying and mapping the functional failures of the 
equipment, it is possible to establish what are the possible 
parameters that indicate these failures.
- Establish abnormal conditions.

- Interpret the relevant parameters 
in the equipment;

(Kumar et al., 2018)

A2. Equipment 
Health

Monitoring the health status of the equipment employs sensors 
within the structure of the equipment (such as motors, tracks, 
bearings, etc.) monitoring and providing predictions about the 
current state.
- Supervise equipment performance.

- Preserve equipment integrity in 
data acquisition;

(Wang et al., 2017)

A3. Reliability in 
Data Acquisition

If acquired reliably, the information has potential value, both 
to create a historical database and to discover patterns and 
relationships between parameters.
- Compare purchases with models and standards already 
specified.

- Perform the monitoring of several 
parameters in parallel;

(Karim et al., 2016)

A4. Telemetry In maintenance, there is a tendency for all equipment to have 
more embedded electronics and monitoring through the same of 
its main subsets.
- Guarantee up-to-date information in the monitoring of data.

- Quality and properly installed 
sensors;

(Furch et al., 2018)

Integration A5. Connectivity Wireless sensor networks (WSNs) can provide a lot of useful data 
and are being used more and more in the scope of maintenance.
- Ensure an adequate data transmission rate;
- Certify the reach of the required communication band.

- Use robust network protocols; (Botta et al., 2016)

A6. Security / 
Stability

Even with the demand for connected elements increasing, it is 
necessary to ensure continuous operation.
- Use confirmation protocols;
- Encrypt data transmitted by gateways.

- Operational reliability; (Santos et al., 2009)

A7. Flexibility Gateway devices require a high level of flexibility, allowing 
hardware to be integrated into the network.
- Connected elements have knowledge about other elements 
connected to the network.

- Devices with updated firmware; Wintrich et al., 
2015)

A8. 
Interoperability

Maintenance systems must be able to communicate and 
exchange information.
- Use gateways validated by networks;
- Use data access middleware for direct connectivity between 
apps and databases.

- Allow the ability to connect with 
different industrial protocols;

(Karim et al., 2016)

Communication A9. Security and 
Privacy

With the increasing usability of technologies such as Cloud, 
concerns arise such as network security, suppliers and leakage of 
sensitive information to the company.
- Properly designed access authorization policies.

- Ensure access control of devices; (Botta et al., 2016)

A10. Mobility In the scope of maintenance, technological mobility plays an 
important role in making information accessible.
- Interactivity and operability in real time.

- Allow connection and exchange 
of information on mobile devices;

(Muller et al., 2008)

A11. Data Source 
Heterogeneity

Predictive maintenance requires an efficient data management 
system from a variety of devices.
- Adjust data at different levels;
- Allocate services and applications in different layers.

- Relate different types and cloud 
architectures;

(Botta et al., 2016)

A12. Scalability Important feature in the communication system, which indicates 
how many active elements in the system the network can 
support.
- Limit the number of requests over the network at a time.

- Use protocols that allow the 
unique identification of elements 
on the network;

(Botta et al., 2016)

Information A13. Speed To maintain the efficiency of maintenance systems, it is necessary 
to ensure the speed and proactivity of the system’s information 
flow.
- Check the ideal data processing speed;
- Use point-to-point connections between the database and the 
applications.

- Design architectures that balance 
data latency, requirements and 
decision cycle;

(Laney, 2001)

A14. Volume A network with multiple sensors (WSNs) relies heavily on having 
robustness to store data about maintenance.
- Reduce certain analytical structures to a percentage of 
statistically valid sample data;
- Monitor data usage to identify unused information and discard 
it.

- Ensure data storage capacity; (Laney, 2001)

A15. Variety The variety refers to the range of type and data sources. Along 
with Speed and Volume, they are the 3Vs in a system that 
operates with information.
- Create a data profile to resolve inconsistencies and discover data 
relationships.

- Establish a filter to avoid 
repetition of data;

(Laney, 2001)

A16. Utility The information about the equipment should have an influence 
and be useful in the results of the maintenance analysis.
- Guarantee the quality of the recorded information;
- Filter the information to make it more useful and accurate.

- Interpret and map only the 
important parameters in the 
equipment;

(Schmidt et al., 
2017)

A17. Data Fusion Merging data is a prerequisite to obtain data inference when 
handling a maintenance system, with multiple sensors and 
different data sources.
- Ability to prioritize and differentiate data;
- Create data models about maintenance and compare them.

- Preventing data overload; (Welz et al., 2017)

Those maintenance attributes and functional requirements give the present work directions in how to analyses maintenance systems in an a priori state (i.e., As-is).
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2.3.1. First research round

The first research round provided a general context of I4.0 technologies. For that, the most cite reports with 
frameworks already formalized in the literature were used (see Table 2).

The objective was to gain an overview of I4.0 technologies, with the perspective of different technology 
consultancies.

Table 1. Continued....

Layer ID. Attribute Description Functional Requirements Reference

Functional A18. Diagnosis The diagnosis has the objective of detecting the irregularity, and 
providing information about its origin and severity. Diagnosis is 
an important factor in the assertiveness of decision-making.
- Create a database with a history of failures and monitoring of 
equipment health;
- Define the tasks to be performed and the time spent based on 
the state of the equipment.

- Identify deficiencies in the 
process;

(Yam et al., 2001)

A19. Intelligence Systems need to evolve in automatic fault detection, acquiring 
learning based on fault history.
- Use hybrid intelligent systems that learn to identify and predict 
anomalous situations.

- Improve the accuracy of the 
algorithms that reproduce human 
decision-making;

(Yokoyama, 2015)

A20. Efficiency The maintenance system should improve compared to past 
maintenance histories.
- Record failure prediction learning based on maintenance 
history;
- Optimize the proactivity of real-time information integration.

- To assimilate several parameters 
and indicators to strengthen the 
confidence of the result;

(Baidya & Ghosh, 
2015)

A21. Results View The results should be presented in a practical and detailed way to 
assist the decision maker.
- Present diagnostics in a friendly and intuitive way to those 
responsible.

- Present fault characteristics, 
monitored parameters, possible 
causes and mapping of all 
maintenance steps;

(Efthymiou et al., 
2012)

Business A22. Availability Predictive maintenance should ensure greater availability of 
equipment, reducing machine downtime.
- Use the information correctly to avoid uncertain machine stops.

- Use downtime indicators to 
define maintenance planning and 
scheduling;

(Jantunen et al., 
2011)

A23. Resources The availability of the resources used needs to be made in 
a timely manner, otherwise efficiency will be lost and the 
equipment unavailability gaps will increase.
- Early availability of the necessary tools based on the predictions 
made;
- Explore mobility solutions to facilitate the performance of tasks 
regarding maintenance.

- Have a specialist with know-
how in predictive maintenance 
to regulate the appropriate 
combination of technologies;

(Behera & Sahoo, 
2016)

A24. Decision-
making

The assertiveness in knowing which is the best decision to face a 
failure and the time to do it is one of the main points in the field 
of predictive maintenance.
- Use of statistical tools to support decisions;
- Assist in an easy and quick way in individual decision making.

- Provide and structure information 
about the problems encountered;

(Yam et al., 2001)

A25. Costs Today maintenance is considered a cost center for the company, 
being necessary to evaluate the investment of the implementation 
with indicators such as ROI for example.
- Optimization with intelligent methods of resource sharing.

- Strategically assess the feasibility 
of implementing the necessary 
technologies;

(Jantunen et al., 
2011)

Those maintenance attributes and functional requirements give the present work directions in how to analyses maintenance systems in an a priori state (i.e., As-is).

Table 2 Technology consultancies and its reports.
Consulting Companies Report

(Capgemini Consulting, 2014) Industry 4.0 - The Capgemini Consulting View

(Deloitte, 2015)
Industry 4.0: Challenges and solutions for the digital transformation and use of exponential 
technologies

(PWC, 2016) Industry 4.0: Building the digital enterprise

(PWC, 2015) The Smart Manufacturing Industry

(Cisco, 2015) The Digital Manufacturer Resolving the Service Dilemma

(McKinsey & Company, 2016) Industry 4.0 at McKinsey’s model factories

(Rüßmann et al., 2015) Industry 4.0

(Acatech, 2017) Industrie 4.0 Maturity Index

(Roland Berger, 2014) The Digital Transformation of Industry

(Plattform Industrie 4.0, 2015) Plattform Industrie 4.0

(The Warwick Manufacturing Group, 2017) An Industry 4 readiness assessment tool
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2.3.2. Second research round

In the second round, results from the overviewed technologies were validated in academic articles, focusing 
on its solutions for the maintenance sector. This research round was conducted as follow: (i) was searched the 
relation between “technology” AND “maintenance” (e.g., Cloud AND Maintenance; or, Augmented Reality AND 
Maintenance); (ii) only open access articles were searched; (iii) period from 2014 to 2019 was considered mature 
since the term “Industry 4.0” appeared by 2011 (Rojko, 2017). The most open access research platforms used 
at the time were: ScienceDirect and Archive Ouverte HAL. At the end, 58 articles were considered.

2.3.3. Third research round

Finally, in the third round, the technologies highlighted for the industrial maintenance were filtered 
and allocated into groups. The whole literature database ended with 69 articles and reports. From it, nine 
Maintenance-4.0 technology groups were identified: Big Data, Analytics, Artificial Intelligence and Cloud 
Computing, formalized as cyber-physical subgroup; Advanced Machines, Advanced Materials, Flexible Connection 
Devices and Digital-to-Real Representation (i.e., encapsulating Digital Twin applied in maintenance activities), 
formalized as application subgroup; and Sensors (i.e., encapsulating IoT and Smart Sensors, formalized as the 
bridge to digitalize physical operations). Table 3 details each group.

Table 3. Maintenance-4.0 technology groups, characteristics and applications.

Technology Group Characteristics/Applications

Analytics
Predictions, data processing, historical data analysis, troubleshooting, increasing the effectiveness of 
operational planning, performance forecast, quantum computing, and knowledge support system 
autonomous actions;

Artificial Intelligence
Machine learning techniques, auto optimization, automatically learn, interaction with the physical 
environment, predict regarding prognostic decision-making, enabling maintenance-aware and automation of 
production process and interpolation;

Big Data
Data warehousing, data mining, dataset, vibration/temperature data, condition/state data, data-driven model, 
life-cycle data, control systems data repositories, data-driven algorithm, statistical process control (SPC) data, 
and raw historical data;

Cloud Computing
Network connection extension, remote operable software, platform between customers and suppliers, data 
exchange area, heterogeneous network devices, CMMS may be an add-on or an integrated part, data supply 
chain and sensor networks;

Advanced Machines

Environment whereby smart machines that can communicate with one another (m2m communication), 
human-machine-interaction, self-healing equipment, high-performance laser beam, autonomous robots, 
A.I. applied in machines, collaborative and proactive machines, machines interaction with physical objects, 
connectivity with the factory and real-time feedback/communication;

Advanced Materials
Examples of that are data monitored components towards nanotechnology and self-healing materials. 
Replaceable component, resistant to external ambient/influences and aging, spread part production, cleaning 
components, nanotechnologies, and self-repairing materials;

Flexible Connection Devices
Smartphones, real-time transmission of analyzed object status, machine status input, check products status 
and track them, human-machine interaction and CMMS control device;

Digital-to-Real Representation
Augmented reality googles, assistance with localization and diagnostics of faults in the system, remote 
maintenance/inspection, virtual reality simulation training, and visualization of prototypes;

Sensors
Data gathering/transmitting physical components, equipment containing an RFID tag, condition monitoring 
processes, real-world scanning, vision/sound/temperature sensitivity, wireless sensors, alert on equipment 
maintenance need, and remote detection.

2.4. Maintenance-4.0

Various concepts have been developed to increase maintenance effectiveness. One of the most commonly 
used concepts in organizations around the world is Total Productive Maintenance (TPM). The TPM emphasizes 
proactive and preventive maintenance to maximize the operational efficiency of the equipment. Production 
losses, together with indirect and hidden costs, make up the bulk of the total production cost (Kodali et al., 
2009). Developed to support TPM initiatives, Overall Equipment Effectiveness (OEE) is a metric that identifies the 
percentage of planned production time that is truly productive. The OEE loss of availability, loss of performance, 
and loss of quality can be subdivided into what is commonly called TPM Six Big Losses (Vaisnys et al., 2006), 
the most common causes of lost productivity in manufacturing.
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In order to achieve I4.0 adequacy for the maintenance sector the six big losses were considered (Ahuja & 
Khamba, 2008). For those losses, the model in Figure 4 formalizes courses of action, meaning that for each 
loss there is a course of action based on an I4.0 solution.

Figure 4. Maintenance-4.0 referential model based on TPM.

Such referential architecture was based on a digital asset management platform. With operations in more 
than ten countries and more than 15 years of know-how in the maintenance area, it can be considered a 
commercially validated source, reliable in defining applications. Because the scientific literature varies widely 
from organization to organization, this platform was chosen as a tool to define maintenance in Industry 4.0. 
Moreover, those courses of action are categorized into three main maintenance approaches: predictive, preventive, 
and corrective (Dhillon, 2002). Therefore, the spheres, or Maintenance-4.0 functions, represent enablers for 
predictive, preventive, and corrective approaches based on the technologies reviewed in the previous section 
(2.3). The 32 functions are shown (ranked) as a product of the case study in section 4.

In resume, aiming to guide maintenance processes to zero waste using disruptive technologies, this proposed 
model serves as a To-be guide, for the presented As-is analysis (2.2.1), due to interoperability barriers. Alternatively, 
what is needed to implement (i.e., disruptive technologies) according to what is possible to be implemented 
(i.e., interoperability barriers).

2.5. MCDM

Not used as a theoretical dimension but as part of the scientific scenario in a tooling bias, multicriteria 
decision making/analysis (MCDM/A) methods emerged in the search for solutions to complex problems that are 
difficult to measure, already demonstrated in the maintenance domain (Ruschel et al., 2017). This strategy is 
used as tools for more assertive decisions in systems adequacy, also following a couple of referential researches 
which applies decision-making to assessment in the dimensions of interoperability and Industry 4.0 such as 
(Battirola Filho et al., 2017; Lazai Junior et al., 2020).

Four elements characterize MCDM methods: Set of “alternatives”, from which the decision is chosen; set of 
“criteria”, or factors related to making a good decision; the “preferences” of the decision-maker, being clear, the 
problem becomes more understandable; and the “result” of each choice, measured in terms of criteria according 
to the decision maker’s preferences.
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Two different MCDM are used for the three steps framework, detailed in the next section. For Step 01 and 
02, the Analytic Hierarchy Process (AHP) (Saaty, 1987) is used in order to derive priorities based on sets of 
peer comparisons, thus it is structured on the intrinsic ability to ponder their perceptions or ideas hierarchically 
(Forman & Peniwati, 1998). This method uses a compensatory characteristic, weighting the positive and negative 
attributes of the considered alternatives and allowing positive attributes to offset the negative ones (Elbok & 
Berrado, 2020). This article also explores the AHP possibility to combine geometric means, thus, aggregating 
the decision-makers responses according to the approaches presented in (Ssebuggwawo et al., 2009).

In Step 03, the Preference Ranking Organization Method for Enrichment of Evaluations (PROMETHEE II) 
is used. It is characterized as an interactive method designed to deal with quantitative, qualitative criteria, and 
discrete alternatives. This method can classify alternatives that are difficult to compare due to a commitment to 
standards of evaluation as non-comparable alternatives (Athawale et al., 2012). It suggests a non-compensatory 
strategy, eliminating alternatives that do not meet a particular criterion (Banihabib et al., 2017). According to 
(Brans & Mareschal, 2005) it have been applied in varied fields such as industrial locations, labor planning, 
investments, medicine, chemistry, tourism, and ethics.

Although the two methods applied are based on different strategies, they meet the evaluative requirements 
of each step of the proposed framework. Also, the use of a hybrid MCDA approach offers more robust results 
than isolated MCDA methods (Liou et al., 2017). The next section details the framework.

3. Framework

The framework proposed in this article is structured in three steps. In Step 01 the AHP method is used to 
assess the organization’s maturity, relating the I4.0 attributes and requirements in a maintenance bias. Step 
02 is also built for the application of the AHP method, which will provide the allocation of weights for functions 
of a Maintenance-4.0 referential architecture, giving a selection of the most needed ones. Finally, at Step 03, 
the PROMETHEE II method will be applied to prioritize the technologies that will best adapt to the functions 
selected in the previous step Figure 5.

It is expected that after applying the framework, a legacy maintenance system will have its main requirements 
highlighted, indicating what needs improvement according to I4.0 technologies. The decision analyses consider 
not only what needs to be implemented to improve the system but also what is feasible regarding interoperability 
barriers.

Figure 5. Framework overview.

3.1. Maturity assessment (Step 01)

Once is confirmed the organization’s strategy to optimize its systems to an I4.0 scenario, in Step 01 an 
assessment of its maturity concerning the desired requirements is carried out. For this, engineers and maintainers 
who know in depth the maintenance processes and systems to be evaluated must be available, answering the 
proposed AHP model. They will be in the role of decision-makers. Figure 6 reflects such a model by constructing 
classification structures from the six layers of RAMI4.0/FEI. Working as a maturity assessment, this model describes 
the decomposition of a machine in its structured properties, enabling its virtual mapping.
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The name of the analyzed layer will be located at the top level of the decision model, representing the 
model’s objective. The intermediate level will consist of attributes and functional requirements belonging to 
the industrial maintenance domain, distributed among the six layers to be analyzed. In the end, the lower level 
presents the alternatives: meets, partially meets, and does not meet; related to each functional requirement of 
the intermediate level. The relation attributes/requirements qualify the analyzed system (Justus et al., 2018).

Before this decision support method, a questionnaire aims to answer the importance (i.e., weight) of the 
elements to be raised. This is done based on the know-how of the chosen engineers and maintainers. Then, 
performing the AHP’s peer review, the three alternatives are ranked, thus providing the result of the maturity 
assessment for each layer of RAMI4.0/FEI. When all six layers are evaluated, it will be possible to obtain the 
degree of maturity related to the requirements of Industry 4.0.

3.2. Maintenance-4.0 functions prioritization (Step 02)

Having delimited the areas with a major lack of industrial maturity in Step 01, the objective of Step 02 is to 
prioritize maintenance functions. Those functions will be parameters in the process of implement I4.0 technologies 
to the legacy systems analyzed. The AHP method will be used again, but in another model (see Figure 4), aiming 
to gather the functions’ weights solely and not support a decision. In other words, this AHP model will be used for 
assigning weights to the functions according to the preferences of the decision-makers, not regarding alternatives, 
as done in the previous Step 01. After that, those weights will be used to support the last decision step.

At this stage, another questionnaire, now based on the Figure 7 model, reflects Maintenance-4.0 expectations. 
It presents decision-makers a series of maintenance functions and their application in the light of I4.0. Based 
on the TPM’s six main losses, the engineers and maintainers must consider their decisions regarding predictive, 
preventive, and reactive approaches that will guide maintenance processes to zero waste. At the end of this 
step’s comparison, each function of the Maintenance-4.0 model is ranked by weight.

3.3. Maintenance-4.0 technologies prioritization (Step 03)

Based on the maintenance functions weighted in the previous stage, Step 03 objective is the prioritization 
of I4.0 technologies that best suit those functions. Here, the decision model does not require the organization’s 
engineers and maintainers, leaving the role of decision-maker to a maintenance-4.0 specialist. Considering it, 
the literature review on I4.0 technologies under the maintenance domain (section 2.3) serves as a base.

Step 03 decision model uses the PROMETHEE II method. The weights of each function of Maintenance-4.0, 
from the previous step, will be input and related to the nine technology groups from the literature review on 
maintenance technologies, as shown in Figure 8. The decision-maker is responsible for analyzing the technologies 
necessary to cover the maintenance functions.

Figure 6. Step 01 – Maturity assessment (AHP model 1).
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Specifically, the technologies suggested for implementation are intended to increase the maturity of legacy 
systems, at the same time, ensuring interoperability due to barriers applied to FEI/RAMI4.0 layers. After completing 
all the framework’s stages, there will be enough information to develop an assertive I4.0 compliance plan. Such 
a plan suggests that: The Maintenance-4.0 technologies selected in Step 03 enable the functions prioritized in 
Step 02, which will act on the diagnosed areas arising from the Step 01 maturity assessment.

4. Discussions

To test the framework, a case study considered a multinational vehicle manufacturer. With a presence in 
more than 120 countries, the manufacturing complex in the southern region of Brazil employs approximately 
8 thousand employees and has a production capacity of 320 thousand vehicles per year. We sought an area that 
offered a wider range of equipment, which is why the recently expanded engine factory (2019) has become the 
best option, mixing a wide range of modern and legacy machinery. Two engineers and one maintainer were 
participants in the assessments, answering the questionnaires from the first and second steps in an interviewed 
format.

Figure 7. Step 02 – Maintenance-4.0 functions ranking (AHP model 2).

Figure 8. Step 03 – Maintenance-4.0 technologies prioritization (Promethee II model).
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4.1. Maturity assessment analysis results

In Step 01, the industrial maturity assessment made with the AHP method (seen in Figure 6) according 
to the maintenance managers’ questionnaire represented in Figure 9 resulted in the analysis from Figure 10.

In order to clarify any possible doubts regarding the questionnaire, one of the authors followed the professionals’ 
considerations in person without any interference that was not requested. All the Consistency ratio of each layer 
comparison were accepted for being below 10%: Asset: 0.08380; Business: 0.05787; Communication: 0.09363; 
Functional: 0.06948; Information: 0.05362; Integration: 0.04954.

Figure 9. Maturity questionnaire (Step 01) example.

Figure 10. RAMI 4.0 layers’ interoperability assessment from Step 01.

19.53%

45.74%

60.94%

30.75%

42.07%

11.97%14.05%

31.43%

15.98%
9.87%

21.53%

9.09%

66.42%

22.82% 23.09%

59.38%

36.40%

78.94%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

INTEGRATION INFORMATION FUNCTIONAL COMMUNICATION BUSINESS ASSET

Meets Does Not Meets Partially Meets

Figura 10



Production, 32, e20210035, 2022 | DOI: 10.1590/0103-6513.20210035 13/21

For the Asset layer, the maintenance professional highlights the functional requirement “Supervise equipment 
performance” and in the Business layer “Assist in an easy and quick way in individual decision making”. The functional 
requirement in Communication layer “Allow connection and exchange of information on mobile devices” and 
in the Functional layer “Record failure prediction learning based on maintenance history” were highlighted. 
In the Information layer was highlighted “Ensure data storage capacity” functional requirement and finally, the 
Integration layer stands out the “Allow the ability to connect with different industrial protocols” requirement.

With deeper analysis, even though Business and Information layers meet the level of maturity, in both cases 
the alternatives “does not meet” and “partially meets” together exceeds 50%. This means that the AHP method 
is pointing out the preference (i.e., acknowledgment) of decision-makers, that the factory is at a level that 
“meets” the requirements, but with more uncertainty in comparison with the Functional layer, for example. 
The analysis is presented in Appendix 1.

4.2. Functions prioritization analysis results

In Step 02, the functions of the Maintenance-4.0 model were ranked by relevance. A graph with the 
prioritization of its courses of action is presented in Figure 11.

The 32 maintenance functions are ordered according to their respective weight in Table 4, resulting from the 
normalization of the AHP method (seen in Figure 7). The overall course of action comparison was acceptable 
with a Consistency ratio: 0.04973.

The application of Step 02 took place in a second meeting, through a second questionnaire. A summary of the 
results obtained in Step 01 was made available to the maintainer, aiming to direct him to attribute less relevance 
to decisive maintenance functions poorly related to the target areas. The analysis is presented in Appendix 2.

4.3. Technologies prioritization analysis results

For Step 03, one of the authors played the role of decision-maker as a specialist/consultant. This was possible 
because of the knowledge acquired by the literature review on I4.0 technologies in the maintenance context. 
The weights of the functions obtained in Step 02 were imputed in the Promethee II method (seen in Figure 8). 
Then the alternatives, Maintenance-4.0 technology groups, were analyzed by their level of need i.e., syntactic 
graduation from 1 to 9. Table 5 presents the ranking of the most relevant technology groups to meet the 
Maintenance-4.0 functions. The phi, represents the preference index used by the method.

Figure 11. Maintenance-4.0 best courses of action.
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Technologies at the cyber level were predominant: Analytics, Artificial Intelligence, and Big Data; along with Sensors 
at a physical level. They are responsible for enabling actions that are lacking in the factory, as established in Step 02.

4.4. Summarizing

The results of the framework’s application in an automobile factory show that it was possible to provide 
guidelines for adequacy plans. Although it has been positively validated, its complexity is evident. Among 
the main difficulties encountered are the long questionnaires that need to be filled out in the steps, as many 

Table 4. Maintenance-4.0 Decisive Functions’ Rank.
Decisive Maintenance-4.0 Functions Weight

11) Corrective adjustment due to a faster and programmed set-up 64.77%

15) Predictive decision making to smaller amount of idling 62.06%

29) Startup planning to zero losses due to validation test 55.82%

20) Predictive decision making to avoid reduce speed 53.36%

25) Predictive decision making due to quality monitoring to eliminate defects 51.63%

05) Predictive maintenance due to predictive plan 32.91%

12) Corrective decision making to a faster set-up due to analysis 24.32%

30) Predictive decision making to zero start-up losses due to acquired data 23.90%

04) Inspection routine to prevent or correct failures 22.40%

24) Preventive decision making to eliminate rework 21.00%

18) Preventive decision making to avoid reduce speed due to KPIs 20.83%

07) Corrective maintenance to correct failures due to service execution 18.34%

14) Machine to machine communication due to report management 16.70%

19) Facility alignment to avoid reduce speed 14.19%

23) Cost optimization to eliminate defects and rework 12.29%

13) Preventive decision making for smaller amount of idling 11.73%

08) Corrective decision making to correct failures due to analysis 11.00%

28) Preventive decision making to less start-up losses due to system integration 10.22%

27) Corrective decision making to eliminate defects due to analysis 10.05%

22) Corrective decision making to avoid reduce speed due to analysis 7.22%

03) Preventive decision making to prevent failures and breakdowns 6.72%

32) Corrective decision making to zero start-up losses due to analysis 6.56%

17) Corrective decision making to a smaller amount of idling due to analysis 5.82%

09) Preventive decision making due to schedule 5.46%

10) Predictive decision making due to setting time 5.46%

26) Corrective maintenance to eliminate rework 5.03%

21) Corrective maintenance to avoid reduce speed due to service execution 4.40%

16) Corrective maintenance to less stoppage service 3.69%

01) Equipment upgrade to prevent failures 3.53%

31) Corrective maintenance to less start-up losses 3.50%

02) Improvement due to education and training 2.63%

06) Predictive decision making to prevent failures and breakdowns 2.49%

Table 5. Most relevant technologies analysis.
Rank Technology Method Relevance

1st Analytics Phi 0.4245

2nd Artificial Intelligence Phi 0.3455

3rd Sensors Phi 0.2342

4th Big Data Phi 0.1930

5th Flexible Connection Devices Phi 0.1713

6th Advanced Machines Phi 0.1566

7th Cloud Computing Phi -0.1923

8th Digital-to-Real Representation Phi -0.4994

9th Advanced Materials Phi -0.8334
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judgments are necessary. However, it was confirmed that the proposed digital functionalities correspond with 
the organization’s strategy of elevating efficiency and performance standards.

The purpose of the framework was to promote a new way of solving the application of technologies that 
support Industry 4.0 in legacy and maintenance systems. For that existing frameworks’ concepts were used 
to define such a non-trivial digital transformation strategy. It contributes in three distinct points, defining 
maintenance in I4.0; relating system’s adaptation and interoperability; and, how MCDM organize problems, 
supporting subjective decisions encountered in digital transformation projects.

5. Conclusions and future works

The research developed here sought to answer the following question: “How to define a technology prioritization 
plan in order to adapt legacy systems for Industry 4.0 requirements?”. This need is part of the increasing demand for 
adaptation to I4.0, where the reconditioning of legacy systems becomes the objective of organizations that seek to 
assign new functionalities to their equipment through modernization processes. With the research question in mind, 
a three steps framework was built. Multicriteria decision-making methods (AHP and Promethee II) encapsulated this 
framework, giving a tooling bias to it. Based on the similarities of RAMI4.0 and FEI architectures, Step 01 proposes 
a maturity analysis As-is in the perspective of Industry 4.0 and highlighting the analyzed system’s interoperability 
barriers. Thereafter, Step 02 proposes a To-be vision of the functions encountered in a maintenance system that 
operates in the context of I4.0 (Maintenance-4.0 architecture). Finally, Step 03 proposes I4.0 technologies uncovered 
in maintenance applications. Our results have proven that such a framework will make it possible to elaborate 
more assertive guidelines, capable of aligning legacy maintenance systems with the vision of highly interoperable 
manufacture, necessary to fully access the benefits brought by Industry 4.0.

As future work, another initiative proposing different approaches for the framework’s steps are also being 
tested. Firstly, to understand if it is feasible to optimize the legacy system in the first place. Secondly, to solve 
only the most decisive Maintenance-4.0 functions. This initiative could reduce the framework complexity 
focusing on important functions only. Further, it could be applied more than once, highlighting new decisive 
functions each time the previous ones were implemented, similar to a bottleneck analysis. This could support 
a gradual digital transformation.

As a final consideration, the digitalization of information, processes, functions that make up the operations 
of a business, and business strategies are necessary but not enough to achieve excellence. Most importantly, 
digitalization is essentially about technology, but digital transformation is not. Therefore, this work emphasizes 
that analogous with the empower of people with decision support tools, digital transformation is about people. 
It is how to improve the quality of people’s lives at work and how to improve the performance of organizations 
for people, both developers and customers of the final product.
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Appendix 1. Step 01 AHP – Interviews’ geometric mean.

Assessment of Relevance of Attributes to the Asset Layer

Attribute Assignment of Values Attribute

Reliability in the  
Acquisition of 

Data

>=9.5 9 8 7 6 5 4 3 2* 1 2 3 4 5 6 7 8 9 >=9.5
Identify 

Functional 
Faults

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4* 5 6 7 8 9 >=9.5
Equipment 

Healthy

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5 Telemetry

Identify 
Functional 

Faults

>=9.5 9 8 7 6 5 4 3 2 1 2* 3 4 5 6 7 8 9 >=9.5
Equipment 

Healthy

>=9.5 9 8 7 6 5* 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
TelemetryEquipment 

Healthy
>=9.5 9* 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5

Assessment of Relevance of Attributes to the Business Layer

Attribute Assignment of Values Attribute

Costs

>=9.5 9 8 7 6 5 4* 3 2 1 2 3 4 5 6 7 8 9 >=9.5 Availability

>=9.5 9 8 7 6 5 4 3 2 1* 2 3 4 5 6 7 8 9 >=9.5 Resources

>=9.5 9 8 7 6 5 4 3 2 1 2 3* 4 5 6 7 8 9 >=9.5
Decision 
Making

Availability
>=9.5 9 8 7 6 5 4 3 2 1 2 3 4* 5 6 7 8 9 >=9.5 Resources

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4* 5 6 7 8 9 >=9.5 Decision 
MakingResources >=9.5 9 8 7 6 5 4 3 2 1 2 3* 4 5 6 7 8 9 >=9.5

Assessment of Relevance of Attributes to the Communication Layer

Attribute Assignment of Values Attribute

Scalability

>=9.5 9 8 7 6 5 4 3 2* 1 2 3 4 5 6 7 8 9 >=9.5
Heterogeneity 

of  
Data Sources

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5* 6 7 8 9 >=9.5 Mobility

>=9.5 9 8 7 6 5 4 3 2 1 2 3* 4 5 6 7 8 9 >=9.5
Security and 

Privacy

Heterogeneity 
of  

Data Sources

>=9.5 9 8 7 6 5 4 3 2 1 2 3* 4 5 6 7 8 9 >=9.5 Mobility

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4* 5 6 7 8 9 >=9.5 Security and 
Privacy

Mobility >=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5

Assessment of Relevance of Attributes to the Functional Layer

Attribute Assignment of Values Attribute

Diagnosis

>=9.5 9 8 7 6 5 4 3 2 1 2* 3 4 5 6 7 8 9 >=9.5 Efficiency

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5 Intelligence

>=9.5 9 8 7 6 5 4 3 2* 1 2 3 4 5 6 7 8 9 >=9.5 Results View

Efficiency
>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5 Intelligence

>=9.5 9 8 7 6 5 4* 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Results View

Intelligence >=9.5 9 8 7 6 5 4 3 2 1 2 3* 4 5 6 7 8 9 >=9.5

Assessment of Relevance of Attributes to the Information Layer

Attribute Assignment of Values Attribute

Data Fusion

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5 Utility

>=9.5 9 8 7 6 5 4 3 2* 1 2 3 4 5 6 7 8 9 >=9.5 Variety

>=9.5 9 8 7 6 5 4 3 2* 1 2 3 4 5 6 7 8 9 >=9.5 Speed

>=9.5 9 8 7 6 5 4 3 2 1 2* 3 4 5 6 7 8 9 >=9.5 Volume

Utility

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5 Variety

>=9.5 9 8 7 6 5 4 3 2* 1 2 3 4 5 6 7 8 9 >=9.5 Speed

>=9.5 9 8 7 6 5 4 3 2 1 2 3* 4 5 6 7 8 9 >=9.5 Volume

Variety
>=9.5 9 8 7 6 5 4 3 2 1 2* 3 4 5 6 7 8 9 >=9.5 Speed

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4* 5 6 7 8 9 >=9.5
Volume

Speed >=9.5 9 8 7 6 5 4 3 2 1 2 3 4* 5 6 7 8 9 >=9.5

Assessment of Relevance of Attributes to the Integration Layer

Attribute Assignment of Values Attribute

Connectivity

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5 Flexibility

>=9.5 9 8 7 6 5 4 3 2 1 2* 3 4 5 6 7 8 9 >=9.5 Interoperability

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5
Security/
Stability

Flexibility
>=9.5 9 8 7 6 5 4 3 2 1 2 3* 4 5 6 7 8 9 >=9.5 Interoperability

>=9.5 9 8 7 6 5 4 3 2 1 2* 3 4 5 6 7 8 9 >=9.5 Security/
StabilityInteroperability >=9.5 9 8 7 6 5 4* 3 2 1 2 3 4 5 6 7 8 9 >=9.5
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Appendix 2. Step 02 AHP – Interviews’ geometric mean. The symbol (*) represent the criterion 
weight.

Assessment of Relevance Between the Sub-Criteria

Criterion Sub-Criteria Assignment of Values Sub-Criteria

Faster and 
Schedule 

Settings and 
Adjustments

Preventive 
Decision Making 
Due to Schedule

>=9.5 9 8 7 6 5 4 3 2 1* 2 3 4 5 6 7 8 9 >=9.5
Predictive Decision Making Due 

to Setup Time

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8* 9 >=9.5
Corrective Adjust Due to Faster 

and Schedule Setup

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6* 7 8 9 >=9.5
Corrective Decision Making for 
Faster Setup Due to Analysis

Preventive 
Decision Making 

Due to Setup 
Time

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8* 9 >=9.5
Corrective Adjustment Due to 

Faster and Schedule Setup

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6* 7 8 9 >=9.5

Corrective Decision Making for 
Faster Setup Due to Analysis

Corrective 
Adjustment Due 

to Faster Schedule 
Setup

>=9.5 9 8 7 6 5* 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5

Eliminate 
Defects and 

Rework

Cost Optimization 
to Eliminate 
Defects and 

Rework

>=9.5 9 8 7 6 5 4 3 2 1 2* 3 4 5 6 7 8 9 >=9.5
Preventive Decision Making to 

Eliminate Rework

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8* 9 >=9.5
Predictive Decision Making 

Due to Quality Monitoring to 
Eliminate Defects

>=9.5 9 8 7 6 5* 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making to 

Eliminate Rework

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making to 
Eliminate Defects by Analysis

Preventive 
Decision Making 

to Eliminate 
Rework

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7* 8 9 >=9.5
Predictive Decision Making 

Due to Quality Monitoring to 
Eliminate Defects

>=9.5 9 8 7 6 5* 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making to 

Eliminate Rework

>=9.5 9 8 7 6 5 4* 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making to 
Eliminate Defects by Analysis

Predictive 
Decision Making 
Due to Quality 
Monitoring to 

Eliminate Defects

>=9.5 9 8* 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Maintenance to 

Eliminate Rework

>=9.5 9 8 7 6* 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5

Corrective Decision Making to 
Eliminate Defects by AnalysisCorrective 

Maintenance to 
Eliminate Rework

>=9.5 9 8 7 6 5 4 3 2 1 *2 3 4 5 6 7 8 9 >=9.5

Avoid Speed 
Reduction

Preventive 
Decision Making 
to Avoid Slowing 
Down Due to KPIs

>=9.5 9 8 7 6 5 4 3 2 1 2* 3 4 5 6 7 8 9 >=9.5
Installation Alignment to Avoid 

Slowing Down

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6* 7 8 9 >=9.5
Predictive Decision Making to 

Avoid Slowing Down

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Maintenance to 

Avoid Slowing Down Due to 
Execution of the Service

>=9.5 9 8 7 6 5 4 3 2* 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making to 
Avoid Slowing Down Due to 

Analysis

Installation 
Nesting to Avoid 
Reducing Speed

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4* 5 6 7 8 9 >=9.5
Predictive Decision Making to 

Avoid Slowing Down

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Maintenance to 

Avoid Slowing Down Due to 
Execution of the Service

>=9.5 9 8 7 6 5 4* 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making to 
Avoid Slowing Down Due to 

Analysis

Predictive 
Decision Making 
to Avoid Slowing 

Down

>=9.5 9 8 7 6* 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Maintenance to 

Avoid Slowing Down Due to 
Execution of the Service

>=9.5 9 8 7 6 5 4* 3 2 1 2 3 4 5 6 7 8 9 >=9.5

Corrective Decision Making to 
Avoid Slowing Down Due to 

Analysis

Corrective 
Maintenance to 
Avoid Slowing 
Down Due to 

Execution of the 
Service

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4* 5 6 7 8 9 >=9.5
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Assessment of Relevance Between the Sub-Criteria

Criterion Sub-Criteria Assignment of Values Sub-Criteria

Lesser 
Quantities of 

Downtimes and 
Small Stops

Preventive 
Decision Making 

for Less Idle 
Amount

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6* 7 8 9 >=9.5
Machine to Machine 

Communication Due to Report 
Management

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4* 5 6 7 8 9 >=9.5
Predictive Decision Making for 

Less Amount of Downtime

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Maintenance to 
Reduce Downtime Service

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making 
to Reduce Downtime Due to 

Analysis

Machine to 
Machine 

Communication 
Due to Report 
Management

>=9.5 9 8 7 6 5* 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Predictive Decision Making for 

Less Amount of Downtime

>=9.5 9 8* 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Maintenance to 
Reduce Downtime Service

>=9.5 9 8 7 6* 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making 
to Reduce Downtime Due to 

Analysis

Predictive 
Decision Making 
for Less Amount 

of Downtime

>=9.5 9 8* 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Maintenance to 
Reduce Downtime Service

>=9.5 9 8 7 6 5 4* 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making 
to Reduce Downtime Due to 

Analysis

Corrective 
Maintenance to 

Reduce Downtime 
Service

>=9.5 9 8 7 6 5 4 3 2 1 2 3* 4 5 6 7 8 9 >=9.5

Zero Starts 
Stops

Preventive 
Decision Making 

to Reduce 
Departure Losses 
Due to System 

Integration

>=9.5 9 8 7 6 5 4 3 2* 1 2 3 4 5 6 7 8 9 >=9.5
Initial Planning for Zero Losses 

Due to Validation Testing

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6* 7 8 9 >=9.5
Predictive Decision Making for 
Zero Departure Losses Due to 

Acquired Data

>=9.5 9 8 7 6* 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Maintenance to 
Reduce Departure Losses

>=9.5 9 8 7 6 5 4* 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making 
to Zero Initial Losses Due to 

Analysis

Initial Planning 
for Zero Losses 

Due to Validation 
Testing

>=9.5 9 8 7 6 5 4 3 2 1 2 3 4* 5 6 7 8 9 >=9.5
Predictive Decision Making for 
Zero Departure Losses Due to 

Acquired Data

>=9.5 9 8 7 6 5 4* 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Maintenance to 
Reduce Departure Losses

>=9.5 9 8 7 6 5 4 3* 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making 
to Zero Initial Losses Due to 

Analysis

Predictive 
Decision Making 

for Zero Departure 
Losses Due to 
Acquired Data

>=9.5 9 8 7 6* 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Maintenance to 
Reduce Departure Losses

>=9.5 9 8 7 6 5 4* 3 2 1 2 3 4 5 6 7 8 9 >=9.5
Corrective Decision Making 
to Zero Initial Losses Due to 

Analysis
Corrective 

Maintenance to 
Reduce Departure 

Losses

>=9.5 9 8 7 6 5 4 3 2 1 2* 3 4 5 6 7 8 9 >=9.5

Appendix 2. Continued...


