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We present the main concepts of nonlinear dynamics and thermodynamics of irreversible processes to introduce chemistry students to 
the topic of self-organized phenomena. This task is performed by theoretically describing the emergence of self-sustained oscillations, 
waves, and stationary patterns/Turing patterns in the Belousov-Zhabotinsky (BZ) reaction, through the Oregonator model. We 
carefully developed such a description, which resulted in long algebraic deductions and rich supplementary material. Considering 
that, we encourage the use of this material in undergraduate and graduate advanced physical chemistry classes.
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INTRODUCTION

Ludwig Ferdinand Wilhelmy (1812-1864) set up, for the first 
time in the history of physical chemistry, a differential equation 
(DE) to describe the rate of a chemical reaction, more specifically, 
the acid-catalyzed inversion of sucrose.1 In 1884, the work of the 
German physicist called the attention of Ostwald, who recognized 
the importance of such approach and spread those ideas to the 
scientific community.1 In consequence of that, other scientists could 
show that the mathematical formalism proposed by Wilhelmy was 
able to explain kinetic phenomena of low complexity, i.e., linear rate 
equations, and of high complexity, i.e., nonlinear rate equations.2 
The last case refers to situations in which DE’s with nonlinear 
terms, i.e., polynomial terms of order higher than one, compose the 
physical model. Such systems can evolve to organized dynamical 
states in conditions of constant flux of either matter or energy, i.e., 
far from thermodynamic equilibrium, giving rise to self-organized 
phenomena.2,3 These phenomena are lead by the action of fluctuations, 
which are generated by dissipative processes in nonequilibrium 
regimes. They are characterized by the formation of spatio-temporal 
structures, such as oscillations, waves, and stationary patterns.

There are a significant number of chemical and biochemical 
reactions capable of exhibiting complex dynamical behavior in 
different environments. Also, most of them are related to life.4 In 
the biochemical context, self-organized phenomena play a central 
role in many biological processes, such as metabolism, signaling, 
and development. In general, they are responsible for regulating 
essential events of cell physiology, e.g., circadian rhythms, DNA 
synthesis, and mitosis.5 Among the large variety of examples, the 
emergence of temporal oscillations in glycolysis, i.e., the metabolic 
pathway of conversion of glucose into pyruvate and concomitant 
production of ATP, is the oldest (1950s) and most studied example 
of a biological oscillator.2,5 Another relevant example is the 
spontaneous formation of spatial structures during the development 
of eukaryotic organisms. Even though the scientific community 
recognizes the importance of such processes to the early stages of 
living systems, the mechanism that controls it is still unknown.6 In 
the chemical context, the Belousov-Zhabotinsky (BZ) reaction is 
the most famous inorganic chemical reaction able to form different 
kinds of self-organized structures, e.g., temporal oscillation, complex 
(mixed mode) oscillation, traveling waves, stationary patterns, and 

chaos.2 From studies of the BZ reaction other chemical reactions 
with similar dynamical behavior were discovered as well, such as 
Briggs–Rauscher, CIMA, and Bromate-Sulfite-Ferrocyanide.7 

Despite the profound relevance of self-organized phenomena 
to the better comprehension of natural processes, as exemplified 
previously, this subject still has little attention or no treatment in 
most undergraduate and graduate physical chemistry courses.8 
This fact is related to the difficulties of dealing with physical and 
mathematical concepts of irreversible thermodynamics and nonlinear 
chemical kinetics. The irreversible thermodynamics is the theory 
capable of explaining the emergence of self-organized structures.3 It 
is known as the ”modern” thermodynamics, and it was formulated 
by Lars Onsager, Theophile De Donder, Ilya Prigogine, and others. 
Differently of the “classical” thermodynamics - developed by Carnot, 
Clausius, Joule, Helmholtz, Kelvin, Gibbs, and others - that treats 
irreversible transformation through the Clausius inequality, the 
modern formulation includes time in the description of irreversible 
processes, obtaining explicit equations for the variation of entropy.3,4,9 

This theory shows that a system with a constant flux of energy, i.e., 
to avoid the equilibrium state, can evolve to different steady states 
(SSs). In those situations, the action of fluctuations can make the 
SSs unstable, resulting in the emergence of order with increasing 
entropy.3,10 Most of the physical chemistry classes are composed 
of topics of classical thermodynamics in a way that the modern 
formulation is not presented.

The nonlinear chemical kinetics is associated with the reaction 
mechanism. This class of processes is described by nonlinear DE’s, 
which in most cases, do not have analytical solutions.2,11 Because of that, 
the study of these equations requires more sophisticated mathematical 
methods, such as numerical and algebraic approaches.12-14 In general, 
the direct integration of nonlinear equations can result in many kinds 
of solutions. Therefore, to overcome that situation, simplifications of 
the mathematical model are done to characterize the possible dynamic 
states of the system qualitatively. We do that applying tools of linear 
algebra.11-14 In more complicated cases, in which a large number of 
dependent variables and parameters compose the model, we must 
consider numerical methods related to bifurcation and dynamical 
systems theories to evaluate the behavior of the solutions in terms of 
stability/instability.10-14 These mathematical concepts demanded are 
quite complicated, and because of that, they can be an issue in the 
study of the phenomena discussed in this article.

Considering the critical role of self-organized phenomena in the 
regulation of natural events, e.g., the emergence of life, we present in 
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this work a very detailed description of the mathematical, physical, 
and chemical concepts associated with irreversible thermodynamics 
and nonlinear dynamics to the study of self-organization in chemical 
systems. To accomplish this task, we discuss the emergence of 
self-sustained oscillation, chemical waves, and stationary patterns/
Turing patterns through a well-known model of the Belousov-
Zhabotinky (BZ) reaction, the Oregonator. In section (II), we present 
a brief historical background of the BZ reaction, some aspects of 
its mechanism, and the construction of the model considered here. 
Finally, in section (III), we begin the analysis of the spatio-temporal 
structures, highlighting the main necessary tools and concepts to 
work with such processes. There is plenty of information in the 
Supplementary Material regarded to the algebraic deductions and 
Mathematica software codes.

BZ REACTION: HISTORY, MECHANISM, AND MODEL

The first observation of the oscillatory phenomenon in the BZ 
reaction was made accidentally by Boris Pavlovich Belousov while 
investigating inorganic analogs of the Krebs cycle.2,10 Even though 
his fortunate discovery had not been published previously, he faced 
many obstacles that interfered with the dissemination of his results. 
Belousov began the studies of the metabolic process in 1950 through 
a solution composed of bromate, citric acid, and ceric ions (Ce4+). 
Through it, he verified an unexpected periodic change of the solution’s 
color, between yellow (Ce4+) to colorless (Ce3+), which resulted 
in a careful investigation of the effects of temperature and initial 
concentration in the oscillatory profile, as well as the notification of 
the formation of traveling waves.2 He tried to publish his outcomes, 
but they were rejected twice. Because of that, he decided to give up on 
publishing. Only in 1958, Belousov could publish a short document 
on his observations in the abstracts of a conference on radiation 
biology.2,7 Even with no formal publication, Belousov spread his 
ideas among colleagues in the former USSR and years latter Anatol 
M. Zhabotinsky had access to the reaction’s recipe.7,10

Zhabotinsky is responsible for disseminating Belousov‘s findings 
and continuing his work, making significant progress in understanding 
the mechanism of BZ reaction.7,10 Zhabotinsky started an in-depth 
study of the oscillatory phenomenon through BZ reaction in 1961 
following his adviser suggestion.7 He replaced the citric acid for 
malonic acid, avoiding the production of precipitates, and also 
demonstrated that ferroin, used by Belousov to heighten the color 
change during oscillations, could catalyze the reaction without 
cerium. More importantly, he identified the necessity of at least two 
reaction steps for the emergence of oscillations: autocatalysis, which 
results in the oxidation of Ce3+ via HBrO3, and a reduction of Ce4+.2,7,10 
Differently from Belousov, Zhabotinsky and co-workers published 
their findings, which called the attention of other chemists. However, 
the reports were not well received by many of them.2

The scientific community did not recognize the BZ reaction as a 
true homogeneous oscillating reaction. They claimed that oscillatory 
behavior was either related to heterogeneous phenomena or violating 
the second law of thermodynamics.2,10 Many chemists asserted that 
the oscillation of chemical concentration was associated in some way 
with the presence of dust and formation of bubbles.2 Others argued 
that such a phenomenon disobeys the second law of thermodynamic 
by mistakenly thinking oscillating reactions would be analogous to 
physical pendulums.2,3 The argument is based on the oscillatory profile 
of the pendulum’s total energy as it oscillates around the equilibrium 
point. Like a pendulum, an oscillating reaction would require 
an oscillatory behavior of the Gibbs free energy, as the reactants 
converted to products and then back to reactants, passing through 
the equilibrium state.2 Following the second law, which states that a 

system spontaneously evolves from an initial state to a final state with 
an increase of the total entropy, the behavior described previously 
is inconceivable.2,3 Such allegations promoted the development 
of the theoretical basis of nonequilibrium thermodynamics. This 
theory is capable of showing that a chemical oscillator is different 
from a pendulum, and self-organized phenomena obey the laws of 
thermodynamics.

In the 20th century, the notorious examples of self-organized 
phenomena theoretically and experimentally reported demanded 
a reformulation of thermodynamics as a theory of irreversible 
processes.4 This modern formulation states that a system far from 
equilibrium can organize itself, i.e., reaching states of lower entropy, 
by dissipating energy to the surroundings. Such a process results in 
a positive net change of entropy in the universe.2,3 Considering a 
chemical oscillator, the intermediates of the reaction can increase and 
decrease with time as long as the free energy decreases as a result of 
the continuous conversion of reactants into products.2,3 In fact, it is 
what exactly happens in the BZ reaction, as proposed by Field, Korös 
and Noyes.15 The oscillatory behavior of the intermediates, bromide 
and bromous acid, promotes oxidation and reduction of the cerium 
ions, which can visually be seen by the solution’s color changing. 
However, such a process occurs with the consumption of reactants, 
i.e., bromate and malonic acid, and formation of products, carbon 
dioxide and bromomalonic acid.2,15

In the early 1970’s Field, Korös and Noyes developed a detailed 
chemical mechanism to the BZ reaction, known as the FKN 
mechanism.15 It is composed of a large number of elementary steps, 
which can be best understood by three overall processes:16,17

Process 1: Removal of bromide ions, known as the inhibitor, 
from the reactor media.

BrO3
– + 2Br– + 3H+ → 3HOBr

Process 2: Oxidation of the metal catalyst (M) through a reaction 
autocatalyzed by HBrO2, known as the activator.

BrO3
– + HBrO2 + 2Mred + 3H+ → 2HBrO2 + 2Mox + H2O

Process 3: Reduction of the metal catalyst by the organic reagent 
(malonic acid MA).

2Mox + MA + BrMA → fBr– + 2Mred + other products

Processes 1 and 2 are negative and positive feedback steps, 
respectively. They are responsible for regulating the dynamics of 
the reaction, composing together a classic clock reaction.16 The 
emergence of sustained oscillatory behavior requires such a class of 
steps. Basically, in process 1, the bromide ions act as the inhibitor 
of process 2 by consuming bromate ions, whereas in process 2, the 
bromous acid catalyzes its own production, activating the reaction. 
As the concentration of bromide ions and bromous acid oscillate, 
the inhibitor consumed at process 1 must be replaced, this occurs 
through process 3, where f is an adjustable parameter.15,17 This last 
parameter is proportional to the ratio of the rate of Br– production to 
Mox consumption during the process 3.18

Through the FKN mechanism, Field and Noyes proposed the 
”Oregonator.” It is the first kinetic scheme of reactions capable of 
to qualitatively describe the oscillatory behavior observed in BZ 
reactions.17 The Oregonator model reads as:
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where X ≡ HBrO2, Y ≡ Br–, Z ≡ Mox, and A ≡ B ≡ BrO3
–. Note as well 

that the overall net reaction is:

fA + 2B ⇌ fP + Q

To study the phenomena related to irreversible processes, we are 
going to assume that the reverse steps of the Oregonator are quite 
slow compared with the forward steps. So the entire mechanism is 
irreversible.17 Therefore, considering the law of mass action, we can 
derive the rate equations of the intermediates:

  (1)

  (2)

  (3)

We consider an open system to avoid the thermodynamic 
equilibrium, so the reactants, A and B, are kept constant over time. 
We can propose a transformation of variables, as used by Field and 
Noyes,17 and rewrite the system in a dimensionless form:

  (4)

  (5)

  (6)

where u, y, and v are dimensionless variables, and k1, k2, k3, and k4 
are the dimensionless parameters. Such transformations are taken 
with f = 1, and they are shown in the ref. 17. It is also known that 
the variable y change in time much faster than u and v.15 Because of 
that, we can apply the steady-state approximation, i.e., dy/dt ≈ 0, and 
obtain the reduced Oregonator (RO) form:19,20

  (7)

  (8)

The reduced Oregonator (RO) model, Eqs. (7) and (8), is going 
to be used in the investigations of this article.

SELF-ORGANIZED PHENOMENA

In this section, we present the necessary techniques and theory 
to study the emergence of self-organized phenomena in chemical 
systems. To do that, we separately analyze self-sustained oscillations, 
waves, and stationary patterns in the Belousov-Zhabothinsky reaction 
through the reduced Orgonator (RO) model.

We employed the software Mathematica 9.0 to solve the 
mathematical problems addressed in this work, and considered kinetic 
parameters obtained from experimental data.17,21

Self-sustained oscillation

Self-sustained oscillation (SSO) in chemical reactions refers 
to the spontaneous temporal oscillatory behavior of the dependent 
variables, i.e., the chemical concentration. The occurrence of this 
dynamical state is a consequence of the action of fluctuations on 
the concentration of the reaction intermediates associated with 
the nonlinear kinetic mechanism, i.e., the dissipative process. In 
specific conditions, the steady states (SSs) become unstable, and 
these fluctuations drive the system to stable regimes where periodic 
solutions arise. This event is known as Hopf bifurcation (known as 
well as Poincaré–Andronov–Hopf bifurcation).8,22,23

Therefore, from the information presented previously, we need 
to define conditions whereby the system undergoes Hopf bifurcation 
to observe the emergence of SSO. We solve this task using a 
mathematical strategy known as linear stability analysis (LSA). The 
main idea of LSA is to use the linear version of the corresponding 
nonlinear dynamical model to characterize the behavior of the 
problem’s solutions qualitatively.12-14 The linear approximation is 
carried out in the vicinity of a SS and usually is valid because it 
maintains the most important features of the nonlinear dynamical 
system’s solution in the neighborhood of the SS, differing only by 
small distortions. As a result of that, we can algebraically determine 
conditions in which different dynamical states can exist. However, in 
some circumstances, LSA can fail, demanding different approaches. 
For a better explanation, see the Hartman-Grobman theorem.12

Briefly, the general procedure of LSA, used to study all 
phenomena addressed in this work, can be sketched as follows: 
1) Definition of the SSs of the homogeneous dynamical system; 
2) Linearization of the dynamic equations; 3) Construction of the 
linearized system using matrix notation; 4) Determination of the 
characteristic polynomial; 5) Analysis of the eigenvalues through 
the components of the characteristic polynomial.22,23

To begin with that, we are going to consider the RO model. This 
model can be written in a generic form as follows:

  (9)

  (10)

where f(u,v) = k1(k3v(1 – u) / (1 + u) + u – k2u2) and g(u,v) = k4(u – v). 
The Eqs. (9) and (10) compose a system of nonlinear ordinary 
differential equations (ODE). As described above, we need to define 
at first the SSs of the system. The SS solution, (u*,v*), is obtained 
when the reaction rates are equal to zero, i.e., du/dt = dv/dt = 0 , 
resulting in the Eqs. (11) and (12):

 f(u*,v*) = 0 (11)
 g(u*,v*) = 0 (12)
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The Oregonator model has three possible SSs, and we explicitly 
present them in the Supplementary Material. In this case u* and 
v* are given in an algebraic form. Because of that, the SSs can 
assume complex values depending on the numerical choice of the 
parameters k2 and k3. So, to avoid this problem, we develop an 
algebraic manipulation to find regions in the k2 × k3 space on which 
only real SSs are obtained. This procedure is detailed described in the 
Supplementary Material, and we concluded that if k2 and k3 are chosen 
at the first quadrant of the k2 × k3 space, which is necessary once they 
represent physical parameters, we avoid problems of complex SSs.

The following step is to analyze the effects of small perturbations 
in the neighborhood of the SSs. Therefore, let us suppose that the 
solution to the problem can be written as:

 u(t) = u* +  δu(t) (13)
 v(t) = v* +  δv(t) (14)

with δu and δv infinitesimal perturbations. Note the time evolution of 
the perturbations help us to understand the behavior of the solutions 
near to the SSs. Using Taylor series, we can expand the functions 
f(u,v) and g(u,v), truncating the series in the second-order term:

f(u,v) = f(u*,v*) + (u – u*)fu(u*,v*) + (v – v*)fv(u*,v*) + O2 (15)
g(u,v) = g(u*,v*) + (u – u*)gu(u*,v*) + (v – v*)gv(u*,v*) + O2 (16)

with , , , 

and . From Eqs. (11) and (12), f(u*,v*) = g(u*,v*) = 0  
and we obtain the linear approximation for f(u,v) and g(u,v):

 f(u,v) = fu(u*,v*)δu + fv(u*,v*)δv (17)
 g(u,v) = gu(u*,v*)δu + gv(u*,v*)δv (18)

Substituting Eqs. (17) and (18) into Eqs. (9) and (10) we get the 
linearized version of the RO model:

  (19)

  (20)

Continuing, we can use the matrix notation and rewrite this system 
of differential equations as follows:

  (21)

Note that the 2 × 2 matrix is the Jacobian (J) of (f(u,v), g(u,v))
T. In general, taking  and the vector function , the 
Jacobian matrix m × n is the matrix whose entries are the partial 

derivatives of  with respect to , i.e., .23

The solution of a system of homogeneous linear ordinary 
differential equations is given by:24

  (22)

where (λ1, λ2) are the eigenvalues and ( , ) the associated 
eigenvectors of matrix J. Substituting the Eq. (22) into (21) results in:

  (23)

Rearranging the terms of the previous equation, we rewrite it as

  (24)

with I the identity matrix. The Eq. (24) is a linear system of equations 
and admits nontrivial solutions, i.e., , if and only if the system 
is not invertible, in other words:

 Det(J – λiI) = 0 (25)

Carrying out the calculation of the determinant, we obtain a 
polynomial, known as the characteristic polynomial. For a 2 × 2 
system, it reads as:

 λ2 – Tr[J] + Det[J] = 0 (26)

In the characteristic polynomial, Tr[J] = fu(u*,v*) + gv(u*,v*) 
and Det[J] = fu(u*,v*)gv(u*,v*) – fv(u*,v*)gu(u*,v*) are the trace and 
determinant of the matrix J, respectively. We explicitly present Tr[J] 
and Det[J] in the Supplementary Material for the model considered in 
this section. The last step is to define the eigenvalues. The Eq. (26) is 
a second-order polynomial and its solutions, i.e., the eigenvalues of 
the Jacobian matrix, are given by the quadratic formula:

  (27)

From Eq. (27) we can note that the solutions can assume real, 
complex, and pure imaginary values depending on the trace and 
determinant of matrix J. Moreover, each of the possible solutions of 
the characteristic polynomial is directly associated with a dynamical 
behavior (see in Supplementary Material, an illustration of this 
relationship). Therefore, from the expressions of the trace and 
determinant, we define conditions for the emergence of different 
dynamical states.

Hopf bifurcation is a critical point where the SS loses stability.12-14 
Initially, the SS is stable, which requires Re(λi) < 0, consequently 
Tr[J] < 0 and Det[J] > 0, and then, due changes of parameters, it 
becomes unstable, requiring Re(λi) > 0, consequently Tr[J] > 0 and 
Det[J] > 0, see Eq. (27) and Figure 3S of the Supplementary Material. 
We can realize from Figure 3S, that to the SS reaches the unstable 
regime from the stable one, the system must pass by the condition of 
Tr[J] = 0 and Det[J] > 0, which is characterized by a pair of purely 
imaginary eigenvalues, i.e., Im(λi) ≠ 0 and Re(λi) = 0 with i = 1, 2, see 
Eq. (27).25 The point where Tr[J] = 0 and Det[J] > 0 is called critical 
because it marks where SS’s stability switches, and it is where Hopf 
bifurcation happens.12-14 

In our situation, we could show that for the 1st and 3rd SSs, 
Det[J] > 0, and for the 2nd SS, Det[J] > 0, for any choice of the 
parameters, see Figure 1S in Supplementary Material. Considering that, 
we just need to use the trace of matrix J to check the system’s stability. 
Basically, we plot Tr[J] = 0 as a function of the parameters k3 and k4 
using the software Mathematica, see Figure 1A. Find the Mathematica 
code in the Supplementary Material. Figure 1A shows two possible 
dynamical states which are classified as (I) mono-stable, i.e., two SSs 
are unstable, and one SS is stable, and (II) oscillatory.

Considering that information, we are able to observe the 
spontaneous emergence of SSO in the RO model through the 
numerical integration of nonlinear ODE system, i.e., Eqs. (9) and 
(10), by taking any pair of k3 and k4 chosen in the oscillatory region 
of Figure 1A. We could employ different integration methods to 
solve this problem, the most common is the class of Runge-Kutta 
methods.11,24,26 However, in this case, we performed the calculation 
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using the software Mathematica, see the Supplementary Material. We 
highlight that the integration of DE’s in the Mathematica is carried 
through the command “NDSolve”, which automatically uses different 
methods to solve the equations depending on their type.21 Considering 
that, we maintain the automatic option for integration of the DE’s and 
do not specify any. The solution is presented in Figures 1B and 1C. 

Figure 1B presents the limit cycle in the phase portrait u × v. A 
limit cycle is a closed and isolated trajectory, which in general arises 
when a nonlinear system of ODEs undergoes a Hopf-bifurcation.12-14 We 
can classify such structures after their stabilities features. In the case of 
the RO model, the limit cycle is asymptotically stable because, as can 
be seen through the vector field, the internal and external trajectories 
are attracted to it. Figure 1C shows the time evolution of the chemical 
intermediates, revealing the oscillatory behavior expected.

We go one step further and use the modern formulation of 
thermodynamics to check that such a process obeys the second 
law. We can accomplish that by calculating the “rate of entropy 
production” (σ). Briefly, in the irreversible thermodynamic formalism, 
the changes in entropy are given by dS = deS + diS. The term deS 
accounts the entropy change due to reversible processes, and it can 
be greater, lower, or equal to zero. The last term, diS, is the entropy 
change of irreversible processes, and it is always greater than 
zero.3,4,9-11,27 From that, σ ≡ diS/dt is physically interpreted as the 
temporal variation of entropy internally produced by the occurrence 
of irreversible processes.3,9 We can generally write such expression 

as   where Fk is a thermodynamic force and Jk is a 

thermodynamic flux.3,4,9,11,27 From that definition, we can derive 
explicit equations of σ for each irreversible transformation. In this 
case, the chemical reactions are the only irreversible processes 
considered, and σ is given by:4

  (28)

where, R is the ideal gas constant, Rfk and Rrk are the forward 
and reverse rates of the k-reactions. Find in the Supplementary 
Material an explanation of how to use Eq. (28) to calculate σ. We 
avoid detailed discussions and derivations about this subject once 
it is well described in the literature.3,9-11,28 Figure 1D represents the 
time evolution of the rate of entropy production, evidencing an 
oscillatory behavior, as expected.29 Because in this situation deS = 0, 
the integration of σ over time implies diS > 0, consequently, dS > 0. 
Therefore, we can conclude that the SSO process obeys the second 
law of thermodynamics.

Waves

The Belousov-Zhabotinsky reaction is probably most recalled 
by the formation of waves, which are inhomogeneous structures of 
chemical concentration that change periodically in time.2,10 In the BZ 
reaction, such structures can be visually seen due to the solution’s 
color changing. This dynamical state arises when a temporally 
uniform SS becomes unstable due dissipative effects of the nonlinear 
kinetic mechanism, as in the case of SSO.2

Considering this information, we must find conditions of 
instability in an extended version of the dynamical system that 
accounts for the kinetic and the mass transport processes.2 So, the 
description of the phenomenon addressed in this section is composed 
of two parts, i.e., two independent variables: time (chemical kinetics) 
and space (diffusion). Therefore, the model is written in a generic 
form as follows:

  (29)

  (30)

Figure 1. In all cases k1 = 77.27 and k2 = 0.02. (A) Parameter space of k3 × k4. (B) Limit cycle of RO model in the phase portrait u × 𝑣. (C) Numerical solution 
of the RO model with k3 = 1.0, and k3 = 10.0. In figure ln(C) is the natural logarithm of the concentration (C), where u is in black, and 𝑣 is in gray. (D) Rate of 
entropy production of the self-sustained oscillation presented in Figure 1C
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The Eqs. (29) and (30) constitute a system of partial differential 
equations (PDE), called reaction-diffusion model,29 where 
f(u,v) = k1(k3v(1 – u)/(1 + u) + u – k2u2) and g(u,v) = k4(u – v). Du and 
Dv are the diffusion coefficients of u and v, respectively, and ∇2 is 

the Laplacian operator in 1D, i.e.,  . The terms Du∇2u and 

Dv∇2v comes from Fick’s law of diffusion. This law describes how 
diffusion changes the concentration field in time and space, due to a 
spatial difference of chemical potential.3,9

The procedure here is quite similar to that carried out in the 
previous section, i.e., to examine the spatio-temporal behavior of 
small perturbations around the SSs solutions, as it is written below:

 u(x,t) = u* + δu(x,t) (31)
 v(x,t) = v* + δv(x,t) (32)

In this case, i.e., the linear case, we assume that the small 
perturbations are separable, in other words, δC(x,t) = δC(x)δC(t) 
and C = (u(x,t), v(x,t)) is the chemical concentration. The temporal 

solution, δC(t), is chosen to be the eigenfunction of the operator :

  (33)

It can be verified by simple substitution that δC(t) = αeλt, α ∈ ℝ, 
satisfies the condition imposed. The spatial solution, δC(x), is chosen 
to be the eigenfunction of the operator ∇2,

 ∇2δC(x) = –k2δC(x) (34)

under the zero-flux boundary condition , where  is the normal 
vector to the system’s boundary. This boundary condition represents 
the physical situation of impermeable walls.11,26 We are able to note 
that the solution δC(x) = cos(kx) satisfies the requirements, where k 
is the wavenumber. This last parameter is related to the wavelength 

by this simple expression , and it physically represents 

the wave’s spatial frequency, i.e., the number of waves per unit 
distance.30 Therefore, the spatio-temporal perturbations are given as 
δC(x,t) = αeλtcos(kx).

Considering the form of the perturbation and substituting Eqs. 
(31) and (32) in the system of Eqs. (29) and (30), we are going to 
obtain a linearized system of equations with the following Jacobian 
matrix associated:

  (35)

As we carried out in the last section, we can analyze the stability 
of the solutions through the direct calculation of eigenvalues from the 
characteristic polynomial, which is similar to Eq. (26), see the explicit 
equations in the Supplementary Material. To do that, we build the 
parameter space of k × k4 with Tr[J] = 0 and Det[J] = 0, see Figure 2A.

Figure 2A presents four possible dynamical states, and the 
characteristics of each one of them, in terms of stability, are exposed 
in Table 1S in the Supplementary Material. Briefly, from that Table 
and Figure 3S, we can verify regions I and II are unstable saddle 
nodes, region III is a stable spiral, and region IV is an unstable 
spiral, with Tr[J] > 0 and Det[J] > 0, as in the SSO case. Among 
these dynamical states, the region IV fills the requirements for the 
emergence of waves. Then, taking parameters in that region, we 
can describe the formation of chemical waves by straightforward 
integration of the PDE system, i.e., Eqs. (29) and (30). There are 
different classes of numerical methods used to integrate such 
equations. A widespread approach is based on finite differences, 
e.g., the Crank-Nicolson method.11,26,31 However, we use the software 
Mathematica to solve this problem. See in Supplementary Material a 
script of the calculation. We expose the outcome of the integration in 
Figure 2B. From that figure, we can see that the waves spontaneously 
emerge after a transient time.

Figure 2. In all cases k1 = 77.27 and k2 = 0.02. (A) Parameter space of k × k4. The black curve is given by Det[J] = 0 and the gray curve is given by Tr[J] = 0. 
(B) Numerical solution of the RO model with mass diffusion with k3 = 1.0, k4 = 25.0, Du = 6.0 × 10–3, Dv = 1.6 × 10–3, length L = 1, and Dirichlet boundary 
conditions, u(0,t) = u(L,t) = v(0,t) = v(L,t) = 9.5, (Note u* = v* ≈ 9.5). The graphic is constructed using u(x,t). (C) Rate of entropy production related to the 
chemical waves presented in Figure 2B
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We also calculate the rate of entropy production, but, as we 
already mentioned, in the emergence of chemical waves, two 
irreversible processes take place: chemical reactions and mass 
diffusion.11,27 Because of that, σ is not given by the Eq. (28), which 
is only related to the occurrence of chemical reactions. We need to 
add a term associated with the diffusion process. Therefore, the local 
rate of entropy production (σL) is:

 (36)

In Eq. (36) the last term is referent to the rate of entropy produced 
by the diffusion. Note that, σL ≡ σL(x,t) and then there is a unique 
value of σL to each position of the space. Therefore, to get the rate 
of entropy production of the entire system, we integrate σL over the 
volume of the space: 

  (37)

From Eq’s (36) and (37), we obtain an oscillatory behavior of σ 
as shown in Figure 2C. It is interesting to realize that through the rate 
of entropy production, we can verify the starting point of the self-
organization. So, it can be a useful parameter to track down nonlinear 
events, e.g., symmetry breaking processes.4,11,27 Furthermore, once 
again σ > 0, in a way that its integration over time increases the 
total entropy.

Stationary patterns – Turing Patterns

Alan M. Turing suggested the occurrence of stationary patterns 
in chemical systems in his famous work, “The chemical basis of 
morphogenesis,” published in 1952.32 In this article, the British 
mathematician proposed for the first time in the history of dynamical 
systems theory a reaction-diffusion model, similar to Eqs. (29) 
and (30), to explain the formation of complex cellular structures, 
a process known as morphogenesis.2,3,11,33 From his theoretical 
investigations, Turing predicted the spontaneous emergence of 
spatially inhomogeneous and stationary structures of chemicals 
from an initial homogeneous condition, which he correlated to 
the biological problem.32 In honor of his outstanding work, these 
structures are called Turing patterns.

Turing patterns arise in the situation that the system is stable to 
homogeneous perturbations (HP) and unstable to inhomogeneous 
perturbations (IP). Naturally, as the system is stable to HP, i.e., 
fluctuations of concentration in the entire system, then it tends to a SS, 
as discussed in SSO section. However, the system is simultaneously 
unstable to IP, i.e., localized fluctuations of concentrations, which 
generates chemical gradients in the SS. Therefore, the dissipative 
effects of diffusion lead to the spontaneous formation of spatial 
patterns. Such a scenario can be defined through the LSA approach, 
as have been done with the phenomena addressed in this work. In this 
case, we carry out the analysis by establishing the conditions in which 
(1) the system is stable to HP (k = 0) and (2) unstable to IP (k ≠ 0). 
Note that k = 0 implies that perturbations are spatially independent, 
so they refer to HP. Whereas, the situation that k ≠ 0 indicates that 
perturbations are spatially dependent, and they are related to IP. Such 
a notation is considered in the LSA developed in the Supplementary 
Material. To solve this problem, we consider the reaction-diffusion 
version of the RO model given by Eqs. (29) and (30).

We already established the conditions to satisfy the first 
requirement (1), in the subsection ”Self-sustained oscillations”. 
There, we used the LSA approach and constructed a parameter space 
with two dynamical states, one stable and the other one unstable, see 

Figure 1A. Therefore, to the system be stable to HP, we need to take 
parameters in the region I of the Figure 1A.

Now, we proceed with the second requirement, in other words, 
to define conditions of instability to IP. This is done by identifying 
parameters whereby the system undergoes Turing bifurcation 
following the LSA methodology. However, considering the similarity 
between the physical models used in this subsection and the ”Waves” 
subsection, the LSA approach results in the same Jacobian matrix, 
Eq. (35), and consequently, the same characteristic polynomial of the 
last subsection. So, we find the right conditions for Turing bifurcation 
using those equations.

Turing bifurcation happens precisely when the real and imaginary 
parts of the eigenvalues are equal to zero with k ≠ 0, i.e., Re(λi) = 
Im(λi) = 0 and k = kT ≠ 0 where kT is the wavenumber of Turing 
instability. From the information of the previous paragraphs, such 
bifurcation occurs when Det[J(k ≠ 0)] = (fu(u*,v*) – Duk2)(gv(u*,v*) – 
Dvk2) – fv(u*,v*)gu(u*,v*) = 0, see Supplementary Material. Note that, 
k must be real and greater than zero. Therefore the lowest wavenumber 

that satisfies these conditions is kT , such as .2,32 

We highlight that in this case, the derivation of kT results in a long 
algebraic equation, and because of that, we do not present its explicit 
expression. See in the Supplementary Material the Mathematica code 
to determine kT. Thus, the region of instability to IP, i.e., a situation that 
implies eigenvalues with positive real parts, is when Det[J(kT)] < 0.

Now, we can use the Det[J(kT)] and the information of Figure 1A 
to construct a parameter space k3 × k4 to find regions where Turing 
patterns arise spontaneously, see Figure 3A. Note we assume large 
differences among the diffusion coefficients of the chemicals, 
activator and inhibitor, for the construction of parameter space. 
This assumption is a necessary, but not sufficient, condition for the 
emergence of Turing patterns. It can be easily derived from the LSA 
approach, see the Supplementary Material.

From LSA, we get three different dynamical states. The regions I 
and III define oscillatory and mono-stable states, respectively, as in 
Figure 1A. The region II represents the Turing instability. Therefore, 
we can properly choose the values of k3 and k4 in the Turing region, 
and proceed with simulations of the system of Eqs. (29) and (30). As 
we have done in the ”Waves” subsection, we employed the software 
Mathematica to solve such a task, and the code can be found in 
Supplementary Material. The Turing patterns obtained from the 
numerical integration are shown in Figure 3B. From the outcome of 
this simulation, we can realize that after a transient time, the system 
evolves to a spatially organized state, and the structures formed do 
not change in time. 

From Eqs. (36) and (37) we calculate the rate of entropy 
production. In this case, as we can see in Figure 3C, the rate of 
entropy production tends toward a plateau. This behavior happens 
because, as mentioned before, Turing patterns are stationary, and 
as a consequence of that σ keeps constant, while entropy is being 
produced continuously. We highlight again that the continuous change 
of entropy is greater than zero for this process, as expected.

We emphasize that Turing patterns are well known by the diversity 
of structures formed in two spatial dimensions. Here we present 
an example of a Turing pattern in 2D, Figure 4. This figure is the 
outcome of the numerical integration of the Oregonator model, given 
by Eqs. (4), (5) and (6). Generally, simulations of nonlinear partial 
differential equations with spatial dimensions higher than one demand 
a great computational effort, and because of that, we performed such 
calculations using the alternating direction implicit method, which is 
a semi-implicit method based on finite differences. Such a method is 
implemented in a code written in Fortran 90, see ref. 11 for details 
about the numerical method and its implementation.
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CONCLUSIONS

In this paper, we present the basic techniques and theory related to 
nonlinear dynamics and irreversible thermodynamics to theoretically 
describe the emergence of self-sustained oscillations, chemical waves, 
and stationary patterns/Turing patterns in the Belousov-Zhabotinsky 
reaction, through the Oregonator model. We assumed that the main 
readers, i.e., the students, know a few concepts of differential 
equations, linear algebra, chemical kinetics, and thermodynamics. 

Figure 3. In all cases k1 = 77.27 and k2 = 0.02. (A) Parameter space of k3 × k4. The black curve is given by Det[J(kT)] = 0, related to the IP, and the gray curve 
is given by Tr[J] = 0, related to the HP, the same of Figure 1A. (B) Numerical solution of the RO model with mass diffusion with k3 = 1.0, k4 = 70.0, Du = 1.0, 
Dv = 75.0, length L = 15, and periodic boundary conditions. This graphic is constructed using u(x,t). (C) Rate of entropy production related to the Turing 
patterns presented in Figure 3B

Such an assumption resulted in long algebraic deductions and 
extensive supplementary material, composed by scripts of 
Mathematica, and discussion of the mathematical approaches, helping 
the students to follow the correct methodological procedure.

Differently than the most specialized literature, this work provides 
explicit calculations of terms associated with thermodynamics 
to prove that the occurrence of such phenomena does obey the 
second law. This approach enables an integrated discussion of the 
main concepts involved, offering the reader a thorough view of the 
complexity of the problems addressed.

We highlight that the mathematical tools and physical-chemical 
concepts considered here can be used in a large number of chemical 
problems, even in situations that the system does not spontaneously 
evolve to ordered states. Because of that, we believe that the subject 
presented in this work is suitable for undergraduate and graduate 
advanced physical chemistry classes. We expect that after studying 
the content of this paper, the student must be able to deal with similar 
problems and to carry out investigations of simpler and more complex 
kinetic mechanisms by themselves.

SUPPLEMENTARY MATERIAL

Find in the supplementary material algebraic deductions related 
to LSA, a graphic classification of the dynamic states, codes of the 
software Mathematica, and the rate of entropy production calculation 
description. The material can be freely accessed at http://quimicanova.
sbq.org.br, in PDF format.
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